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Abstract. Brain disorders, such as Alzheimer's and Parkinson's 
disease and cerebral stroke, are an important contributor to 
mortality and disability worldwide, where their pathogenesis 
is currently a topic of intense research. The mechanisms 
underlying the development of brain disorders are complex 
and vary widely, including aberrant protein aggregation, 
ischemic cell necrosis and neuronal dysfunction. Previous 
studies have found that the expression and function of growth 
differentiation factor‑15 (GDF15) is closely associated with the 
incidence of brain disorders. GDF15 is a member of the TGFβ 
superfamily, which is a dimer‑structured stress‑response 

protein. The expression of GDF15 is regulated by a number 
of proteins upstream, including p53, early growth response‑1, 
non‑coding RNAs and hormones. In particular, GDF15 has 
been reported to serve an important role in regulating angio‑
genesis, apoptosis, lipid metabolism and inflammation. For 
example, GDF15 can promote angiogenesis by promoting 
the proliferation of human umbilical vein endothelial cells, 
apoptosis of prostate cancer cells and fat metabolism in fasted 
mice, and GDF15 can decrease the inflammatory response of 
lipopolysaccharide‑treated mice. The present article reviews 
the structure and biosynthesis of GDF15, in addition to the 
possible roles of GDF15 in Alzheimer's disease, cerebral stroke 
and Parkinson's disease. The purpose of the present review is 
to summarize the mechanism underlying the role of GDF15 
in various brain disorders, which hopes to provide evidence 
and guide the prevention and treatment of these debilitating 
conditions.
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1. Introduction

Brain disorders, along with malignant tumors and cardiovas‑
cular disorders, are among the leading causes of morbidity 
and mortality worldwide (1). Brain disorders pose a serious 
socioeconomic burden, where the Global Burden of Disease 
2017 data demonstrated that ~324.4 million individuals were 
affected by brain disorders in Europe, which accounts for 
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79.1% of all non‑communicable diseases in 2017 (1). Although 
cholinesterase inhibitors and dopamine‑like drugs have shown 
considerable efficacy for the treatment of brain disorders, 
particularly in patients with degenerative diseases in the 
central nervous system, side effects and long‑term sequelae 
remain (2). Therefore, a more detailed understanding in the 
mechanism underlying the progression and pathophysiology 
of brain disorders is crucial for developing new therapeutic 
strategies.

Growth differentiation factor‑15 (GDF15), which was 
first identified in the human cDNA library that was enriched 
for genes associated with macrophage activation using the 
subtraction cloning approach, is a distant member of the TGFβ 
superfamily (3). GDF15 is highly expressed in the heart, liver, 
kidney, intestine, lung, placenta and the prostate gland (4‑6). 
In humans, the physiological concentration of GDF15 lies in 
the range of 200‑1,200 pg/ml, where its levels increase with 
age (7). It has been reported that GDF15 participates in tissue 
repair by exerting antiapoptotic and anti‑inflammatory effects 
whilst maintaining vascular endothelial functions (8,9). There 
is also accumulating evidence that GDF15 is involved in 
the occurrence and development of cardiovascular diseases, 
diabetes and cancer (10‑12). In 2017, research successively 
identified glial cell‑derived neurotrophic factor receptor 
α‑like (GFRAL) as the receptor of GDF15 (13‑16). Discovery 
of the GDF15/GFRAL signaling pathway provided a poten‑
tially novel target for the treatment of obesity and metabolic 
diseases (16‑18). In recent years, accumulating evidence has 
also indicated that GDF15 is associated with a range of brain 
disorders, including Alzheimer's disease (AD), cerebral stroke 
and Parkinson's disease (PD) (19‑21). Therefore, the aim of the 
present review is to summarize the regulatory processes and 
physiological functions of GDF15, with an emphasis on its role 
in brain disorders.

