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INTRODUCTION 
 

Renal cell carcinoma (RCC) has its roots in epithelial 

cells of the renal parenchyma. RCC is the third most 

malignant tumor following prostate cancer and bladder 

cancer. In light of statistics, the incidence of RCC has 

been on the increase year by year, and the mortality rate 

is over 40% [1]. In the early stage, RCC is applicable to 

surgical resection, but one-third of RCC patients exhibit 

metastases at the time of definite diagnosis. These 

patients have a high surgical recurrence rate, poor 

response to chemoradiotherapy, and low response rate 

to immunotherapy [2]. Therefore, for advanced treat-

ment strategies, a deeper understanding of RCC's 

pathogenesis and new biomarkers are warranted. 

Glycogen synthase kinase-3β (GSK-3β) is a 

serine/threonine kinase extensively implicated in cell 

cycle modulation, apoptosis, DNA repair, and resistance 

of chemotherapy and radiotherapy in the pathogenesis 

of multiple cancers [3–4]. For instance, GSK-3β 

overexpression boosts breast cancer cell migration and 

dampens autophagy activation by modulating the 

AMPK pathway [5]. On the other hand, β-catenin 

(encoded by CTNNB1), a subunit of the cell surface 

cadherin protein compound serving as an intracellular 

signal transducer in the WNT signaling pathway, can 

also interact with the other transcription factors, 

covering T-cell factor, forkhead box protein O, and 

hypoxia inducible factor 1α, to modulate the profiles of 

target genes [6]. Therefore, β-catenin facilitates the 
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ABSTRACT 
 

Renal cell carcinoma (RCC) is a lethal malignancy of the genitourinary system. Follistatin-like 3 (FSTL3), which 
mediates cell differentiation and growth, acts as a biomarker of tumors and participates in cancer development 
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PCR (qRT-PCR), Western Blot, and enzyme linked immunosorbent assay (ELISA) were conducted to verify FSTL3 
expression in RCC tissues and cell lines. BrdU assay and CCK8 experiment were made to monitor cell 
proliferation. Transwell was implemented to examine the invasion of the cells. Flow cytometry analyzed cell 
apoptosis, and Western Blot evaluated the protein levels of E-cadherin, Twist, and Slug. In the meantime, the 
protein profiles of the GSK-3β, β-catenin, and TGF-β signaling pathways were ascertained. Moreover, the 
Xenograft tumor model was constructed in nude mice for measuring tumor growth in vivo. The statistics 
showed that FSTL3 presented an overexpression in RCC, and patients with a lower expression of FSTL3 
manifested a better prognosis. Down-regulated FSTL3 hampered the proliferation, invasion, EMT, and tumor 
growth of RCC cells and caused cell apoptosis. On the contrary, FSTL3 overexpression enhanced the malignant 
behaviors of RCC cells. Furthermore, FSTL3 knockdown bolstered GSK-3β, suppressed β-catenin, and reduced 
BMP1-SMAD pathway activation. Inhibited β-catenin substantially mitigated FSTL3-mediated promoting 
functions in RCC. In short, FSTL3 functions as an oncogene in RCC by modulating the GSK-3β/β-catenin signaling 
pathway.  
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transcription of various oncogenes, covering c-Myc and 

CyclinD-1, leading up to carcinogenesis and tumor 

progression of several cancers [7]. Interestingly, more 

and more studies imply that the GSK-3β/β-catenin 

pathway exerts a function in tumor development [8]. 

For example, in epithelial ovarian cancer, Emodin 

(EMO) represses the invasion, migration, and epithelial 

mesenchymal transition (EMT). Additionally, EMO 

abates glycogen synthase kinase 3β (GSK-3β) 

phosphorylation, attenuates the level of total β-catenin 

protein, and down-regulates transcription factor zinc 

finger E-box binding homeobox 1 (ZEB1) [9]. What’s 

more, miR-155 [10] and miR-1246 [11] both function 

as oncogenes in cancers via directly targeting the GSK-

3β-mediated Wnt/β-Catenin pathway. Thus, GSK-3β/β-

catenin pathway regulation may be a prospective 

method for RCC treatment.  

 

Follistatin-like 3 (FSTL3), also called follistatin-related 

protein or follistatin-related gene (FLRG) protein, is a 

highly conserved monomer secreted glycoprotein 

located on chromosome 19p13.3. FSTL3, about 7 kb in 

length, is comprised of five exons and four introns, 

which encode a signal peptide, an N-terminal domain, 

two FS regions, and a C-terminal domain [12]. Via its 

combination with the members of the transforming 

growth factor beta (TGFβ) superfamily, such as activin 

A and myostatin, FSTL3 takes part in the modulation of 

diverse biological effects [13]. Recent literatures have 

revealed that FSTL3 mediates metabolic homeostasis 

[14], myocardial ischemic injury [15], systemic 

sclerosis-correlated pulmonary hypertension [16], and 

other essential physiological and pathological 

mechanisms. Behnke et al. have discovered an over-

expression of FSTL3 in 100% HCC samples, signifying 

a diagnostic biomarker [17]. Gao et al. have also 

disclosed that lncRNA DSCAM AS1 targeting miR-

122-5p uplifts FSTL3 expression, hence bolstering non-

small cell lung cancer proliferation, migration, and 

invasion [18]. Unfortunately, FSTL3 is barely 

investigated in kidney diseases, encompassing RCC.  

