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Abstract

Malaria is still one of the most devastating infectious diseases, affecting hundreds of millions of patients worldwide. Even
though there are several established drugs in clinical use for malaria treatment, there is an urgent need for new drugs acting
through novel mechanisms of action due to the rapid development of resistance. Resistance emerges when the parasite
manages to mutate the sequence of the drug targets to the extent that the protein can still perform its function in the
parasite but can no longer be inhibited by the drug, which then becomes almost ineffective. The design of a new
generation of malaria drugs targeting multiple essential proteins would make it more difficult for the parasite to develop full
resistance without lethally disrupting some of its vital functions. The challenge is then to identify which set of Plasmodium
falciparum proteins, among the millions of possible combinations, can be targeted at the same time by a given chemotype.
To do that, we predicted first the targets of the close to 20,000 antimalarial hits identified recently in three independent
phenotypic screening campaigns. All targets predicted were then projected onto the genome of P. falciparum using
orthologous relationships. A total of 226 P. falciparum proteins were predicted to be hit by at least one compound, of which
39 were found to be significantly enriched by the presence and degree of affinity of phenotypically active compounds. The
analysis of the chemically compatible target combinations containing at least one of those 39 targets led to the
identification of a priority set of 64 multi-target profiles that can set the ground for a new generation of more robust malaria
drugs.
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Introduction

Malaria has become one of the most devastating infectious

diseases in the world. Just in 2010, it affected about 219 million

patients resulting in 660,000 deaths [1]. The disease is caused by

several different parasites of the genus Plasmodium, with Plasmodium

falciparum being the most lethal one. Today, there are mainly eight

different chemotypes in clinical use for malaria treatment that act

through essentially five different mechanisms of action (Figure 1)

[2]. However, drug resistant strains of the parasite are currently

known for all these mechanisms [3]. Even more worrying is the

fact that increasing emergence of multi-drug resistance has been

observed in the last decade [4]. Therefore, there is an urgent need

for new drugs acting through novel modes of action (MoA) for

malaria treatment.

In the past few years, there have been strong demands to

generate and integrate molecular, functional and pharmacological

data into a common malaria-related chemogenomic knowledge

space [5]. Several initiatives have contributed greatly to promote

such community efforts to facilitate the discovery of a next

generation of malaria drugs. Cell-based high throughput screening

campaigns were conducted independently by groups both from

academia (St. Jude Children’s Research Hospital) and industry

(GSK, Novartis) [6]. They all used phenotypic assays against

intraerythrocytic P. falciparum stages. The St. Jude group screened

a set of almost 310,000 commercially available compounds,

resulting in 1,134 validated hits [7]. At GSK, the screening was

performed against an internal collection of about two million

compounds, yielding 13,519 confirmed hits known as the Tres

Cantos Antimalarial Set (TCAMS) [8]. At Novartis, a screen of

about 800,000 non-proprietary compounds identified 5,697

confirmed hits [6,9]. In addition to the identified phenotypically

active hits, the St. Jude group disclosed the list of 308,324

compounds found to be inactive in the phenotypic assay. In total

about 3.1 million compounds, both commercial and proprietary,

were tested, leading to the identification of close to 20,000

phenotypically active compounds. Most importantly, the results

were then made publicly available at the ChEMBL – Neglected

Tropical Disease archive (ChEMBL-NTD), an invaluable resource

for current malaria research [10]. This can certainly be considered

an important milestone in malaria research, as for the first time a

large amount of molecules with phenotypic data are available to

the academic community to facilitate global antimalarial drug

discovery efforts.

The advantages of using cell-based over target-directed

screenings in malaria drug discovery were recently highlighted

by Chatterjee and Yeung [11]. In particular, the large chemical

diversity among the identified compounds and their immanent
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favourable properties, such as good solubility and permeability,

are widely recognized. Compounds found to be active in a whole-

cell assay demonstrate their intrinsic ability to penetrate the

parasite and to inhibit essential targets or pathways in vivo. In

addition, compared to the inherent mechanistic limitations of hits

obtained from target-directed campaigns, phenotypically active

compounds offer the possibility to exert their action through

multiple protein targets, the synergistic combination of which is of

a priori unknown relevance to malaria.