2. Structure and biosynthesis of GDF15

The GDF15 gene can be mapped onto the chromosome 
19p13.1‑13.2 genomic locus, which contains two exons and 
one single intron with an open reading frame of 924 bp (3). 
Its corresponding mRNA can be translated into a 308‑amino 
acid polypeptide, which is composed of the following three 
parts: Signal peptide, pro‑peptide region and a mature 
region on the carboxyl terminus (3). The mature domain of 
112 amino acids is first separated from the propeptide region 
of 167 amino acids by a furin‑like convertase, which is then 
cleaved by furin/paired basic amino‑acid‑cleaving enzyme 4 
and MMP‑26 (22,23). The mature domain of GDF15 contains 
a highly conserved pattern of seven cysteine residues, where 
six of these form intra‑chain disulfide bonds, forming a highly 
stable cysteine structure that is resistant to physical and 
chemical damage, including enzymatic attacks (24). Unlike 
other TGFβ families of proteins, the propeptide is not required 
for proper GDF15 folding (25). Although propeptides may 
facilitate the detection of improper GDF15 folding, engineered 
GDF15 that lacks the pro‑peptide domain can still be secreted 
in its proper folded form (26). GDF15 is generally secreted as 
a dimer that is formed by inter‑chain disulphide bonds, which 
performs complex biological functions through autocrine or 
paracrine pathways (Fig. 1) (25). In addition, GDF15 can be 

secreted as an unprocessed pro‑peptide, where it can bind to 
the extracellular matrix (ECM) through its 89 amino acids 
on the C‑terminal domain in a reversible manner in prostate 
cancer (27). There, GDF15 can be released from the ECM into 
the circulation by locally acting MMPs or pro‑convertases (27).

3. Regulation of GDF15 expression

GDF15 is a type of stress‑response protein (28). It was previ‑
ously reported that GDF15 expression is markedly increased 
under conditions of inflammation, ischemia, hypoxia and 
organ damage (29). GDF15 is important for the regulation of 
angiogenesis, apoptosis, lipid metabolism and inflammation, 
some of the factors that have been found to regulate GDF15 
expression are discussed in this section.

p53. As a tumor suppressor gene, p53 serves a key role in 
controlling cell proliferation, inhibiting malignant cell prolif‑
eration and regulating cell cycle progression (30). p53 was 
one of the first transcription factors that was identified to be 
transcriptional regulators of GDF15 expression (31). There 
are ≥ two p53 binding sites in the GDF15 promoter, one near 
the transcription start site and another in the region that lie 
851 bp upstream of the transcription start site (31), where both 
binding sites can transactivate the GDF15 promoter (31). It 
was previously reported that GDF15 expression was robustly 
upregulated following the overexpression or pharmacological 
induction of p53 in human lung cancer cell lines, osteosar‑
coma cell lines and breast cancer cell lines (32,33). In addition, 
the DNA intercalator doxorubicin was found to significantly 
increase GDF15 expression in p53 wild‑type human breast 
cancer cell lines, but exerted no effects on p53‑null cells (34). 
In vitro, GDF15 expression was found to be markedly increased 
in human bronchial epithelial cells and human pulmonary 
vascular endothelial cells upon exposure to hyperoxia, whilst 
p53 knockdown robustly reduced this induction of GDF15 
transcription by hyperoxia (35). Therefore, this suggests that 
p53 is an important regulator of the production of GDF15. 
Similarly, C‑reactive proteins in human aortic endothelial 
cells and human maternal expression gene 3 in colon cancer 
cell lines were both shown to induce GDF15 expression by 
recruiting the p53 protein (36,37). Different members of the 
p53 tumor suppressor gene family have been demonstrated to 
exhibit different binding affinities for GDF15 (38). The GDF15 
promoter region contains two p53‑type response elements 
(RE), RE1 and RE2, where most 3' quarter‑sites (areas bound 
by the p53 tetramer) in RE2 exhibit a higher binding affinity 
for p53 (38). Therefore, GDF15 is activated by p53 to a greater 
extent compared with that by other related family members, 
including p63 and p73 (38).

