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Background and Purpose: Recent evidence shows that the fractional motion (FM)

model may be a more appropriate model for describing the complex diffusion process of

water in brain tissue and has shown to be beneficial in clinical applications of Alzheimer’s

disease (AD). However, the FM model averaged the anomalous diffusion parameter

values, which omitted the impacts of anisotropy. This study aimed to investigate

the potential feasibility of anisotropy of anomalous diffusion using the FM model for

distinguishing and grading AD patients.

Methods: Twenty-four patients with AD and 11matched healthy controls were recruited,

diffusion MRI was obtained from all participants and analyzed using the FM model.

Generalized fractional anisotropy (gFA), an anisotropymetric, was introduced and the gFA

values of FM-related parameters, Noah exponent (α) and the Hurst exponent (H), were

calculated and compared between the healthy group and AD group and between themild

AD group and moderate AD group. The receiver-operating characteristic (ROC) analysis

and the multivariate logistic regression analysis were used to assess the diagnostic

performances of the anisotropy values and the directionally averaged values.

Results: The gFA(α) and gFA(H) values of themoderate AD groupwere higher than those

of the mild AD group in left hippocampus. The gFA(α) value of the moderate AD group

was significantly higher than that of the healthy control group in both the left and right

hippocampus. The gFA(ADC) values of the moderate AD group were significantly lower

than those of the mild AD group and healthy control group in the right hippocampus.

Compared with the gFA(α), gFA(H), α, and H, the ROC analysis showed larger areas

under the curves for combination of α + gFA(α) and the combination of H + gFA(H) in

differentiating the mild AD and moderate AD groups, and larger area under the curves

for combination of α + gFA(α) in differentiating the healthy controls and AD groups.
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Conclusion: The anisotropy of anomalous diffusion could significantly differentiate

and grade patients with AD, and the diagnostic performance was improved when the

anisotropy metric was combined with commonly used directionally averaged values.

The utility of anisotropic anomalous diffusion may provide novel insights to profoundly

understand the neuropathology of AD.

Keywords: diffusion magnetic resonance imaging, fractional motion model, anisotropy, Alzheimer’s disease,

hippocampus

INTRODUCTION

Alzheimer’s disease (AD), manifested as progressive cognitive
decline andmemory loss, is themost common neurodegenerative
disease (Reddy and Oliver, 2019). Approximately accounting
for 60–70% of dementia patients, AD has been the most
prevalent type of dementia (Wortmann, 2012; Alzheimer’s,
2016; Khan et al., 2017). The underlying neuropathological
mechanisms of AD include the hyperphosphorylation of tau
protein and the deposition of β-amyloid (Aβ), which lead to
the formation of intracellular neurofibrillary tangles (NFTs)
and Aβ plaques separately (Kidd, 1963; Hyman et al., 1984;
Braak and Braak, 1991; Wegmann et al., 2010; Mattsson
et al., 2019) and ultimately result in the apoptosis of neurons.
Neuropathological changes can occur and persist for decades
before the appearance of cognitive degeneration. Recently, a
variety of magnetic resonance imaging (MRI) techniques have
been widely investigated for the diagnosis of AD; however, these
methods are insufficient to make a specific diagnosis of AD
(Cummings, 2017; Mattsson et al., 2019).

Diffusion MRI (dMRI) can non-invasively describe the
random motion of water molecules in and around brain
structures such as cell bodies or brain white matter fibers,
which provides rich information of microscopic properties than

other traditional MRI sequences (Le Bihan, 1995; Le Bihan and

Johansen-Berg, 2012; Harrison et al., 2020) and has become a
widely used imaging practice in clinical practice and relevant

researches (La Rocca et al., 2018; Anckaerts et al., 2019;
Bergamino et al., 2020; Finsterwalder et al., 2020). Directional
dependence (i.e., anisotropy) is one of the most important
microscopic properties obtained from the nervous system by
dMRI. Anisotropy results from the dense accumulation of axons
and inherent axonal membranes, which prevent the diffusion of
water perpendicular to the long axis of fibers (Beaulieu, 2002).
One of the most commonly used diffusion MRI technologies,
the apparent diffusion coefficient (ADC), was found useful in
differentiating AD patients (Takahashi et al., 2017; Xue et al.,
2019) and AD transgenic mice (Thiessen et al., 2010). Moreover,
the ADC value of white matter in the frontal lobe was correlated
with mini-mental state examination (MMSE) scale (Xue et al.,
2019). Diffusion tensor imaging (DTI) is another commonly
used diffusion MRI technology to measure the anisotropy in
the research (Basser et al., 1994a,b). DTI has been increasingly
applied to the diagnosis of AD in both basic and clinical
studies. The degree of diffusion anisotropy is mostly quantified
by two DTI-derived metrics, the fractional anisotropy (FA) and