 

Existing papers have identified that TGF-β/Smad signal 

activation is intricately associated with RCC occurrence 

and growth [19]. Interestingly, Liu YJ et al. have 

uncovered that FSTL3 is up-regulated in gastric cancer 

and activates epithelial-mesenchymal transition (EMT) 

by enhancing F-actin profile and BMP/SMAD signaling 

[20]. Therefore, we conjectured that FSTL3 influences 

RCC progression by modulating the TGF-β/Smad 

signal. Our discoveries validated that FSTL3 expression 

was augmented in RCC. FSTL3 up-regulation boosted 

β-catenin and TGF-β/Smad signal activation. Thus, we 
performed further experiments to figure out the 

functions of FSLT3 in RCC, with an eye to offering 

new insights into RCC treatment. 

RESULTS 
 

FSTL3 expression in RCC tissues and cells 

 

qRT-PCR, western blot, and IHC determined FSTL3 

expression in RCC tissues and the compared non-tumor 

tissues. The result demonstrated that the mRNA and 

protein levels of FSTL3 were highly expressed in RCC 

tissues vis-a-vis adjacent normal tissues (P<0.05, Figure 

1A–1C). Moreover, in contrast with the normal human 

proximal tubular epithelial cell line (OCT2), FSTL3 

profile in RCC cell lines (786- O, Caki-1, A498, ACHN) 

were considerably elevated (P<0.05, Figure 1D–1F). 

Then we browsed GEPIA (http://gepia.cancer-pku.cn/). 

The biological information analysis revealed that FSTL3 

expression in clear renal cell carcinoma (KIRC) was 

notably higher than that in normal tissues adjoining cancer 

(Figure 1G). Through the Human Protein Atlas 

(https://www.proteinatlas.org/), FSTL3 was discovered to 

be moderately expressed in normal renal tissues but 

strongly expressed in RCC tissues (Figure 1H). The 

Kaplan-Meier Plotter (http://kmplot.com/analysis/index 

.php?p) disclosed that the survival rate of those with high 

FSTL3 profile was much lower than those with low 

FSTL3 profile (Figure 1I). These discoveries signified 

that FSTL3 exhibited an overexpression in RCC and 

might be a novel biomarker for RCC in forecasting the 

survival rate of RCC patients.  

 

FSTL3 overexpression facilitated RCC proliferation 

and invasion and repressed cell apoptosis  

 

To probe into the function of FSTL3 in RCC 

progression, we set up an FSTL3 overexpression model 

in the A498 and ACHN cell lines. As FSTL3 was 

remarkably up-regulated in the two cells, FSTL3 release 

in the culture medium was enhanced (P < 0.05, Figure 

2A–2C). BrdU assay tested cell proliferation. It 

reflected that FSTL3 overexpression stimulated in-

creased BrdU-positive cell rate (P < 0.05, Figure 2D). 

The results of CCK8 were found akin to those of BrdU. 

Following FSTL3 overexpression, the cell proliferation 

was greatly expanded (P < 0.05, Figure 2E). Flow 

cytometry unraveled that the apoptosis rate of 

overexpressed FSTL3 cells declined substantially, lower 

than that of the NC group (P < 0.05, Figure 2F). 

Transwell manifested that the invasion of cells post 

FSTL3 overexpression was prominently strengthened 

(P < 0.05, Figure 2G). Besides, Western Blot for 

epithelial-mesenchymal transformation (EMT) markers 

(E-cadherin, Twist, and Slug) unveiled that FSTL3 

overexpression heightened the levels of Twist and Slug 

but curbed E-cadherin expression (P < 0.05, Figure 2H, 

in contrast with the NC group). These findings denoted 

that FSTL3 boosted the proliferation, invasion, and 

EMT of RCC cells and cramped RCC apoptosis.  

http://gepia.cancer-pku.cn/
https://www.proteinatlas.org/
http://kmplot.com/analysis/index.php?p
http://kmplot.com/analysis/index.php?p
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FSTL3 knockdown hampered the malignant 

phenotypes of RCC  

 

A low FSTL3 expression model was established in the 

A498 and ACHN cell lines. The results of qRT-PCR, 

Western Blot, and ELISA identified that FSLT3 was 

down-regulated in the si-FSLT3 group (against the si-

NC group, Figure 3A–3C). BrdU assay, CCK8 assay, 

flow cytometry, Transwell, and Western Blot 

examined cell proliferation, apoptosis, invasion, and 

EMT, respectively. The experimental outcomes 

illustrated that FSTL3 knockdown notably suppressed 

BrdU-positive cell rate, proliferation, and invasion 

and augmented cell apoptosis (P < 0.05, Figure 3D–

3G). EMT protein expression was ascertained by 

Western Blot. It was validated that E-cadherin 

expression was considerably higher than the si-NC 

group after FSTL3 knockdown, whereas the protein 

profiles of Twist and Slug were lowered (P < 0.05, 

Figure 3H). The above outcomes implied that FSTL3 

knockdown dampened RCC’s malignant behaviors 

and cell EMT.  