Early growth response‑1 (EGR‑1). EGR‑1 is a transcription 
factor that contains three zinc finger domains and is consid‑
ered to be an important regulator of GDF15 (39). A number of 
studies have previously shown that pharmacological agonists, 
such as troglitazone and non‑steroidal anti‑inflammatory 
drugs, can increase EGR‑1 expression in human colon cancer 
cell lines prior to GDF15 induction, supporting the hypoth‑
esis that GDF15 is a downstream target of EGR‑1 (40‑42). 
Indeed, position ‑73 to ‑51 of the GDF15 promoter contains 
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Figure 1. Synthesis and Secretion of GDF15. (A) GDF15 gene that is located on the chromosome 19p13.1‑13.2 genomic locus can produce a mRNA of 
1239 BP. And the mRNA is translated into a 308 amino acid polypeptide, which includes signal peptide, pro‑peptide region and a mature region. Then the 
mature domain is separated from the propeptide region by a furin‑like convertase. (B) After transcription, translation and processing, GDF15 (yellow circle) 
is formed into a 62‑kDa protein, which is transported into the circulation through vesicles. In addition, the unprocessed GDF15 can also be directly secreted 
to bind to ECM. After hydrolysis by metalloenzymes or pro‑convertases, GDF15 enters the circulation from ECM. GDF15, growth differentiation factor‑15; 
ECM, extracellular matrix.
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EGR‑1‑binding sites (43). Furthermore, DNA methylation at 
the ‑53 site of the GDF15 promoter site blocks the binding 
of EGR‑1, which subsequently inhibits GDF15 induction 
in vitro (43). By contrast, GDF15 transcription by EGR‑1 can 
be restored following incubation with 5‑aza‑2'‑deoxycytidine 
(a demethylating reagent) (43). Accordingly, in HT29 colon 
carcinoma cells, activity of the GDF15 promoter and GDF15 
expression are markedly increased by the ectopic expres‑
sion of EGR‑1 in a dose‑dependent manner, whereas EGR‑1 
knockdown using small interfering (si)RNAs was shown 
to significantly decrease silibinin‑induced GDF15 expres‑
sion (44). These observations suggest that EGR‑1 is a direct 
transcriptional regulator of GDF15.

Long non‑coding RNAs (lncRNAs) and microRNAs 
(miRNAs/miRs). LncRNAs represents a class of RNAs that 
cannot be translated into proteins and are typically >200 
nucleotides in length (45). It has been reported extensively 
that lncRNAs can serve key roles in the regulation of gene 
expression. Kong et al (46) previously revealed that LINC0113 
overexpression decreased the mRNA and protein expression 
levels of GDF15 in oral squamous cell carcinoma (OSCC) cell 
lines, whilst treatment with the exogenous recombinant human 
GDF15 protein was able to restore the migratory and invasive 
abilities of OSCC cells that was previously weakened by 
LINC0113. In addition, a significant positive correlation was 
identified between lncRNA plasmacytoma variant translocation 
1 (PVT1) expression and GDF15 expression in hepatocellular 
carcinoma (HCC) tissues (47). GDF15 knockdown using 
siRNAs significantly suppressed the proliferation of HCC 
cells caused by lncRNA PVT1 overexpression, suggesting 
that lncRNA PVT1 may be an important upstream regulator 
of GDF15 expression in HCC cells (47). Another study also 
revealed that CCAAT/enhancer‑binding protein β (CEBPB) 
can bind to the promoter of GDF15 to facilitate GDF15 gene 
expression in ovarian cancer cell lines (48). In addition, GDF15 
expression was previously found to be negatively associated 
with that of the lncRNA growth arrest‑specific 5 (GAS5) in 
ovarian cancer tissues (48). Mechanistically, lncRNA GAS5 
was shown to competitively bind to CEBPB to inhibit the 
promoting effect of CEBPB on GDF15 transcription (48). It is 
expected that additional lncRNAs involved in the regulation of 
GDF15 expression will be discovered by future studies.

Similar to lncRNAs, miRNAs are also an important 
component of gene transcription regulators, which func‑
tions by pairing with the 3'‑untranslated region of target 
mRNAs (49). Both miR‑873‑5p and miR‑1233‑3p have been 
shown to exert suppressive effects on GDF15 expression 
in melanoma cell lines (50). However, single‑nucleotide 
polymorphism in miRNA, rs1054564, was located in the 
GDF15'UTR complementary to the hsa‑miR‑1233‑3p seed 
region, and the presence of this C‑allele was discovered to 
weaken the binding of hsa‑miR‑1233‑3p to GDF15, thereby 
enhancing the expression of the GDF15 protein (50). 
miR‑3189 is a primate‑specific miRNA that is embedded 
within the introns of GDF15 (51). Increased miR‑3189 
expression results in elevated GDF15 expression by down‑
regulating p53 in colorectal cancer cell lines (51). In addition, 
overexpression of miR‑3189 in HCT116‑p53‑/‑ colorectal 
cancer cells was shown to upregulate the expression of a 

subset of p53 targets, including GDF15 and growth arrest and 
DNA‑damage‑inducible 45α (51).