mean diffusivity (MD), in patients with AD (Mayo et al., 2017;
Brueggen et al., 2019; Marcos Dolado et al., 2019). Several
studies found that the FA values reduced and MD values
increased in the hippocampus of AD patients and amnestic
mild cognitive impairment (aMCI) patients when compared
with healthy control. And the FA and MD might be used to
differentiate healthy controls, aMCI patients, and AD patients
(Hong et al., 2013; Tang et al., 2016; Schouten et al., 2017).
Moreover, the FA value or MD value of hippocampus could
be used to predict the progression of AD or aMCI, which is
evaluated by MMSE scale (Hong et al., 2013; Lee et al., 2017),
indicating the possibility of diffusivity as a biomarker for disease
progression. In addition to DTI combined with functional MRI,
structural MRI can improve the diagnostic accuracy of AD
(Dyrba et al., 2015; Tang et al., 2016; Bouts et al., 2018).

DTI presumes a normal diffusion process in brain tissues
and is consequently quantified using a mono-exponential
model, S/S0 = exp (–b · ADC). The b-value represents the
applied magnetic field gradient sequence. However, it has been
recognized that the observed dMRI signal decay curve deviates
from the mono-exponential form in brain tissues, especially at
high b-values (De Santis et al., 2011). To solve this problem,
several models have been developed based on different theories
of anomalous diffusion processes to find the optimal consistency
between the observed signal decay curve and the fitted curves.
Representative models include the stretched exponential model
(Bennett et al., 2003), the bi-exponential model (Mulkern
et al., 1999), the kurtosis model (Jensen et al., 2005), and
the statistical model (Yablonskiy et al., 2003). Additionally,
several physics-motivated dMRI models have also been proposed
(Magin et al., 2008; Ingo et al., 2014).

The fractional motion (FM) model has been proposed as a
more appropriate approach to describe the complex diffusion
process of biological systems (Magdziarz et al., 2009; Burnecki
and Weron, 2010; Weiss, 2013). Theoretically, the FM model
presumes that the diffusion process of water molecules is
α-stable and H-self-similar and has stationary increments. The
symbol α represents the Noah exponent, which describes the
fluctuations of the random process. The symbol H represents
the Hurst exponent, which depicts the self-similarity property
of molecular trajectories. The FM model possesses a relevantly
more excellent consistency between experimental data and fitting
curves. Many studies have demonstrated the clinical feasibility of
anomalous diffusion using the FM model (Kwee et al., 2010a,b;
Sui et al., 2015; Karaman et al., 2016; Xu et al., 2017b, 2018; Du
et al., 2020). In the aforementioned studies, researchers averaged
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the anomalous diffusion parameter values that were acquired
in different gradient directions, which ignored the impacts
of anisotropy. However, existing literature elucidated that the
anisotropy of anomalous diffusion should not be neglected as
it revealed a different image contrast and provided unique
information (Hall and Barrick, 2012; Xu et al., 2017a). At present,
the availability regarding the clinical application of the anisotropy
of anomalous diffusion in AD patients remains unclear. The
purpose of this study was to investigate the potential feasibility of
anisotropy of anomalous diffusion for distinguishing AD patients
from healthy controls and grading AD patients.