 

 
 

Figure 1. The profile of FSTL3 in RCC. (A) qRT-PCR determined FSTL3’s expression in RCC tissues as well as adjacent normal tissues, 
***P<0.001 (vs. Normal group); (B) Western blot was taken for FSTL3 profile detection in RCC tissues and adjacent normal tissues. (C) IHC 
ascertained FSTL3’s expression in RCC tissues and adjacent normal tissues, Bar=50 μm; (D, E) qRT-PCR (D) and Western Blot (E) examined 
FSTL3 in the OCT2, A498, 786-O, Caki-1, and ACHN cell lines, **P<0.01, ***P<0.001 (vs. the OCT2 group). N=5. (F) ELISA measured FSTL3 in 
the OCT2, A498, 786-O, Caki-1, and ACHN culture mediums, **P<0.01, ***P<0.001 (vs. the OCT2 group). (G) FSTL3 expression in RCC was 
figured out through the GEPIA database (http://gepia.cancer-pku.cn/). (H) FSTL3’s expression in RCC tissues or normal renal  
tissues was analyzed via Human Protein Atlas (https://www.proteinatlas.org/). (I) The Kaplan-Meier Plotter database 
(http://kmplot.com/analysis/index.php?p) was consulted to confirm FSTL3 expression in the survival rate of KIRC patients. 

http://gepia.cancer-pku.cn/
https://www.proteinatlas.org/
http://kmplot.com/analysis/index.php?p
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FSTL3 release inhibition repressed RCC 

proliferation and invasion and enhanced cell 

apoptosis  

 

Since FSLT3 is a secreted protein, we further collected 

the conditioned medium (CM) of RCC cells with 

FSLT3 overexpression or down-regulation and treated 

RCC cells with the CM (Figure 4A). Cell proliferation 

was examined via BrdU and CCK8. It was discovered 

that by contrast to the blank group, both CMNC and 

CMsi-NC enhanced cell proliferation (Figure 4B, 4C). 

Enhanced FSTL3 bolstered RCC cell proliferation, 

while FSTL3 knockdown attenuated the proliferation 

(in contrast with CMNC or CMsi-NC, Figure 4B, 4C). 

Flow cytometry revealed that the apoptosis rate in 

CMNC or CMsi-NC was abated vis-a-vis the blank group 

(Figure 4D, 4E). The CM from FSTL3-overexpressed 

cells vigorously decreased cell apoptosis (by contrast to 

the CMNC group), while the CM from FSTL3-

downregulated cells substantially enhanced cell 

apoptosis (against the CMsi-NC group, Figure 4D, 4E). 

Transwell and Western Blot confirmed that the invasive 

ability and EMT of RCC cells were stepped up by 

CMNC or CMsi-NC. FSTL3 overexpression strengthened 

that effect (compared with CMNC group), while FSTL3 

knockdown inverted that effect (in contrast with the 

CMsi-NC group, Figure 4F, 4G). Taken together, secreted 

FSTL3 boosted RCC cell proliferation, invasion, and 

EMT and hampered RCC apoptosis.  

 

FSTL3 up-regulation stepped up RCC cell growth in 

vivo  

 

The influence of FSTL3 on RCC was further researched 

in vivo. The tumor formation model in nude mice was 

erected through the subcutaneous injection of A498

 

 
 

Figure 2. FSTL3 overexpression facilitated RCC proliferation and metastasis and cramped cell apoptosis. A498 and ACHN cells 

were transiently transfected along with FSTL3 overexpression plasmids. (A–C) qRT-PCR (A), Western Blot (B), and ELISA (C) were done for 
FSTL3 detection; (D, E) BrdU (D) and CCK8 (E) were implemented to examine cell proliferation; (F) Flow cytometry measured cell apoptosis; 
(G) Transwell evaluated cell invasion; (H) Western Blot assessed E-cadherin, Twist, and Slug expression in RCC cells. **P<0.01, ***P<0.001 (vs. 
the NC group). N=5. 
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cells transiently transfected with FSTL3-overexpressed 

plasmids, with the tumor growth in mice observed and 

recorded. It was discovered that FSTL3 enhanced tumor 

growth in mice, which manifested that the tumor 

volume and mass were larger than the NC group (P < 

0.05, Figure 5A–5C). EMT protein expression in tissues 

determined by Western Blot indicated that Twist and 

Slug expression in the FSTL3 group were heightened, 

whereas E-cadherin expression was abated (P < 0.05, 

Figure 5D, in contrast with the NC group). Furthermore, 

IHC was implemented to examine E-cadherin in the 

formed tumor tissues. It was unraveled that by contrast 

to the NC group, E-cadherin expression in the tumor 

cells was remarkably uplifted (Figure 5E). This

 

 
 

Figure 3. FSTL3 knockdown impeded RCC proliferation and metastasis and accelerated cell apoptosis. A498 and ACHN cells 
were transiently transfected along with si-FSTL3. (A–C) qRT-PCR (A), Western Blot (B), and ELISA (C) were taken for FSTL3 detection; (D, E) 
BrdU (D) and CCK8 (E) analyzed cell proliferation; (F) Flow cytometry examined cell apoptosis; (G) Transwell assessed cell invasion; (H) 
Western Blot evaluated E-cadherin, Twist, and Slug expression in RCC cells. *P<0.05, **P<0.01, ***P<0.001 (vs. the si-NC group). N=5. 
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phenomenon denoted that FSTL3 not only promoted 

RCC growth in vivo but also incurred EMT.  