Hormones and hormone derivatives. Hormones and hormone 
derivatives have also been demonstrated to lie upstream of 
GDF15 (52). Primary adrenal insufficiency is accompanied 
by an increase in GDF15 expression, where glucocorticoid 
replacement therapy was shown to effectively reduce this 
concentration of GDF15 in a dose‑dependent manner (53). 
In brown adipose tissues, noradrenergic cAMP‑mediated 
thermogenic activation was found to increase GDF15 gene 
expression and subsequent release (54). In addition, metformin 
was reported to increase GDF15 levels, but it had no effect 
on GFRAL receptor‑deficient mice (52). Zhao et al (55) previ‑
ously found that thyroid hormone levels were independently 
associated with GDF15 expression, such that T3 treatment 
promoted GDF15 expression in brown adipose tissues of 
C57BL/6 mice. Furthermore, previous in vivo and vitro experi‑
ments demonstrated that testosterone and estradiol treatment 
reduced GDF15 secretion through androgen receptor/estrogen 
receptor‑mediated signaling pathways (56).

4. Biological functions of GDF15

Angiogenesis. Accumulating evidence has suggested that 
GDF15 is a potential stimulator of angiogenesis (Table Ⅰ). 
After being secreted by senescent endothelial colony‑forming 
cells generated from adult human blood in a paracrine 
manner, GDF15 can promote proliferation, migration and 
NO production in non‑senescent endothelial colony‑forming 
cells generated from adult human blood (57). During this 
process, a number of signaling pathways are activated by 
GDF15 in an oxidative stress‑independent manner, including 
AKT, ERK1/2 and Smad2 (57). This improved the function of 
vascular progenitor cells, which may serve therapeutic effects 
on the damaged vascular system (57). Similarly, GDF15 can 
also enhance the expression of cyclins D1 and E in HUVECs 
through the PI3K/AKT, JNK and ERK signaling pathways to 
promote the proliferation of endothelial cells (58). GDF15 is 
also involved in the mechanism underlying ischemia/reperfu‑
sion injury. During the process of cardiac ischemia, GDF15 
was shown to stimulate the angiogenesis of hypoxic HUVECs 
by inhibiting p53 signaling whilst upregulating hypoxia‑induc‑
ible factor 1α expression (59). Furthermore, since the repair of 
large bone defects remains to be a major medical challenge, 
GDF15 was shown to represent a potentially effective solution. 
Wang et al (60) found that GDF15 can promote the formation 
of functional blood vessels at the site of artificially‑induced 
angiogenesis, which significantly improved the healing of 
critical‑sized calvarial defects. Neovascularization is one of 
the major characteristics in cancer (61). Following chemo‑
therapy, the expression of GDF15 was found to be markedly 
upregulated in HCC (62). GDF15 can induce Src and then 
activate AKT, MAPK and NF‑κB downstream in HCC, which 
promotes the proliferation, migration and tube formation 
of surrounding endothelial cells in vitro (62). By contrast, 
thalidomide, an agent with known anti‑angiogenic activities, 
can significantly attenuate and reverse these effects aforemen‑
tioned (62). In addition, it was found that GDF15 interacted 
with connective tissue growth factor (CCN)‑2, to inhibit 
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CCN2‑mediated focal adhesion kinase activation, which in 
turn decreased avβ3 integrin clustering in HUVECs, to exert 
antagonistic effects on angiogenesis (63). This phenomenon is 
conducive to understanding the role of GDF15 under various 
disease conditions further.

Cell apoptosis. Apoptosis is a process in which cell death 
occurs in an orderly manner and is crucial for the mainte‑
nance of internal homeostasis (64). Owing to its reported 
function as a stress‑response protein, GDF15 has been 
reported to regulate apoptosis (65). GDF15 is a downstream 
target of methylseleninic acid (MSA), where GDF15 knock‑
down significantly inhibited the apoptosis of prostate cancer 
cells mediated by MSA (66,67). By contrast, GDF15 over‑
expression made prostate cancer cells flattened and more 
spread out and induced caspase‑dependent apoptosis (66,67). 
GDF‑15 was inducible in human macrophages by oxidized 
low density lipoprotein and its mediators in vitro, and GDF15 