MATERIALS AND METHODS

Subjects
This research was approved by the ethics committee of the
China-Japan Friendship Hospital, and the informed consent
was obtained from all subjects. The cognitive function of all
participants was assessed by the MMSE scale and Montreal
cognitive assessment (MoCA) scale. Initially, MRI examinations
were performed on 13 healthy controls and 50 patients with AD.
The patients with AD visited the Department of Neurology of
the China-Japan Friendship Hospital from November 2015 to
March 2019. The clinical diagnosis of AD met the criteria of the
National Institute of Neurological and Communicative Disorders
and Stroke and the Alzheimer’s Disease and Related Disorders
Association (NINCDS-ADRDA) (1984) (McKhann et al., 1984;
Mattsson et al., 2019). Only the mild-to-moderate AD patients
(11 ≤ MMSE score ≤ 25) (Folstein et al., 1975; Perneczky
et al., 2006; Tchalla et al., 2018) who met the following criteria
were considered for inclusion: (a) the participants’ acquired MR
image had no artifacts; (b) the participants had no other brain
diseases, such as cerebral ischemia or infarction; and (c) the
participants had no visual and hearing impairment disorders,
aphasia, and limb activity disorder. Finally, 24 patients with
AD were eligible and enrolled in this study (9 males and 15
females, mean age, 69.0 years, age range, 50–79 years). Healthy
controls were recruited from the local community. Inclusion
criteria were as follows: (a) ages range from 50 to 79 years
(including 50 and 79 years); (b) a degree of primary education
or above; and (c) neurological examination showed no obvious
anomalies, and the MMSE scores were between 26 and 30.
Healthy controls who suffered from cardiovascular, neurologic,
metabolic, and psychiatric disorders or brain abnormalities were
excluded. Eventually, 11 healthy controls (2 males and 9 females,
mean age 65.3 years, range 54–78 years) were enrolled in the
present study. Detailed demographic and clinical characteristics
of all participants are summarized in Table 1.

Image Acquisition
All participants received conventional MRI, 3D T1-weighted
imaging, and dMRI. The MRI scans were performed on a 3.0-T
MRI scanner (GE Healthcare, Discovery MR750, USA) equipped
with an eight-channel head coil. dMR images of all participants
were obtained using a special Stejskal–Tanner single-shot spin-
echo echo-planar-imaging sequence.

TABLE 1 | Demographic and clinical information of all participants.

Healthy controls
AD patients

P–value

Mild AD Moderate AD

Number 11 12 12 -

Male/female 2/9 6/6 3/9 >0.05

Age 65.3 ± 6.6 65.8 ± 10.1 72.1 ± 3.8 > 0.05

Education 10.6 ± 3.3 13.4 ± 3.1 10.5 ± 3.9 > 0.05

MMSE score 28.8 ± 1.1 23.2 ± 1.3 19.1 ± 1.4 < 0.05

MoCA score - 19.5 ± 2.4 16.5 ± 2.2 < 0.05

The MoCA score was only compared between mild AD group and moderate AD group

using a two-sample t-test.

AD, Alzheimer’s disease; MMSE, mini-mental state examination; MoCA, Montreal

cognitive assessment.

To fit the FM model, we did not fix the diffusion gradient
separation time (1) during the scanning process as the
conventional dMRI sequence. Specifically, 1 was arrayed at
27.060, 39.560, and 52.060ms. For each 1 value, the diffusion
gradient amplitude (G0) was 15.67, 19.68, 24.73, 31.06, 39.01,
and 49.00 mT/m in sequence, which were selected to be
approximately evenly spaced on the log axis. The gradient
duration constant (δ) was set to 20.676ms. Thereafter, 18 non-
zero b-values (151, 239, 377, 595, 939, and 1,481 s/mm2 for 1

at 27.060ms; 245, 387, 611, 964, 1,521, and 2,399 s/mm2 for 1 at
39.560ms; and 339, 535, 845, 1,333, 2,103, and 3,317 s/mm2 for1

at 52.060ms) were obtained in each gradient direction. In order
to decrease the effect of diffusion anisotropy, we successively
applied the diffusion gradients in three orthogonal directions (the
x-axis, y-axis, and z-axis) in turn. Moreover, a total of 12 images
without diffusion sensitization (b= 0) were acquired.

The dMRI scanning parameters included the following:
repetition time (TR)/echo time (TE) = 3,800 ms/110ms;
accelerating factor = 2; flip angle = 90◦; number of excitations
= 2; field of view (FOV)= 240mm× 240mm; matrix size= 128
× 128; slice thickness = 5.0mm; number of slices = 27; voxel
size = 1.875 × 1.875 × 5 mm3. Since high in-plane resolution
was preferable, a large slice thickness had to be chosen to achieve
a decent signal-to-noise ratio (SNR). The total scan time was
8min 33 s, which facilitated the clinical use. T1 structure image
parameters were as follows: TR = 6.7ms; TE = min full; flip
angle = 12◦; FOV = 256mm × 256mm; matrix size = 256
× 256; slice thickness = 1.0mm; number of slices = 192; scan
time= 4min 10 s.