 

FSTL3 modulated GSK-3β/β-catenin and BMP1/ 

SMAD pathway activation in vitro and in vivo  

 

To clarify the mechanism by which FSTL3 plays a pro-

oncogenic role in RCC, we further measured the 

profiles of the GSK-3β/β-catenin and BMP1/SMAD 

signals after up-regulating or down-regulating FSTL3. 

The results illustrated that FSTL3 overexpression 

repressed GSK3 beta (phospho S9) and GSK3 alpha 

(phospho S21) and notably brought up the levels of β-

catenin, BMP1, p-SMAD1 (S206), p-SMAD2 (S467), 

and p-SMAD3 (S423+S425) (Figure 6A, 6B). In 

contrast, FSTL3 knockdown restricted the levels of β-

 

 
 

Figure 4. FSTL3 knockdown suppressed RCC proliferation and metastasis and boosted cell apoptosis. (A) The conditioned 
medium (CM) of RCC cells with FSLT3 overexpression or down-regulation was collected. RCC cells were with the CM. A498 and ACHN cells 
were transiently transfected along with si-FSTL3. (B, C) BrdU (B) and CCK8 (C) monitored cell proliferation. (D, E) Flow cytometry examined 
cell apoptosis; (F) Transwell assessed cell invasion; (G) Western Blot evaluated E-cadherin, Twist, and Slug profile in RCC cells. *P<0.05, 
**P<0.01, ***P<0.001 (vs. the Blank group). &P<0.05, &&P<0.01, &&&P<0.001 (vs. the CMNC or CMsi-NC group). N=5. 
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catenin, BMP1, p-SMAD1 (S206), p-SMAD2 (S467), 

and p-SMAD3 (S423+S425) but augmented the profiles 

of GSK3 beta (phospho S9), and GSK3 alpha (phospho 

S21) (Figure 6C, 6D). GSK3 beta (phospho S9) and 

GSK3 alpha (phospho S21) were attenuated, and the 

levels of β-catenin, BMP1, p-SMAD1 (S206), p-

SMAD2 (S467), and p-SMAD3 (S423+S425) were 

elevated in the formed tumor tissues following FSTL3 

overexpression (P < 0.05, Figure 6E, 6F). Those 

discoveries reflected that FSTL3 overexpression 

activated the β-catenin and BMP1-SMAD signaling 

pathways.  

 

β-catenin inhibition alleviated FSTL3-triggered 

oncogenic effects 

 

To grasp whether FSTL3 inhibition would alter the 

occurrence and progression of RCC, we suppressed β-

catenin using its inhibitor XAV939 (1 μM) or si-β-

catenin based on FSTL3 overexpression in ACHN cells. 

qRT-PCR, western blot, and ELISA examined FSTL3 

expression. It turned out that FSTL3 expression in the 

FSTL3+XAV939 and FSTL3+si-β-catenin groups was 

not considerably altered in contrast with the FSTL3 

group (P > 0.05, Figure 7A–7C). BrdU, CCK8, flow 

cytometry, and Transwell validated that compared to the 

FSTL3 group, the cell proliferation and invasion were 

vigorously mitigated after XAV939 treatment or si-β-

catenin transfection, while the apoptosis was stepped up 

(P < 0.05, Figure 7D–7G). Then, the protein profiles of 

the EMT and GSK-3β/β-catenin pathways, and the 

BMP1/SMAD pathway were ascertained via Western 

Blot. The statistics implied that XAV939 and si-β-

catenin reversed FSTL3-incurred EMT, β-catenin, and 

BMP1/SMAD pathway up-regulation (P < 0.05), 

coupled with no largely altered levels of GSK3 beta 

(phospho S9) and GSK3 alpha (phospho S21) (P > 0.05, 

Figure 7H–7J). Therefore, β-catenin inhibition 

attenuated the oncogenic function triggered by FSTL3.  