In contrast, one of the major disadvantages of whole-cell assays

over target-based assays is the unknown exact MoA of the

identified hits. Without this knowledge, hit progression becomes

extremely challenging. To address this issue, means to exper-

imentally determine the protein targets likely to be hit by an active

molecule are applied, but they are generally rather cost- and time-

consuming and can therefore be conducted only for a limited set of

carefully selected targets [12,13]. Therefore, any efficient strategy

that could assist in predicting and prioritizing the target space

covered by phenotypically active compounds would represent a

significant step forward in the applicability of cell-based assays in

malaria drug discovery.

A first attempt in this direction was reported by Plouffe et al.

[14] Although molecular targets were not explicitly identified, they

described a method based on MeSH terms to estimate the MoA of

antimalarials found in a phenotypic screen using a guilt-by-

association strategy. For each compound, an activity profile was

first compiled using data obtained from 131 historical, mostly cell-

based, assays. Then, all hits were assigned to a scaffold family and,

whenever possible, a MoA annotation was added from the MeSH

database. Finally, these two pieces of information were combined

to obtain clusters enriched with hits having similar activity profiles.

Overall, 31 MeSH groups were identified containing compounds

with significantly more similar profiles than what was expected by

chance.

Hypotheses for the MoA of the TCAMS screening hits were

also generated by Gamo et al. after an analysis of GSK’s historical

activity data in assays against human and microbial targets [8]. To

identify targets preferentially inhibited by TCAMS compounds

compared to all historically screened compounds, the ratio of

known inhibitors among the hits over the total number of

inhibitors among all compounds was calculated for each target.

Only targets that were at least twofold enriched by antimalarial

hits were considered relevant. Searching for homologues of these

known targets in the P. falciparum genome yielded a set of 51

potential antimalarial targets assigned to a total of 555 hits. The

most prominent protein families targeted by TCAMS were kinases

and proteases with thirty and ten members, respectively. More

recently, Jensen et al. described a combination of similarity-based

virtual screening and protein homology analysis to predict the

molecular targets of TCAMS hits [15]. They were able to assign a

total of 293 P. falciparum proteins to a set of 4,495 hits. The

identified targets were then further prioritized according to criteria

like essentiality, lack of human homologues, or favourable

polypharmacology profiles.

The aim of the present study is to predict and prioritize the set

of P. falciparum targets most likely to be hit by the thousands of

phenotypically active compounds deposited in the ChEMBL-NTD

repository by the St. Jude, GSK and Novartis screening

campaigns. Identification of P. falciparum targets was performed

by predicting first the targets for all phenotypically active and

inactive compounds using a ligand-based in silico approach [16]

and projecting them by orthology onto the P. falciparum genome.

Prioritization of P. falciparum targets was ultimately achieved by

applying statistical tests to identify targets enriched with pheno-

typically active compounds among all their predicted ligands or

biased with higher predicted affinity values for their assigned

phenotypically active compounds compared to the inactive ones.

Combining these two tests, a final list of 39 high priority P.

falciparum targets was obtained and its potential impact for future

multi-target malaria drug discovery will be discussed.

Results

Prediction of the P. falciparum target space
In recent years, thousands of phenotypically active antimalarials

have been identified from three independent sources and made

publicly available in the ChEMBL-NTD archive. However, due to

the cell-based nature of the underlying screening assays, the exact

molecular MoA leading to antimalarial activity of these hits is

unknown at present. In an attempt to address this current

deficiency, in silico target profiling was applied to 18,955 unique

active and 303,961 unique inactive compounds identified in cell-

based screenings (see Materials and Methods for further details).