Image Segmentation
In the present study, the hippocampus was chosen as the region
of interest (ROI) (Figure 1). At first, the hippocampus was
manually drawn slice by slice using MRICRON by a radiologist
(LD, 5 years’ working experience) on the T1 structure images,
and then the drawn ROIs were registered onto lower-resolution
dMRI, to more easily define the boundary of hippocampus. The
ROIs’ boundary was accurately segmented, and ambiguous voxels
would be eliminated in all participants. Then the average values
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FIGURE 1 | A 67-year-old male healthy control. The left and right

hippocampus are outlined in red line in T1-weighted imaging.

of α, H, ADC, generalized FA (gFA)(α), gFA(H), and gFA(ADC)
in the left and right hippocampus were acquired.

Image Analysis
First, the obtained images were corrected for head motion
and eddy current distortions by FSL tools (Cha, 2006). In the
dMRI acquisition, ADC maps were calculated using the images
obtained at b-values of 0 and 954 s/mm2 (closest to conventional
1,000 s/mm2 b-value). We used the FM model to analyze the
images. According to the FM-based dMRI theory (Sui et al.,
2015), the following formula can be used to calculate diffusion-
induced signal decay:

S/S0 = exp(−ηDα,Hγ αGα
01α+αH) (1)

where Dα ,H represents the diffusion coeffcient of anomalous
diffusion and γ represents the gyromagnetic ratio. G0 represents
the diffusion gradient amplitude, and ∆ represents the gradient
separation time. η is a dimensionless number, which can be
calculated using α,H, δ, and∆ in the following formula (Xu et al.,
2017b, 2018):

η =
1
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(2)

where µ = H−1/α, and µ is the memory parameter. Along
each direction, the signal attenuation at each voxel is fitted to
Equation 1 separately. We used the trust-region-reflective non-
linear fitting algorithm in MATLAB (MathWorks, Natick, MA)
to perform the fitting procedures.

A metric similar to FA, called gFA, is introduced to quantify
anisotropy, where the sample standard deviation is divided by the
root mean square [35]:

gFA(V) =

√

√

√

√

N

N − 1

∑N
i=1 (Vi − V)

2

∑N
i=1 V

2
i

(3)

whereN represents the number of sampling directions, including
three directions in this research, and V refers to the parameter
values to be measured. V is the directionally averaged value, and
Vi is the value in the i-th direction. The gFA maps of α, H, and
ADC were calculated.

Statistical Analysis
Among the mild AD group, moderate AD group, and healthy
control group, gender was analyzed using the chi-square (χ2)
test, and the age, education, and MMSE score were compared
using one-way ANOVA. The MoCA score was compared using
a two-sample t-test between the mild AD group and moderate
AD group, since the MoCA score was not assessed in healthy
control. Except for gender, the data were shown in the form
of mean± SD.

The gFA values of α, H, and ADC were compared using
a one-way ANOVA test and post-hoc Tukey test among the
healthy group, mild AD group, and moderate AD group.
Moreover, receiver-operating characteristic (ROC) curves were
performed to evaluate the diagnostic capability of each gFA
value in differentiating AD patients from healthy controls and
distinguishing mild AD patients from moderate AD patients
by the area under the curve (AUC). Additionally, multivariate
logistic regression analysis was utilized to assess the diagnostic
performances of the combination of the anisotropy value and the
directionally averaged value. For example, the probability of the
combination of H and gFA(H) can be expressed as

P(high− grade|{gFA(α) , gFA(H)})

=
exp(a0 + a1gFA(α) + a2gFA(H))

1+ exp(a0 + a1gFA(α) + a2gFA(H))
(4)

where a1 and a2 are the regression coeffcients for H and
gFA(H), respectively, and a0 is a constant. The probabilities
of other combinations can be expressed in a similar method.
These probability values were used as the test variables in the
ROC analysis.