 

DISCUSSION 
 

RCC, the most prevalent renal malignancy, makes up 

3% of malignancies in adults [21]. RCC incidence is on 

the rise year by year. Owing to the lack of typical 

clinical manifestations and certain diagnostic markers,

 

 
 

Figure 5. FSTL3 influenced RCC growth. ACHN cells transiently transfected along with the overexpression plasmids of FSTL3 were 

transfused under the skin of the experimental mice. (A–C) We observed and measured the tumor growth in mice and drew the growth curve 
and weighted histogram; (D) Western Blot evaluated the protein profiles of E-cadherin, Twist, and Slug. (E) IHC determined E-cadherin 
expression in the tumor tissues. *P<0.05, **P<0.01, ***P<0.001 (vs. the NC group). N=5. 
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some patients have reached the advanced stage of the 

disease when they are clearly diagnosed. RCC exhibits 

a poor prognosis with a five-year survival rate of only 

about 10%, especially for patients displaying metastasis 

[22]. Notwithstanding, the treatment options available 

to patients with metastatic RCC are limited. This study 

has initially discovered that FSTL3, which is up-

regulated in RCC, boosts RCC progression via the 

GSK-3/β-catenin pathway, creating a new effective 

impetus for RCC patients' prognosis improvement.  

 

As secreted follistatin-module-containing glycoproteins, 

several FSLT members, covering FSTL1 [23, 24] and 

FSTL5 [25, 26], have been discovered to participate in 

cancer cell growth, stemness, chemoresistance, invasion, 

and migration. As for FSTL3, it has been demonstrated 

to mediate various biological processes. For instance, 

Xia et al. have suggested that FSTL3 overexpression 

influences gonadal development and function. 

Subsequent studies have progressively corroborated that 

FSTL3 makes a great contribution to cancer 

development [27]. Panagiotou et al. have confirmed that 

higher FSTL3 expression positively correlated with 

malignant breast cancer boasts the potential to be a 

diagnostic biomarker [28]. Zawadzka et al. have 

manifested that FSTL3 may be a candidate biomarker 

for breast cancer [29]. Moreover, Gao et al. have 

pinpointed that FSTL3 is a brand new oncogene of non-

small cell lung cancer (NSCLC), and FSTL3 inhibition 

impedes NSCLC development, migration, and invasion 

[18]. At present, it has been revealed that FSTL3 has an 

enhanced expression in A498, 786-O, Caki-1, and

 

 
 

Figure 6. FSTL3 modulated GSK-3β/β-catenin pathway activation. (A, B) The A498 and ACHN cells were transiently transfected along 

with the overexpression plasmids of FSTL3. Western Blot experiment was done to verify the protein expressions of GSK-3β/β-catenin, and 
BMP1, SMAD1, SMAD2, and SMAD3 in RCC cells. (C, D) The A498 and ACHN cells were transiently transfected along with si-FSTL3. Western 
Blot was implemented to check the protein profiles of GSK-3β/β-catenin, and BMP1, SMAD1, SMAD2, and SMAD3 in RCC cells. (E, F) Western 
blot examined GSK-3β, β-catenin, BMP1, SMAD1, SMAD2, and SMAD3 in the formed tumor tissues. **P<0.01, ***P<0.001 (vs. NC or si-NC 
group). N=5. 
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Figure 7. β-catenin inhibition attenuated FSTL3-induced RCC progression. FSTL3 overexpression plasmids were transfected into 
ACHN cells, and XAV939 (1 μM) or si-β-catenin was added for intervention post FSTL3 overexpression. (A–C) qRT-PCR (A), western blot (B), 
and ELISA (C) were deployed for FSTL3 detection; (D–G) CCK8 (D), BrdU (E), Flow cytometry (F), and Transwell (G) monitored cell 
proliferation, apoptosis, and invasion; (H–J) The protein expressions of the EMT, GSK-3β/β-catenin, and BMP1/SMAD pathways were 
confirmed via Western Blot. *P<0.05, **P<0.01, ***P<0.001. N=5. 
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ACHN RCC cells by contrast to that in OCT2 cells (a 

normal human proximal renal tubular epithelial cell 

line). Furthermore, it transpires that FSTL3 presents a 

higher level in RCC tissues than that in adjacent normal 

tissues. Here, all the A498 [30], 786-O [31], Caki-1 

[32], and ACHN [33] cells were adopted for both in-
vitro and in-vivo experiments to interrogate the 

mechanism of RCC progression. The FSTL3 

overexpression and knockdown models were both set 

up in A498 and ACHN cells. The findings reflected that 

FSTL3 not only boosted RCC proliferation, invasion, 

EMT, and growth, but also dampened cell apoptosis. 

Hence, FSTL3 is a promising diagnostic and therapeutic 

target in RCC.  

 

Glycogen synthase kinase-3β (GSK-3β) has been 

discovered to impact cell growth [34], metastasis [35], 

immune response [36], angiogenesis [37], and neural 

development [38]. Nonetheless, dual roles of GSK-3β  

in tumor development have been revealed to incur 

apoptosis and enhance proliferation in multiple 

diseases. As a result, GSK-3β may serve as a related 

complementary strategy for antibiotic treatment, forging 

an interesting scenario in the development of new 

antimicrobial strategies [39]. In renal cancer, prior 

studies have signified that the pharmacological 

inhibition of GSK-3 by SB-216763, TDZD8, or 9-ING-

41 represses renal cancer cell growth [40, 41]. 