Author Summary

There is an urgent need for new antimalarials acting
through novel mechanisms of action that can overcome
the increasing incidence of resistance observed for
currently used drugs. In this respect, drug polypharmacol-
ogy is emerging as an attractive strategy to reduce the
chances of the parasite evolving drug resistance. Although
there were close to 20,000 antimalarial hits recently
identified from three independent phenotypic screenings,
the molecular targets through which most of those active
compounds exert their antimalarial action are unfortu-
nately unknown at present. To address this issue, a
computational approach was first used to predict their
protein targets. Statistical analyses were applied to detect
any enrichment of phenotypically active compounds in P.
falciparum targets, leading to a final list of 39 putative
high-priority targets for malaria drug discovery. The
presence of at least one high-priority target in the target
profile predicted for the antimalarial hits was then used as
a constraint to identify a priority set of 64 multi-target
profiles. Multi-target strategies based on such profiles can
set the basis for designing a next generation of more
robust malaria drugs.

Figure 1. Clinically used antimalarial chemotypes and their
corresponding MoA.
doi:10.1371/journal.pcbi.1003257.g001

Target Space for Malaria Drug Discovery
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Predicted interactions to at least one protein target were returned

for 48.6% and 66.0% of the active and inactive compounds,

respectively. This means that up to 51.4% and 34.0% of the active

and inactive compounds, respectively, were found outside the

applicability domain of the ligand-based target models used [16].

This observed difference in chemical coverage between active and

inactive compounds reflects the fact that all the inactive

compounds originate from the St. Jude library, composed entirely

of commercially available molecules. In contrast, many of the

phenotypically active compounds, strongly dominated by GSK’s

TCAMS, come from proprietary libraries within pharmaceutical

companies and thus are less well covered by molecules present in

chemogenomic databases from which the applied models are

constructed.

In addition, since the main aim of this study is to identify the

likely primary targets for those compounds, any protein-ligand

interaction with a predicted affinity value above 10 mM (that is, a

value of 2log(affinity) below 5) was not considered relevant at this

stage. This reduced the number of active and inactive compounds

with at least one relevant target interaction predicted by 7.0% and

14.3%, respectively. In the end, a total of 8,556 and 171,830

phenotypically active and inactive compounds, respectively,

remained and defined the basis on which all subsequent analyses

were performed.

Biologically relevant interactions to 1,288 and 1,543 unique

proteins were predicted for the phenotypically active and inactive

molecules, respectively. However, since most of the publically

available interaction data is measured on human proteins, the vast

majority of these predicted proteins are human targets. Accord-

ingly, an orthologous mapping from the predicted targets to the P.

falciparum genome was performed using OrthoMCL-DB version 5

[17]. At present, this database clusters the genomes of 150 species,

including P. falciparum, into groups of orthologous genes. Addi-

tionally, a web service is offered to assign custom gene products to

those groups. Using this service, we were able to map 207 out of

the 1,288 targets predicted for the active compounds to 147 P.

falciparum proteins. An additional set of 79 P. falciparum proteins

was obtained from the inactive compounds. In total, 226 P.

falciparum targets could be mapped by orthology to any of the

originally predicted targets, a target space that can be considered

an approximation to the druggable genome of P. falciparum.

In this respect, it ought to be stressed here that this

approximation to the druggable P. falciparum genome is largely

conservative due to the fact that the applied ligand-based

approach can only produce a prediction if there are already

ligands for this or any orthologous target known in publicly

available databases. Indeed, from the 5,524 P. falciparum genes

listed in OrthoMCL only 574 (10.4%) could be mapped to a target

model for which at least one ligand is reported in public

repositories. Since we cannot state anything at this stage about

the remaining 89.6% of the P. falciparum genome, its potential

druggable part might well be larger. The complete list of 226 P.

falciparum targets and the corresponding predicted compounds is

available as Supporting Information (Table S1).

While the predicted druggable P. falciparum genome contains

226 targets, not all of them are addressed by a compound from the

set of phenotypically active molecules. Therefore, we delimited the

relevant target space with respect to malaria drug discovery to

those 147 targets predicted for at least one phenotypically active

compound. Figure 2A shows the contributions of the individual

data sources to the predicted target space. Remarkably, 46 out of

the 147 identified targets (31.3%) are coming from active

compounds identified in all three screened libraries, an additional

set of 55 targets (37.4%) are coming from at least two of them.