In AD patients, the correlations between gFA(α), gFA(H),
and gFA(ADC) values and the cognitive functions evaluated by
MMSE and MoCA scales were investigated using Pearson
correlation analysis. P-values < 0.05 were considered
statistically significant.
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FIGURE 2 | A 58-year-old male patient with AD. Top row: T1-weighed image (A) and directionally averaged maps of α, H, and ADC [(B–D), respectively]. Bottom row:

generalized fractional anisotropy (gFA) maps of α, H, and ADC [(E–G), respectively]. The bilateral hippocampus is shown with red outlines in all maps. AD, Alzheimer’s

disease; ADC, apparent diffusion coefficient; gFA, generalized fractional anisotropy.

FIGURE 3 | A 60-year-old male healthy control. Top row: axial T1-weighed image (A) and directionally averaged maps of α, H, and ADC [(B–D), respectively]. Bottom

row: gFA maps of α, H, and ADC [(E–G), respectively]. The bilateral hippocampus is shown with red outlines in all maps. ADC, apparent diffusion coefficient; gFA,

generalized fractional anisotropy.
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RESULTS

Characteristics of All Subjects
The demographic information and clinical cognition scores in all
subjects are summarized in Table 1. Ultimately, 24 AD patients
(69.0± 8.1 years) and 11 healthy controls (65.3± 6.6 years) were
enrolled in this study. Then patients with AD were divided into
two groups [the mild AD group (six males and six females, mean
age 65.8 ± 10.1 years) and the moderate AD group (three males
and nine females, mean age 72.1 ± 3.8 years)] according to their
MMSE score and education level. The general division criteria
are as follows: 21 ≤ MMSE score ≤ 25 was considered as mild
AD, and 11 ≤ MMSE score ≤ 20 was considered as moderate
AD (Perneczky et al., 2006). As demonstrated in Table 1, the age,
gender, and education level of the three groups were matched (P
> 0.05), while there was a significant difference in the MMSE
score among the three groups (P < 0.05). MoCA score was
significantly different between the mild AD group and moderate
AD group, and a significant difference was found between the two
groups (P < 0.05).

The locations of the bilateral hippocampus in the T1-weighted
image are shown in Figure 1. Figures 2, 3 show the representative
maps of a 58-year-old male patient with AD and a 60-
year-old male healthy patient, including the 3D T1-weighted
images; directionally averaged maps of α, H, and ADC;
and the gFA maps of α, H, and ADC. From Figures 2, 3,
we found that there no outstanding contrasts between the
hippocampus and other brain regions were observed by the
naked eye.

Comparisons of gFA(α), gFA(H), and
gFA(ADC) Values Among Three Groups
The gFA values of α, H, and ADC of the left and right
hippocampus in all participants are summarized in Table 2. Data
are presented in the form ofmean± SD. The comparisons among
three groups in gFA(α), gFA(H), and gFA(ADC) are shown in
Figure 4. From Figure 4, we found that the gFA(α) and gFA(H)
values of the moderate AD group were higher than those of the
mild AD group (P = 0.003, P = 0.008, separately) in the left
ROI (Figures 4A,C). We also found that the gFA(α) values of
the moderate AD group were higher than those of the healthy
control group (P < 0.001, P = 0.003, separately, Figures 4A,B)
in the bilateral ROI, and the gFA(ADC) values of the moderate
AD group were lower than those of the healthy control group and
mild AD group in the right ROI (P= 0.038, P= 0.035, separately,
Figure 4F). No significant differences were found between the
healthy control group and mild AD group (P > 0.05 for
all, Figures 4A–F).

The performances in differentiating mild AD and moderate
AD were illustrated by ROC analysis. Figure 5 depicts the ROC
curves calculated from individual gFA values and directionally
averaged maps of α, H, and ADC. Figure 5 shows that
gFA(α) (AUC = 0.833) and gFA(H) (AUC = 0.826) of
the left ROI and gFA(ADC) (AUC = 0.764) of the right
ROI exhibited good capacity to differentiate the two groups.
The other anisotropy measures of gFA parameters did not
perform well. Figure 6 demonstrates the ROC curves calculated