immunoreactivity was colocalized with apoptosis markers 
such as PARP, caspase‑3 or apoptosis‑inducing factor immu‑
noreactivity, suggesting that GDF15 may modulate apoptosis 
process in activated macrophages (68). In addition, A549 
lung adenocarcinoma cell apoptosis was also induced by 
GDF15 overexpression through promoting caspase‑9 and 
caspase‑3 expression and inhibition of ERK1/2 and p38 
activation, which was mediated in a TGFβ receptor type II 
(TGFβRII)‑dependent manner (69). Conversely, GDF15 can 
exert a protective effect against the apoptosis of HUVECs 
induced by high glucose concentrations (70). Mechanistically, 
this effect may be caused by GDF15 maintaining the activity 
of PI3K/Akt/eNOS pathway and attenuating NF‑κB/JNK 
pathway (70). In addition, under conditions of hypoxia and 
laminar shear stress, GDF15 expression in the pulmonary 
microvascular endothelial cells of patients with pulmonary 
arterial hypertension was found to be significantly higher 
compared with that in normal lung tissues, where the extent 

Table I. Biological functions of GDF15.

Actions Experimental models Mechanisms (Refs.)

Angiogenesis      
  Pro‑angiogenesis Endothelial colony forming cells ↑NO, ↑AKT, ERK1/2 and SMAD2 (57)
 generated from adult human blood
  HUVEC ↑Cyclin D1 and E, ↑retinoblastoma (58)
  phosphorylation and E2F‑1 nuclear translocation
  HUVEC ↓p53, hypoxia‑induced factor‑1α (59)
  Hepatocellular carcinoma ↑Src and AKT, MAPK and NF‑κB downstream (62)
  Anti‑angiogenesis HUVEC ↓Connective tissue growth factor 2/focal adhesion kinase (63)
Apoptosis   
  Pro‑apoptosis Prostate cancer cells ↑Methylseleninic acid, ↑caspase‑dependent apoptosis (66,67)
  Activated macrophages ↑ PARP, caspase‑3 or AIF (68)
 A459 cells ↑caspase‑9 and caspase‑3; ↓ERK1/2 and p38 MAPK (69)
  phosphorylation
Anti‑apoptosis  HUVEC ↑PI3K/AKT/ endothelial nitric oxide synthase; (70)
  ↓NF‑κB/JNK
  Patients with pulmonary ↑AKT (71)
 hypertension
Lipid metabolism Transgenic GDF15 mice ↑Key thermogenic and lipolytic genes (73)
  Mice fed with high‑fat diet ↑Glial cell‑derived neurotrophic factor receptor α‑like (74)
  Patients with non‑alcoholic ↑β‑arrestin1; ↑β‑oxidation genes; (75)
 steatohepatitis ↓fatty acids
  Fasted mice ↑Fatty acid β‑oxidation and ketogeneis (76)
Inflammation   
  Anti‑inflammation Mice treated with ↓Monocyte chemoattractant protein‑1, (79,81)
 lipopolysaccharide TNF‑α, transforming growth factor‑β‑activated kinase 1
  phosphorylation and NF‑κB
  Mice ↑Triglyceride metabolism (77)
  Pro‑inflammation Human GDF15 transgenic mice ↓IFN‑λ2/3 mRNA (78)
  Human transgenic mice tracheal ↓IFN‑λ1/IL‑29 (78)
 epithelial cells

↑, enhancement or promotion; ↓, reduction or inhibition; GDF‑15, growth differentiation factor‑15; HUVECs, human umbilical cord vascular 
endothelial cells; IFN, interferon.
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of cell apoptosis was reduced by GDF15 overexpression in an 
AKT‑dependent manner (71).

Lipid metabolism. GDF15 can serve as a potential lipid 
metabolism regulator (72). GDF15 overexpression conferred 
higher resistance to diet‑ and genetic‑induced obesity in 
transgenic GDF15 mice compared with that in wild‑type mice 
by increasing lipid oxidation whilst promoting the expression 
of thermogenic genes and adipose tissue metabolism (73). 
Following treatment with the GDF15 antibody, the weight, 
obesity and the degree of liver lipid deposition of mice fed on 
a high‑fat diet were markedly higher compared with those in 
the control group (74). Therefore, GDF15 may be a potential 
target for the treatment of fatty liver disease. Zhang et al (75) 
revealed that β‑arrestin 1 (ARRB1) deficiency in patients with 
non‑alcoholic steatohepatitis was accompanied with increased 
free fatty acid levels and decreased β‑oxidation gene expression 
in a GDF15‑dependent manner in liver. In addition, ARRB1 
was found to interact with GDF15 to promote the translocation 
of the GDF15 precursor to the Golgi body for cleavage and 
maturation (75). During fasting, the inositol‑requiring enzyme 
1α/X‑box binding protein axis can increase the expression 
of GDF15 by binding to its promoter to promote fatty acid 
oxidation and ketone production in the liver (76). However, 
GDF15 knockout can significantly suppress β‑oxidation and 
ketogenesis in mice with streptozocin‑induced type I diabetes 
or in mice subjected to fasting (76).