Thus, even though the phenotypic screenings were performed on

three independent libraries, they seem to have a substantial degree

of overlap in the target space addressed by their compounds. This

result agrees well with the observation made recently by

Guiguemde et al. that, at the scaffold level, the three chemical

libraries are highly similar [6].

The mere fact that a protein is predicted to interact with a

compound found active in a phenotypic malaria screening is not

sufficient to qualify it as a relevant P. falciparum target. Thus, we

aimed to reduce the set of 147 P. falciparum proteins predicted to

interact with at least one phenotypically active compound to a

limited number of most highly relevant targets for malaria. To this

end, we made for the first time use of the wealth of information

inherent in the available negative data, the set of compounds

found to be inactive against the parasite cells in the St. Jude

screening campaign. The overlap between the target spaces of the

phenotypically active and inactive compounds is shown in

Figure 2B. As can be observed, most of the predicted proteins

are addressed by both active and inactive compounds, while there

are only 31 proteins that seem to be interacting exclusively with

phenotypically active compounds identified from the Novartis

and/or GSK screenings. Thus, in order to identify those proteins

most likely to be relevant malaria targets we looked for, on the one

hand, targets that are preferentially addressed by phenotypically

active compounds and, on the other hand, targets for which the

assigned active compounds tend to be predicted with higher

affinity values compared to the assigned inactive ones. or both The

basic assumption is that targets conforming to either of these

criteria are much more likely to be relevant drug targets for

malaria.

Target space enriched with phenotypically active
compounds

An analysis of the distribution of the 147 P. falciparum targets

among different protein families (Figure 3, white bars) reveals that

the vast majority (72%) are enzymes. Among them, kinases and

proteases dominate with 21% and 10%, respectively. On this

basis, a statistical test was applied to decide if, for any given target,

the predicted compounds from the active set were significantly

enriched over the inactive ones. Assuming that compounds from

both sets were assigned uniformly to a given target, on average

about 6% of phenotypically active compounds could be expected

among all predictions, which corresponds to the amount of actives

among all screened molecules. This uniform distribution defines

the null-hypothesis for this test. Then, for each target with a total

of n predictions and k actives among them, the probability p(k,n) of

getting at least k actives among n predictions was calculated using a

permutation test based on this null-hypothesis. Each target for

which at least one orthologous model was enriched with

Figure 2. Contributions of the individual data sets to the
predicted target space. (A) Target space of active antimalarials only;
(B) target space including both active and inactive compounds.
doi:10.1371/journal.pcbi.1003257.g002

Target Space for Malaria Drug Discovery
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phenotypically active compounds at a significance level of 99.9%

(p,1023) was then selected as a significantly enriched target.

A total of 56 targets enriched with phenotypically active

compounds were identified. In the remainder of this work, they

will be referred to as the set of ‘‘enriched targets’’. Among them,

36% were kinases and 23% ribosomal proteins (Figure 3, light grey

bars). These numbers represent a considerable increase in the

relative importance of these families among the enriched targets

compared to the original set of 147 P. falciparum targets (Figure 3,

white bars). In contrast, the number of proteins in the ‘‘other

enzymes’’ category was severely reduced from 41% to 14%

suggesting activity on those enzymes alone might not be sufficient

to observe a growth limiting effect on the parasite.

Target space biased with high affinity predictions for
phenotypically active compounds

In the previous analysis, targets were prioritized based on

enrichment of phenotypically active compounds among all

compounds predicted to interact with them without considering

the actual predicted affinity values. To further exploit this

information statistical tests were applied that allow for the

identification of targets that have a significant bias towards higher

predicted affinity values for phenotypically active compounds

compared to the inactive ones.