by combinations of different parameters, and some positive
results were elucidated. More specifically, {α, gFA(α)} and {α,
gFA(α), H, gFA(H)} of the bilateral ROI and {H, gFA(H)}
and {gF(α) + gFA(H)} of the left ROI showed inspiring
potencies in differentiating mild AD and moderate AD. It was
noteworthy that, by combining the anisotropy information, the
α combination {α, gFA(α)} (AUC = 0.806, left ROI; AUC
= 0.819, right ROI) and the H combination {H, gFA(H)}
(AUC = 0.861, left ROI; AUC = 0.549, right ROI) were
significantly superior to the separate performances of the
individual directionally averaged α (AUC= 0.674, left ROI; AUC
= 813, right ROI) or H (AUC = 0.524, left ROI; AUC = 0.569,
right ROI).

Similarly, ROC analysis in differentiating AD patients
and healthy controls was also made. Figure 7 presents the
ROC curves calculated from the individual gFA values and
directionally averaged maps of α, H, and ADC for differentiating
AD patients and healthy controls. As depicted in Figure 7,
gFA(α) (AUC = 0.801, left ROI; AUC = 0.758, right ROI)
values of the bilateral ROI exhibited a good capacity to
differentiate the two groups. The anisotropy measures of gFA(H)
and gFA(ADC) did not perform well. Figure 8 shows the
ROC curves calculated from the combinations of different
parameters, and the results validated some significant findings.
Specifically, {α, gFA(α)}, {gF(α) + gFA(H)}, and {α, gFA(α),
H, gFA(H)} of the bilateral ROI can perfectly separate AD
patients and healthy controls. By combining the anisotropy
information, the α combination {α, gFA(α)} (AUC = 0.852,
left ROI; AUC = 0.826, right ROI) outperformed the individual
directionally averaged α (AUC = 0.780, left ROI; AUC = 0.811,
right ROI).

Correlations Between Fractional
Motion-Related Parameters and
Mini-Mental State Examination Scores and
Montreal Cognitive Assessment Scores
Figure 9 shows that the gFA(α) and gFA(H) values of the
left hippocampus were negatively correlated to corresponding
MMSE score (P = 0.017, P = 0.037, respectively) in patients
with AD. However, the correlations were not so strong, and
there was no significant correlation after false discovery rate
(FDR) correction and family-wise error rate (FWER) correction.
Moreover, no significant correlations were found in other
gFA parameters.

DISCUSSION

In the current study, we investigated the feasibility and
effectiveness of the anisotropy of anomalous diffusion assessed
by the FM model to differentiate and grade AD patients.
We introduced a new anisotropy metric called gFA, and
we explored its potencies in identifying AD patients and
healthy controls and distinguishing mild AD and moderate AD
patients. Our results demonstrated that the anisotropy of α

and H of the left ROI exhibited good performances to grade
AD patients, and the anisotropy of α of the bilateral ROI
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TABLE 2 | Mean and SD of the gFA(α), gFA(H), and gFA(ADC) values of left and right hippocampus in all participants.

Subjects No. ROIs gFA(α) gFA(H) gFA(ADC)

Controls 11 Left-hippocampus 0.0403 ± 0.0088 0.1588 ± 0.0431 0.0859 ± 0.0340

Right-hippocampus 0.0390 ± 0.0066 0.1497 ± 0.0364 0.0770 ± 0.0075

Mild AD 12 Left-hippocampus 0.0451 ± 0.0069 0.1443 ± 0.0244 0.0705 ± 0.0102

Right-hippocampus 0.0461 ± 0.0143 0.1542 ± 0.0351 0.0787 ± 0.0126

Moderate AD 12 Left-hippocampus 0.0573 ± 0.0105 0.1829 ± 0.0393 0.0695 ± 0.0144

Right-hippocampus 0.0555 ± 0.0150 0.1667 ± 0.0539 0.0663 ± 0.0144

SD, standard deviation; gFA, generalized fractional anisotropy; ADC, apparent diffusion coefficient; AD, Alzheimer’s disease; ROI, region of interest.