Nevertheless, GSK-3β protein level increased either by 

the chemical agent such as 6-Gingerol [42] or its 

upstream molecular lncRNA NBAT1/miR-346 [43] can 

hinder cell proliferation and migration in renal cancer. 

Interestingly, a preceding study has uncovered that 

FSTL1 aggravates hepatocellular carcinoma progression 

via inducing AKT/GSK-3β pathway activation [44]. 

Here, we figured out that GSK3 beta (phospho S9) and 

GSK3 alpha (phospho S21) were both down-regulated 

post FSTL3 up-regulation, and their levels were brought 

up in FSTL3-downregulated RCC cells. The different 

downstream proteins modulated by GSK-3β might be 

implicated in this phenomenon. 

 

The Wnt signaling pathway has been uncovered to exert 

critical functions in tumorigenesis by modulating cell 

proliferation, apoptosis, differentiation, polarization, 

and migration [45]. In RCC, Wnt signaling pathway 

activation partakes in cancer metastasis via enhancing 

migration, invasion, and EMT [46, 47]. Following Wnt 

pathway activation, β-catenin was accumulated in the 

cytoplasm and translocated into the nucleus. As a 

consequence, it is combined to LEF-1/TCF4 and some 

other co-regulators to step up the transcription of target 

genes, covering Jun, c-Myc, and CyclinD-1, in a tissue-
specific pattern, most of which encode oncoproteins [7]. 

Moreover, the Wnt/β-catenin pathway curbs E-cadherin 

expression [48] and promotes SLUG [49] and Twist 

[50]. These works have confirmed that the Wnt/β-

catenin pathway exerts a vital function in mediating 

EMT. Interestingly, Kelaini et al. have revealed that 

FSTL3 can trigger and enhance endothelial features by 

facilitating β-catenin nuclear translocation via glycogen 

synthase kinase-3β activity inhibition [51]. This paper 

displayed that FSTL3 exhibited a potential function in 

modulating the GSK-3β/β-catenin pathway. Similarly, 

FSTL1 steps up chemoresistance and sustains stemness 

in breast cancer cells via the integrin β3/Wnt/β-catenin 

pathway [23]. Here, it was uncovered that β-catenin 

level was markedly heightened subsequent to FSTL3 

overexpression. Yet, β-catenin inhibition contributed to 

mitigated malignant behaviors of RCC cells. Hence, we 

believed that FSLT3 boosted RCC development 

dependently via the GSK-3β/β-catenin pathway. 

 

As a pivotal mediator in tumor development, trans-

forming growth factor-β1 (TGF-β1) is embroiled in 

mediating carcinogenesis and metastasis through 

activating its downstream small mother against 

decapentaplegic (Smad) signaling [52, 53]. Recent 

works have revealed that Wnt/β-catenin pathway 

inhibition inverts TGF-β-mediated EMT of tumor cells 

[54, 55]. Growth differentiation factor 8 (GDF8) 

facilitates cell invasiveness in human trophoblasts by 

uplifting FSTL3 expression through the ALK5-

SMAD2/3 signaling pathway [56]. FSTL3 bolsters the 

BMP/SMAD pathway [20]. By implementing in-vitro 

and in-vivo experiments, we ascertained that FSTL3 

overexpression enhanced BMP1 and SMAD1/2/3 

phosphorylation. β-catenin inhibition weakens the 

BMP1/SMAD pathway, indicating that FSTL3 

potentially exerts an oncogenic function via inducing 

the TGF-β and Wnt/β-catenin pathways. 

 

To summarize, FSTL3 overexpressed in RCC boosts 

RCC development and growth by inducing the TGF-β 

and Wnt/β-catenin pathways. Our research creates a 

new impetus for the development of novel RCC 

therapies and the improvement of patient prognosis. 

Notwithstanding, this paper lacks clinical case data, and 

experimental animals are relatively limited. Therefore, 

further analysis and research are required in 

combination with the clinical characteristics of RCC 

patients to facilitate RCC treatment development.  

 

MATERIALS AND METHODS 
 

Cell culture and treatment  

 

American Type Culture Collection (ATCC, Rockville, 

MD, USA) supplied OCT2 (normal human proximal 

renal tubular epithelial cell line) and A498, 786-O, Caki-

1, and ACHN (renal cancer cell lines). DMEM (Thermo 

Fisher HyClone, Logan, UT, USA) incor-porating 10% 
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FBS (Thermo Fisher Scientific, Thermo Fisher Scientific, 

Waltham, MA, USA) was adopted as the culture 

medium. The cells were kept in an incubator (37° C, 5% 

CO2). With the medium refreshed every 2 days, the cells 

were passed once in 5 days. When the cells grew to about 

90% of the bottle bottom, the overexpression plasmids of 

FSTL3, small interfering RNA targeting FSLT3 (si-

FSTL3) or β-catenin (si-β-catenin), and their controls 

were transfected into A498 and ACHN cells using 

Lipofectamine3000 (Invitrogen, Carlsbad, CA, USA). 

Then the transiently transfected cells were screened and 

gathered for the following experiments. The β-catenin 

inhibitor XAV939 (MedChemExpress, Cat.No. HY-

15147, 1 μM) was administered to restrain β-catenin in 

accordance with the producer’s instructions.  