Inflammatory response. In addition to the aforementioned 
functions, GDF15 can also exert anti‑inflammatory and 
proinflammatory properties (77,78). GDF15 can inhibit 
the inf lammatory response induced by lipopolysac‑
charide (LPS) (79). A previous study demonstrated that 
GDF15‑knockout mice displayed worsened characteristics 
following the induction of LPS‑induced renal and cardiac 
injury, whilst GDF15 overexpression conferred opposite 
effects (80). GDF15 can inhibit the activation of the NF‑κB 
pathway to reduce the production of proinflammatory 
factors, including moncocyte chemoattractant protein‑1 and 
TNF‑α (81). This in effect prevents LPS‑induced liver injury 
in mice by blocking the phosphorylation of TGFβ‑activated 
kinase 1 (81). Luan et al (77) previously reported that GDF15 
improved cardiac and hepatic tolerance to inflammation in 
mice by regulating triglyceride metabolism. GDF15 was 
also found to regulate the response to in human rhinovirus 
(HRV) infection and virus‑induced lung inflammation (78). 
In human GDF15 transgenic mice, the overexpression of 
GDF15 resulted in enhanced inflammatory responses to HRV 
and decreased IFN‑λ2/3 mRNA expression (78). In addition, 
the IFN‑λ1/IL‑29 protein, which has antiviral activity, was 
found to be inhibited by GDF15 in tracheal epithelial cells 
from human GDF15 transgenic mice, which promoted HRV 
replication and the subsequent inflammatory response (78).

5. Role of GDF15 in major brain disorders

AD. AD is a progressive neurodegenerative disease that 
mainly manifests with clinical symptoms of cognitive and 
behavioral impairment (82). The pathogenesis of AD is 
complex and may involves amyloid β (Aβ) accumulation, tau 