FIGURE 4 | Comparisons among three groups: healthy control group, mild AD patient group, and moderate AD patient group (A–F). Scatter plots show that gFA(α)

and gFA(H) of the left hippocampus (A,C), and gFA(ADC) values of the right hippocampus (F) can readily separate the mild AD patients and moderate AD patients,

and gFA(α) of the bilateral hippocampus (A,B), gFA(ADC) values of right hippocampus (F) can easily distinguish the moderate AD patients and healthy controls. n =

12 for mild AD patients, n = 12 for moderate AD patients, and n = 11 for healthy controls. P < 0.05 was considered as significant. AD, Alzheimer’s disease; gFA,

generalized fractional anisotropy; ADC, apparent diffusion coefficient.

possessed good potencies to differentiate AD patients and healthy
controls. It was worth noting that the diagnostic accuracy was
increased when combined with the anisotropy metric with the
commonly used directionally averaged value, indicating that the
anisotropy metric could improve the diagnostic performances
of directionally averaged values in identifying and grading
AD patients.

An important finding in the present study was that the
anisotropy of α and H showed significant superiority to
distinguish mild AD and moderate AD patients and identify
AD patients from healthy controls, in particular the α. In
combination with the results of our previous study (Du et al.,

2020), we reached a conclusion that both directionally averaged
value and the anisotropy value of α exhibited excellent capacity
to identify and grade AD patients, which indicated that α-related
values may possess a specific advantage in the diagnosis and
grading of AD. In line with the currently available data, α-related
diffusion values probably already provide sufficient information
regarding the differentiation and classification of AD, which is
beneficial to shorten the scan time, simplify the test procedure,
and improve medical efficiency. However, it should be validated
by future studies with larger sample size.

Possible explanations for the diagnostic performance of
gFA(α) are as follows. The symbol α describes the fluctuations
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FIGURE 5 | Receiver-operating characteristic (ROC) curve was generated using the individual gFA values and directionally averaged values of α, H, and ADC for

differentiating mild and moderate AD patients (n = 12 in each group). (A,B) The area under the curve (AUC) of gFA(α) and gFA(H) values of the left hippocampus

(AUC = 0.833, AUC = 0.826, separately) were larger than those of others. ROC, receiver operating characteristic; ROI, region of interest; gFA, generalized fractional

anisotropy; ADC, apparent diffusion coefficient; AD, Alzheimer’s disease; AUC, area under the curve.

FIGURE 6 | Receiver-operating characteristic (ROC) curve was generated using the combination of gFA values and averaged values of α, H, and ADC for

differentiating mild and moderate AD patients (n = 12 in each group). (A,B) The combinations {α, gFA(α)} and {α, gFA(α), H, gFA(H)} of the bilateral ROI and {H,

gFA(H)} and {gF(α) + gFA(H)} of the left ROI perfectly differentiate mild AD and moderate AD patients. The α combination {α, gFA(α)} and the H combination {H,

gFA(H)} outperformed the directionally averaged α and H, respectively. ROC, receiver operating characteristic; ROI, region of interest; AUC, area under the curve; gFA,

generalized fractional anisotropy; ADC, apparent diffusion coefficient; AD, Alzheimer’s disease.

of the random process. Excessive deposition of Aβ protein and
neurofibrillary tangles in brain tissue are two main pathological
changes in AD patients and can lead to neuronal apoptosis
(Wang et al., 2015). These pathological alterations that emerged
along with AD progression can result in subsequent neuronal
apoptosis and encephalatrophy, which eventually reduce the
volume of affected brain regions (especially the hippocampus).
Moreover, it is well acknowledged that the α values depend

on the structural complexity of the brain regions. The non-
Gaussian water molecule diffusion is more active in a more
complex brain region, and accordingly, the measured α values
would be higher and gFA(α) values would be lower. Consistently,
the degenerative pathological alterations (neuronal apoptosis and
encephalatrophy) that occurred in AD progression can markedly
decrease the structural complexity of the hippocampus (Jensen
et al., 2005; Grinberg et al., 2011; Yoshida et al., 2013) and
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FIGURE 7 | Receiver-operating characteristic (ROC) curve was generated using the individual gFA values and directionally averaged values of α, H, and ADC for

differentiating healthy controls and AD patients. (A,B) The area under the curve (AUC) of gFA(α) values of the bilateral hippocampus (AUC = 0.801, AUC = 0.758,

separately) was larger. ROC, receiver operating characteristic; ROI, region of interest; gFA, generalized fractional anisotropy; ADC, apparent diffusion coefficient; AD,

Alzheimer’s disease; AUC, area under the curve.