 

Reverse transcription-quantitative PCR (RT-qPCR)  

 

The total RNA in the A498 and ACHN cell lines was 

extracted with the application of the TRIzol reagent 

(Invitrogen, Carlsbad, CA, USA), and the mRNA was 

reverse-transcribed into cDNA with the RevertAid First 

Strand cDNA Synthesis kit (Thermo Fisher Scientific, 

Waltham, MA, USA). The LightCycler®480 system 

(Roche, Switzerland) and SYBR Green qPCR Master 

Mix (MedChemExpress, Monmouth Junction, NJ, 

USA) reagents were deployed for real-time fluorescent 

quantitative PCR. The 2-ΔΔCt approach was taken to 

assess FSTL3 expression level (GAPDH as the internal 

parameter). Table 1 for each molecular primer.  

 

BrdU assay 

 

The single-cell suspensions of A498 and ACHN cells 

were prepared and inoculated into a 96-well plate (1×104 

cells/well). Twenty-four hours after incubation, BrdU 

solution (30 µmol/L, Beyotime, Shanghai, China) was 

added into the cells for 8-hour incubation at 37° C. Next, 

the cells were fixed by 4% paraformaldehyde at indoor 

temperature for 30 min before they were flushed with 

PBS three times. 0.1% Tween-20 was utilized for 

permeation for 30 min at 37° C. After that, 5% BSA 

(Sigma-Aldrich) was applied to block the cells for 1 h at 

indoor temperature, which were then incubated along with 

the primary anti-BrdU antibody (1:500; cat. no. ab6326; 

Abcam) for 2 h at 37° C. After being rinsed three times 

with PBS, the cells were incubated with Alexa Fluor® 

488 Rat monoclonal [BU1/75 (ICR1)] to BrdU (1:200, 

ab220074, Abcam) for 1 h at indoor temperature. DAPI 

staining solution (Beyotime, Shanghai, China) was 

harnessed to dye the nuclei at 37° C for 30 min. A 

fluorescence microscope (magnification, ×400; Olympus 

Corporation) was manipulated to observe the cells and 
capture their images. Cell proliferation rate = the number 

of BrdU staining positive cells/total DAPI staining 

positive cells ×100%.  

CCK8 assay 

 

The transiently transfected A498 and ACHN cells were 

prepared into single-cell suspension, which was 

inoculated in 96-well plates (2×103 cells/well). After 24 

h, 48 h, 72 h, and 96 h post seeding, 10 μl CCK8 

solution (Beyotime Biotechnology, Wuhan, China) was 

administered into each hole for another one-hour 

incubation. The optical density (OD) was examined at 

450 nm with the use of a Microplate reader. 

 

Flow cytometry  

 

The transiently transfected A498 and ACHN cells were 

transformed into single-cell suspension, which was 

inoculated in 6-well plates (2×106 cells/well). Cisplatin 

(5 μM) was adopted to treat A498 and ACHN cells for 

24 hours to trigger apoptosis. With the density adjusted 

to 2×106 cells/well, the cells were cultivated for another 

24 hours, and the supernatant was then abandoned. 

After they were rinsed twice with pre-cooled PBS, cell 

apoptosis was examined strictly in conformity with the 

instructions of the apoptosis kit (BD556547; BD 

Biosciences, Franklin Lakes, NJ, USA). A Muse cell 

analyzer (Millipore, Darmstadt, Germany) was 

deployed to analyze apoptotic cell quantification.  

 

Transwell invasion experiment  

 

The transfected cells were seeded onto the upper layer 

of a Transwell chamber (Millipore, Billerica, MA, 

USA) coated with Matrigel (BD Biosciences, San Jose, 

CA, USA). DMEM (200 μL) incorporating 20% FBS 

was put in the lower compartment as a chemo-

attractant. As the cells were cultivated for 24 h, all 

uninvaded cells were cleared. Matrigel was fixed with 

paraformaldehyde, and then the crystal violet solution 

was adopted to dye the cells. A phase-contrast 

microscope (Olympus, Tokyo, Japan) was introduced to 

calculate the invaded cells. The procedure was repeated 

three times, and the measurement was taken three times.  

 

Western blot  

 

After the cells were treated by different factors, the 

original culture medium was abandoned, and the RIPA 

(containing 1% PMSF) lysis buffer was applied to 

digest the cells and separate the total protein. The total 

protein concentration was examined applying the BCA 

approach (Thermo Fisher Scientific, Inc., Rockford, IL, 

USA). The protein lysates were isolated on 10% SDS-

PAGE gel and electrophoretically moved onto PVDF 

membranes (Millipore, Minneapolis, MN, USA). The 
membranes were blocked with 5% skim milk for 1 h at 

indoor temperature and incubated overnight along with 

primary antibodies Anti-E-cadherin (ab76055, 1:1000, 



www.aging-us.com 22539 AGING 

Table 1. The sequences of each molecular primer. 