Accordingly, all predictions for a target were divided into two

sets of phenotypically active and inactive compounds. Then, a

one-sided Wilcoxon rank-sum test was applied with the null-

hypothesis that the predicted affinity values were accumulating

around the same location for both samples and the alternative

hypothesis that affinity predictions for the active compounds were

shifted towards higher values. Again a significance level of 99.9%

(p,1023) was used to select those targets for which the null-

hypothesis could be rejected.

Under these criteria, a second set of 59 targets was identified as

having a significant bias towards higher affinity predictions for

phenotypically active compounds compared to inactive com-

pounds (Figure 3, dark grey bars). In the remainder of this work,

they will be referred to as the set of ‘‘high affinity targets’’.

Following the trend observed for the enriched targets, the number

of kinases in this set was again relatively high (37%), followed by

those proteins clustered in the ‘‘other enzymes’’ category (29%). In

contrast, ribosomal proteins disappeared completely in this set due

to the fact that only qualitative information on protein-ligand

interaction data (active or inactive) was available in chemoge-

nomic databases for these proteins and thus, the rank-sum test

could not be applied.

High priority antimalarial target space
The final list of 39 P. falciparum targets that, based on currently

available data, may be considered of highest priority for malaria

drug discovery consists of the intersection between the two sets of

enriched and high affinity targets. The relative importance of the

different protein families within this final list of ‘‘high priority

targets’’ (Figure 3, black bars) is strongly dominated by kinases

(51%) followed, at a significant distance, by proteases (18%). The

complete list of 39 high priority targets is provided in Table 1.

Note that the important role of both kinases and proteases was

already suggested by Gamo et al. in their analysis of the TCAMS

screening hits [8]. Among their 51 putative targets, they reported

thirty kinases (59%) and ten proteases (20%). Keeping in mind that

the set of phenotypically active compounds used in this work is

mostly made of TCAMS compounds, it is remarkable to observe

the correspondence of these percentages with those reported above

based on our predictions. Yet, Gamo et al. did not provide any

prioritization of their targets. In the present study, we recovered

seven out of the ten proteases, all of them included in the high

priority subset, and 16 out of thirty kinases, 13 of them as high

priority targets.

More recently, Solyakov et al. reported a list of 36 P. falciparum

kinases considered likely to be essential for intraerythrocytic asexual

proliferation based on gene knock-out experiments [18]. A ligand-

based target model was available for twenty of them. Remarkably,

18 are actually included in the predicted target space, with 13 in the

high priority subset (shown in italics in Table 1) and an additional

one being present in the set of high affinity targets.

Target space of known antimalarial drugs
For comparison, a set of ten antimalarial drugs currently in

clinical use and representative of all chemotypes shown in Figure 1

was also profiled in silico. Results are included in Table S1. From

the group of hemozoin inhibitors chloroquine, mefloquine and

quinine were considered. They are acting through the inhibition of

hemozoin crystallization, a crucial step for detoxification of heme

produced during haemoglobin degradation [2]. The assumed

interaction partner of those drugs, the toxic heme species, is not

present among the used target models and therefore cannot be

predicted by the applied approach. Notably, the only target

consistently assigned to all three drugs based on known interaction

data is the multidrug resistance protein MDR1 (PFE1150w),

which is associated with resistance issues of all of them [19,20].

Beyond the interactions with MDR1, only quinine was predicted

to address an additional target, namely the ABC sub-family G

member 2 transporter (PF14_0244). The biological role of this

transporter is not yet fully understood, but it could be speculated

that it is involved in quinine resistance as well. Both MDR1 and

the ABC transporter are contained in the set of high priority

targets (Table 1).

The antifolates pyrimethamine, proguanil, and sulfadoxine were

all assigned to their experimentally known target bifunctional

dihydrofolate reductase-thymidylate synthase DHFR-TS

(PFD0830w) [2]. In addition, sulfadoxine was assigned to

dihydropteroate synthetase DHPS (PF08_0095), which is the

primary target of this compound [21]. While DHFR-TS is one of

the 39 high priority targets, DHPS was not predicted for any

active compound. Apart from these experimentally known

interactions, two additional new interactions were predicted.