FIGURE 8 | Receiver-operating characteristic (ROC) curve was generated using the combination of gFA values and averaged values of α, H, and ADC for

differentiating AD patients and healthy controls (n = 24, n = 11, respectively). (A,B) The combinations {α, gFA(α)}, {gF(α) + gFA(H)}, and {α, gFA(α), H, gFA(H)} of the

bilateral ROI perfectly separated AD patients and healthy controls. The α combination {α, gFA(α)} outperformed the directionally averaged α. ROC, receiver operating

characteristic; ROI, region of interest; AUC, area under the curve; gFA, generalized fractional anisotropy; ADC, apparent diffusion coefficient; AD, Alzheimer’s disease.

can manifest as different α values and gFA(α) values among
healthy controls, mild AD, and moderate AD patients, which
were observed in the current study.

Compared with other commonly used traditional techniques,
such as DTI, using the FM model to calculate anisotropy of
anomalous diffusion possesses several potential advantages. On
the one hand, DTI quantifies the diffusion process of water

molecule using amono-exponential form. However, the observed
dMRI signal decay curve in the brain deviates from the mono-
exponential form. In this regard, the FM model was introduced
and showed a better agreement between the measured signal
decay curve and the fitted curves (Magin et al., 2008). On the
other hand, the detected diffusion-time dependence of the MR
signal shows a non-Gaussian nature of diffusion, while the DTI
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FIGURE 9 | Correlations between MMSE scores and the gFA(α) (A) and gFA(H) (B) values of the left hippocampus in patients with AD. Pearson correlation was

conducted. n = 24. MMSE, mini-mental state examination; gFA, generalized fractional anisotropy; AD, Alzheimer’s disease.

model assumes the molecular displacement in brain tissues with
a 3D Gaussian ellipsoid (Fieremans et al., 2016). This defect was
circumvented by the FM model.

The feasibility and effectiveness of anisotropy calculated by
the FM model have been verified in this research. But potential
clinical applications are not limited to the FMmodel. As shown in
Equation 1, the α is an exponent of the diffusion gradient, which
is proportional to the parameters of other dMRI models, like
the stretching parameter γ in the stretched-exponential model
(Bennett et al., 2003; Hall and Barrick, 2008; Zhou et al., 2010).
Therefore, the clinical feasibility of anisotropymay be generalized
to the α-like parameters of other models because of the intrinsic
consistency of their anisotropic properties (Xu et al., 2017a).

The current results indicated that the gFA(α) and gFA(H)
values of the left hippocampus were negatively correlated
with MMSE score in patients with AD. This finding was
partially consistent with the results of our previous study using
directionally averaged values (Du et al., 2020), which further
provided evidence for the reliability and repeatability of our
findings. However, the correlations were not so strong and
even not significant after FDR and FWER correction. This
may be explained by the following reasons. In addition to the
hippocampus, pathological alterations of AD affected other brain
regions such as the prefrontal cortex and basal ganglion region,
which synergistically contributed to cognitive impairments in
AD patients. So there might be no linear relationship between
cognitive scores and anisotropic values in the hippocampus.
Moreover, the small sample size of this study may also affect the
results, and further researches with larger sample size are needed
to confirm these findings.

The limitations of the present study must be acknowledged.
First, this is a single-institution study with a limited number
of healthy controls and AD patients, and the results should be
validated by further study with larger samples. We hope the
independent validation of our results can be done at separated
institutions. Second, the voxel of imaging is large, and a single
voxel displays an averagemeasurement of neuronal environment,

which may decrease the sensitivity for brain tissue components
occupying a small part of a voxel. Third, the x-, y-, and z-axes are
the only three directions being applied by the diffusion gradients,
and the accuracy of this study may be affected, as increased
sampling directions are conducive to measuring the anisotropy
of anomalous diffusion.

CONCLUSIONS

In summary, the anisotropy of anomalous diffusion was
successfully applied in differentiating and grading patients with
AD. It was worth noting that the diagnostic performance was
improved when the anisotropy metric was combined with
commonly used directionally averaged value in identifying and
grading AD patients. The anisotropy of anomalous diffusion
calculated by the FM model may provide novel insights to
profoundly elucidate the neuropathology process of AD.
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