FSTL3       Forward: 5’-CTGGGATCCTGAGCACGTAT-3’ 

                  Reverse: 5’-GCCAGGGTCCAATGTTTCTA-3’ 

GAPDH    Forward: 5’-TGGTTGAGCACAGGGTACTT-3’ 

                  Reverse: 5’-CCAAGGAGTAAGACCCCTGG-3’ 

 

Abcam, USA), Anti-Twist (ab175430, 1:1000, Abcam, 

USA), Anti-Slug (ab27568, 1:1000, Abcam, USA), Anti-

GSK3 beta (phospho S9) (ab75814, 1:1000, Abcam, 

USA), Anti-GSK3 alpha (phospho S21) (ab28808, 

1:1000, Abcam, USA), Anti-GSK3 beta (ab93926, 

1:1000, Abcam, USA), Anti-beta Catenin (ab32572, 

1:1000, Abcam, USA), Anti-BMP1/PCP (ab205394, 

1:1000, Abcam, USA), Anti-Smad1 (phospho S206) 

(ab106093), Anti-Smad1 (ab339021:1000, Abcam, 

USA), Anti-Smad2 (phospho S467) (ab2808881:1000, 

Abcam, USA), Anti-Smad2 (ab408551:1000, Abcam, 

USA), Anti-Smad3 (phospho S423 + S425) (ab52903, 

1:1000, Abcam, USA), Anti-Smad3 (ab40854,1:1000, 

Abcam, USA), Anti-FSTL3 (cat.no. LS-C166265, 

LifeSpan Biosciences), and Anti-GAPDH (ab181602, 

1:1000, Abcam, USA) at 4° C. When the membranes 

were flushed twice in TBST, the cells were incubated for 

1 h with the fluorescein-labeled secondary antibody 

Goat Anti-Rabbit IgG (1:3000, ab150077, Abcam, 

USA) at indoor temperature. Following 3 times 

washing, the ECL chromogen was applied for 

exposure, and a membrane scanner was employed for 

imaging.  

 

Enzyme linked immunosorbent assay (ELISA) 
 

The FSTL3 ELISA kit (Cat.No. GR2021-03, Jymbio, 

Colorful Gene Biological Technology, China) was 

deployed for FSTL3 level measurement in the culture 

medium of RCC cells. The transiently transfected A498 

and ACHN cells were prepared into single-cell 

suspension, which was seeded into 6-well plates (1×106 

cells/well). After 24-hour culture, the supernatant from 

the medium was collected, and the suspended cells were 

cleared through 20-minute centrifugation at 2000 rpm. 

ELISA was implemented, as instructed by the 

manufacturer. The optical density of each hole was 

confirmed at 450 nm with the use of a microplate reader 

(SpectraMax iD5, Molecular Devices company, 

Shanghai, China). 

 

Tumorigenesis in nude mice  
 

Female BALB/c mice (6-8 weeks old) were bought from 

the Shandong Experimental Animal Center. A498 cells 

transfected along with FSTL3 overexpression plasmids 

were taken, with the cell concentration adjusted to  

2×108 ml-1. 0.1 ml of the cell suspension was transfused 

subcutaneously into the left forearm armpit of each nude 

animal, 15 mice in total. The mice were reared without 

pathogens, given adequate food and water, and their 

survival was monitored. On the 12th day, the tumor size 

of the nude mice was measured with a caliper (every 4 

days), with the volume = long diameter × short diameter 

2/2. During the fourth week, the mice were sacrificed, 

and the weight of tumors in the newly dead mice was 

examined. Zaozhuang Municipal Hospital authorized the 

guidelines for the Care and Use of Experimental 

Animals. The experiments were implemented strictly in 

keeping with the guidelines. 

 

Immunohistochemical staining 
 

The formed tumor tissues or clinical samples obtained 

from RCC patients were routinely embedded in paraffin 

and consecutively sliced up into coronal sections (about 4 

μM thick) for immunohistochemical staining. The 

sections were dehydrated with ethanol subsequent to 

conventional paraffin embedding. Antigen repair was 

done at 100° C, and 5%BSA blocking solution was added. 

The slices were cultivated overnight at 4° C, with the 

addition of diluted primary antibodies Anti-E-cadherin 

(ab76055, 1:200, Abcam, USA) and Anti-FSTL3 (cat.no. 

LS-C166265, 1:50, LifeSpan Biosciences), after which 

they were cultured with the HRP-labeled anti-rabbit IgG 

secondary antibody Goat Anti-Rabbit IgG (1:2000, 

ab6721, Abcam, USA) (1 h, 37° C). The reagents SABC 

and DAB were administered for color development. After 

being slightly re-stained with hematoxylin, the cells went 

through dehydration and fixation.  

 

Statistical analysis  
 

Statistical analysis was conducted with the help of the 

GraphPad Prism 6 software (GraphPad Software, Inc., 

San Diego, CA, USA). The outcomes were displayed as 

mean±SD (x±s). As one-way ANOVA was taken to 

compare multiple factors, an independent sample t-test 

was deployed for the comparison between two different 

groups, with P<0.05 was regarded as statistically 

valuable.  
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