Figure 3. Protein classes of predicted targets. White bars
represent the predicted relevant target space, whereas the different
prioritized subsets are depicted by shaded bars.
doi:10.1371/journal.pcbi.1003257.g003

Target Space for Malaria Drug Discovery
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One is the interaction between pyrimethamine and MDR1. This is

a potentially interesting prediction considering that neither the

mechanism of action of this drug nor resistance has been related to

this transporter so far. The other one is the interaction between

sulfadoxine and acyl-CoA synthetase (PFF0945c), a protein

included in the set of high affinity targets.

Table 1. List of predicted 39 high priority malaria targets and their TDR ranking.

IDa Protein TDR Ranking

Kinases:

PFL1490w atypical protein kinase, RIO family, putative 1536

PFB0815w calcium dependent protein kinase 1 (CDPK1) 409

PFF0520w calcium-dependent protein kinase (CDPK2) 180

PFC0420w calcium dependent protein kinase 3 (CDPK3) 143

PF07_0072 calcium dependent protein kinase 4 (CDPK4) 180

PF13_0211 calcium dependent protein kinase 5 (CDPK5) 180

PFI1685w * cAMP-dependent protein kinase catalytic subunit (PKAc) 27

PFL1110c cAMP-dependent protein kinase regulatory subunit (PKAr) 857

PF11_0377 casein kinase 1 (CK1) 16

PF14_0346 * cGMP-dependent protein kinase (PKG) 69

PF14_0294 mitogen-activated protein kinase 1 (MAP1) 637

PFA0515w phosphatidylinositol-4-phosphate 5-kinase (PIP5K) 637

MAL13P1.279 * protein kinase 5 (PK5) 3

PFB0150c protein kinase, putative 914

PFL2250c * RAC-beta serine/threonine protein kinase (PKB) 27

PFC0385c serine/threonine protein kinase, putative (ARK2) 341

PF14_0516 serine/threonine protein kinase, putative (KIN) 710

PF11_0488 serine/threonine protein kinase, putative 1536

PFL2280w serine/threonine protein kinase, putative 379

PFC0105w serine/threonine protein kinase (SRPK1) 637

Proteases:

PF11_0165 * cysteine proteinase falcipain 2a 10

PF11_0161 * cysteine proteinase falcipain 2b (FP2B) 50

PF11_0162 * cysteine proteinase falcipain 3 50

PF14_0076 * plasmepsin I (PMI) 39

PF14_0077 * plasmepsin II 39

PF14_0075 * plasmepsin IV (PM4) 39

PFC0495w * plasmepsin VI 86

Other Enzymes:

PFD0830w * bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) 3

PF13_0262 lysine-tRNA ligase, putative 409

PFI1310w NAD synthase, putative 409

PFI0380c * peptidyl deformylase (PDF) 2

PFA0480w phenylalanyl-tRNA synthetase, putative 180

PFD0305c vacuolar ATP synthase subunit b 112

Transporter/Channels:

PF14_0244 ABC transporter, (EPP family), putative 637

PFE1150w multidrug resistance protein (MDR1) 571

PF08_0113 vacuolar proton translocating ATPase subunit A, putative 876

Other Proteins:

PFI0180w * alpha tubulin 1 306

PFD1050w alpha tubulin 2 857

PF10_0084 * tubulin beta chain 74

aIdentifiers and protein names taken from PlasmoDB [74]. Targets with known ligands according to TDR Targets database are marked with an asterisk (*) [27]. Essential
kinases according to Solyakov et al. are shown in italics [18].
doi:10.1371/journal.pcbi.1003257.t001
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Atovaquone was used as a representative of the class of

naphtoquinones. It is assumed to interact with the essential

pyrimidine biosynthesis pathway of P. falciparum through the

inhibition of cytochrome b (mal_mito_3). Furthermore, it is also

known to bind dihydroorotate dehydrogenase (PFF0160c) in-

volved in the same pathway [22,23]. While both targets are

contained in the predicted target space of 147 proteins, the latter

one is the only target assigned to atovaquone by the in silico

approach used here.