protein toxicity, synaptic damage, mitochondrial dysfunction 
and oxidative stress (83). GDF15 expression can be detected 
in the adult rat central and peripheral nervous systems, where 
it is mainly secreted into the cerebrospinal fluid (84,85). It 
has been demonstrated that GDF15 is closely associated 
with cognitive impairment, which is a major characteristic of 
AD (86). It was also previously shown that cognitive impair‑
ments due to dementia and AD were associated with higher 
GDF15 levels, particularly in the presence of cerebrovascular 
disease (87). By contrast, GDF15‑deficient mice were shown 
to exhibit superior fear‑associated memory and sensorimotor 
gating, which is conducive to cognition (88). Decreased 
numbers of white matter and grey matter nerve fibers, coupled 
with the increased volume of atrophy, may be important 
pathophysiological features of AD (89). Jiang et al (90,91) 
revealed that higher GDF15 levels were negatively corre‑
lated with gray matter volume and white matter integrity. 
In addition, GDF15 expression likely exhibits a close asso‑
ciation with learning and memory impairments, where the 
hippocampus is the region that is typically worst affected by 
AD (86,92). GDF15‑knockout mice were shown to display a 
progressive loss of motor neurons coupled with the decreased 
proliferation and migration of adult hippocampal progenitor 
cells (93,94). This appears to be a result of the absence of 
epidermal growth factor receptor signaling stimulation, 
which is normally promoted by GDF15 in a CXC chemokine 
receptor 4‑dependent manner (93,94). Kim et al (95) reported 
that human recombinant GDF15 can enhance the prolifera‑
tion and synaptic activity of mouse hippocampal neural stem 
cells both in vitro and in vivo, whereas GDF15 knockdown 
can reduce the proliferation of hippocampal neural stem cells 
in vitro. Within the neural network, the synapse forms a key 
component in mediating signal transmission between neurons, 
which underlies the mechanism of the generation and reten‑
tion of memories (96). It was previously reported that GDF15 
promoted synaptic glutamate release and increased the minia‑
ture excitatory post‑synaptic current frequency in the medial 
prefrontal cortex of mice (97). The potential mechanism was 
mediated through activation of TGFβRII‑mediated ERK1/2 
signaling to promote CaV3.1 and CaV3.3 α subunit expression, 
which increases T‑type calcium channel activity (97). This 
suggests that GDF15 deficiency may impact synaptic func‑
tion and accelerate AD progression (97). The production and 
accumulation of Aβ is one of the main mechanisms under‑
lying AD development (98). TGFβRII is mainly expressed 
in the microglia and neurons, where it participates in 
GDF15‑associated signaling pathways including Akt/mTOR 
pathway. GDF15 as a soluble paracrine factor can act on 
microglial cells to increase the expression level of TGFβRII 
during AD (12). In addition, GDF15 can enhance the activity 
of insulin‑degrading enzyme which, together with TGFβRII, 
can promote Aβ protein clearance (12). Decreased expression 
levels of TGFβRII were found in human and mouse models 
of AD, which may be the underlying cause of the increased 
Aβ accumulation and neurodegeneration (Fig. 2) (99,100). In 
summary, GDF15 appears to be involved in AD not only by 
promoting hippocampal neurogenesis and synaptic activity, 
but also by enhancing the clearance of the Aβ protein. 
Therefore, GDF15 may represent an attractive therapeutic 
target for AD.
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Cerebral stroke. Cerebral stroke is an acute cerebrovascular 
disease, the pathogenesis of which is characterized by inade‑
quate blood flow to the brain due to the rupture or occlusion of 
cerebrovascular vessels, thereby causing brain damage (101). 
Stroke can be divided into two categories, namely ischemic 
and hemorrhagic stroke, where American Stroke Association 
data in 2018 indicated that ischemic stroke accounted for 87% 
of all cases (102). Since GDF15 levels were found to be elevated 
after tissue injury, ischemia or hypoxia, it was hypothesized 
that there may be an association between GDF15 and stroke. 
Xiang et al (103) demonstrated that the genotype and allele 
frequencies of the GDF15 rs1804826G/T polymorphism were 
associated with the risk of cerebral stroke within the Chinese 
population. In a prospective, nested, case‑controlled study of 
27,628 initially healthy female individuals, Brown et al (104) 
revealed that the GDF15 concentration in patients with cardio‑
vascular events, including stroke, was higher compared with 
that in individuals without cardiovascular events. In addition, 
a concentration higher than the 90th percentile (>856 pg/ml) 
was associated with a 2.7‑fold increase in the risk of devel‑
oping cardiovascular events (104). Previous studies reported 
that GDF15 levels may serve as a prognostic marker in patients 
with a history of stroke (105,106). Several lines of evidence 
also revealed that the level of GDF15 was found to be posi‑
tively associated with the severity of ischemic stroke, such that 
GDF15 can be used as a biomarker for predicting an unfavor‑
able outcome 90 days after the stroke event (107,108). Plasma 
GDF15 concentration on admission has been reported to 
serve as an independent prognostic biomarker of mortality in 
patients with ischemic stroke following acute revascularization 
therapy (17). A previous study also investigated the relation‑
ship between GDF15 and in 254 patients with hypertension 
who suffered from stroke for the first, which found that GDF15 
can be used as an independent predictor of stroke in indi‑
viduals without any prior history of stroke (109). In addition, 
it was reported that GDF15 mRNA expression was markedly 

upregulated in the hippocampus and parietal cortex of mice 
at 3 and 24 h after middle cerebral artery occlusion (110). 
This suggests that GDF15 can participate in the regulation 
of post‑lesion responses, further supporting the notion that 
GDF15 participates in the occurrence and development of 
cerebral stroke (110).

PD. The main property of PD is the degeneration and loss of 
dopaminergic neurons in the substantia nigra and nigrostriatal 
pathway, which is caused by the formation of Lewy bodies 
as a result of aberrant α‑synuclein deposition (111). PD is 
characterized by symptoms of dyskinesia, including tremor, 
stiffness, slow motion and unstable posture (111). PD also has 
a complex and multifactorial pathological process, which typi‑
cally involves the aggregation of α‑synuclein, oxidative stress, 
mitochondrial dysfunction, iron deposition and neuronal apop‑
tosis (112). Maetzler et al (113) previously revealed that GDF15 
exhibited a positive correlation with the age of PD symptom 
onset, Hoehn and Yahr scale score and expression of the 
neurodegenerative marker Tau. GDF15 was also identified to 
be an independent risk factor for Unified Parkinson's Disease 
Rating Scale‑III score through multiple linear regression 
analysis, where subsequent receiver operating characteristic 
curve analysis revealed that GDF15 exhibited a sensitivity 
of 71.15% and a specificity of 87.50% for the detection of 
PD (114,115). However, since GDF15 levels exhibit substantial 
overlap between patients with PD and healthy individuals, 
this marker alone may not be sufficient as a diagnostic tool. 
However, these aforementioned findings indicate collectively 
that GDF15 expression is closely associated with PD.

The neurotoxin 6‑hydroxydopamine (6‑OHDA) can be 
taken up preferentially by dopaminergic and noradrenergic 
transporters, leading to the degeneration of catecholaminergic 
neurons (116). Strelau et al (84) demonstrated that unilat‑
eral injections of GDF15 into the medial forebrain bundle 
immediately above the substantia nigra prior to 6‑OHDA 

Figure 2. Association between GDF15 and AD. APP protein is hydrolyzed by β‑secretase. SAPPβ is released into the extracellular matrix and β‑CTF and 
Aβ are produced by γ‑Secretase. Aβ accumulation is a leading cause of AD. hUCB‑MSCs secrete GDF15, which can increase the expression of TGFβRII on 
microglia through a paracrine mechanism, TGFβRII in turn exerts a protective effect by inhibiting Aβ accumulation. TGFβRII can also increase the expres‑
sion of IDE induced by GDF15. IDE is a degradation enzyme that can promote the clearance of Aβ. GDF15, growth differentiation factor‑15; AD, Alzheimer's 
disease; Aβ, amyloid β; hUCB‑MSCs, human umbilical cord blood‑derived mesenchymal stem cells; TGFβRII, TGFβ receptor type II; IDE, insulin‑degrading 
enzyme; SAPPβ, soluble peptide APPβ; APP, amyloid precursor protein; β‑CTF, β‑secretase‑derived fragment, C99.
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administration were able to confer protection against 
complete lesion formation induced by 6‑OHDA, which 
prevented the loss of the dopaminergic neurons. Consistently, 
Machado et al (117,118) further demonstrated that endogenous 
GDF15 may promote the survival of dopaminergic neurons by 
regulating the inflammatory response after 6‑OHDA‑induced 
brain injury. GDF15 released by astrocytes exerted a protec‑
tive effect on vulnerable nigral neurons during PD and on 
induced pluripotent stem cell‑derived dopaminergic neurons 
subjected to 1‑methyl‑4‑phenylpyridinium toxicity, which 
may explain the selective degeneration or protection of 
dopaminergic neurons in PD because GDF15 is expressed 
230‑fold higher in the neighboring ventral tegmental area 
astrocytes than the substantia nigra pars compacta (20,119). 
Mitochondrial dysfunction is another possible mechanism 
that has been proposed to serve a role in PD (112). The HT22 
hippocampal cell line is considered to be a suitable model for 
studying PD. GDF15 overexpression was shown to reverse 
the effects of oxygen consumption, cell viability and mito‑
chondrial membrane potential caused by oligomycin in HT22 
cells, where further study revealed that GDF15 may regulate 
mitochondrial membrane potential and oxygen consumption 
through the PI3K/AKT signaling pathway (120). Furthermore, 
GDF15 was reported to be a more sensitive measure for 
diagnosing mitochondrial dysfunction compared with that 
of lactate stress test in Japanese patients with PD (121). 
Collectively, these findings suggest that GDF15 may promote 
the survival of dopaminergic neurons and exerts a protective 
effect by preserving normal mitochondrial function.

6. Conclusion and future directions

GDF15 is widely expressed in brain tissues and has been found 
to be involved in the pathophysiological processes underlying a 
number of brain disorders, particularly in AD, cerebral stroke 
and PD. Although progress has been made over the past decade, 
several unresolved problems remain. The specific signaling 
pathways mediated by GDF15 in AD have not been fully 
elucidated. In addition, the reference range and sensitivity of 
GDF15 as a biomarker for the prognosis and risk stratification 
of related diseases have yet to be determined. Furthermore, it 
remains unknown if there are other GDF15 receptors involved 
in mediating the pathophysiological processes of brain disorders 
in addition to the GFRAL receptor. Whether the plasma concen‑
tration of GDF15 can be artificially regulated to treat brain 
disorders is also a question that require further study. Therefore, 
addressing these questions aforementioned may provide further 
clues for the prevention and treatment of these brain disorders.
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