The antibiotics tetracycline and doxycycline inhibit protein

biosynthesis via the inhibition of aminoacyl-tRNA binding to the

ribosome [24]. Accordingly, these drugs were assigned to a set of

five ribosomal proteins (PF14_0627, MAL7P1.93, PF11_0386,

MAL13P1.92, PFE1005w), none of them part of the 147 targets

predicted for the phenotypically active hits. Among the five

predictions there is the putative apicoplast ribosomal protein

S14p/S29e (PF11_0386). This is in line with the finding that such

antibiotics specifically target the apicoplast of P. falciparum [25]. No

additional targets were predicted for these compounds.

Finally, artemether was profiled as a representative of the

artemisinin derivatives. The exact mode of action of this class of

drugs is not yet known, even though multiple targets have been

hypothesised [26]. In our hands, artemether is predicted to

interact with MDR1 (PFE1150w), a reasonable prediction

considering the fact that this transporter is associated with

artemisinin resistance [19].

Retrospective validation of the predicted antimalarial
target space

An exhaustive prospective experimental validation of all

predictions obtained by the presented computational approach is

outside the scope of this study. Consequently, validation of our

predictions at this stage is mostly done only retrospectively. A first

immediate option is to examine the amount of experimentally

known interactions between any of the orthologous model proteins

corresponding to the 147 predicted P. falciparum targets and the

1,908 phenotypically active compounds predicted to have affinity

to any of them. A total of 673 interactions were found to be

contained already in the public repositories used for model

generation. Among them, 411 interactions had an affinity value

equal to or more potent than 10 mM, which were then compared

with our predicted values obtained without considering them

during model generation. Out of those 411 interactions, 223

(54.3%) were correctly predicted with an affinity value below

10 mM. For the remaining 188 interactions, 179 were in fact found

outside the applicability domain. This result provides strong

confidence in the predictions made.

An additional retrospective validation from a target side

perspective is to select all P. falciparum proteins for which any

known ligand exists based on the manual curation available at the

TDR Targets database [27]. This yields a list of 85 targets, which

can be regarded as the currently known part of the parasite’s

genome covered by small molecules. Of those, ligand-based

models are available for 57 orthologous targets in our computa-

tional approach and could hence be part of our predictions.

Remarkably, 51 of them (90%) are part of our predicted druggable

P. falciparum genome of 226 targets, indicating that the chemical

libraries screened by the St Jude, GSK, and Novartis groups cover

potentially most of this druggable genome. Even more revealing is

the fact that 36 of those targets (63%) are actually included in the

target space of 147 P. falciparum proteins predicted to be addressed

by phenotypically active compounds. It is worth stressing here

again that ligand-based models are available for orthologous

targets of 574 P. falciparum genes in the computational method

used. The probability for a random target space of 147 proteins

uniformly drawn from those 574 targets to contain at least 36

known druggable targets gives a p-value of 2.54610210. In fact, 15

out of the 36 recovered druggable proteins are contained in the set

of 39 high priority targets, with an associated p-value of

6.0761027. These 15 targets are marked with an asterisk in

Table 1. This means that our predicted P. falciparum target space

shows a significant accumulation of known druggable targets,

which provides further validation for our approach and its

relevance for malaria drug discovery.

A final retrospective validation was performed against the

current contents of the TDR Targets database that allows for

prioritizing P. falciparum targets based on different features [27].

The query features were selected analogous to the example given

by Agüero et al. in their supplementary information [27]. To

establish a ranking of target relevance, they emphasize properties

like assayability, essentiality, druggability, suitability for structure-

based drug design and their phylogenetic distribution, among

others (see Materials and Methods for details). A total of 5,349 P.

falciparum targets were returned and prioritized according to their

final cumulative weight. The TDR ranks of the 39 high priority

targets are shown in Table 1. A total of 4 and 15 of our 39 high

priority targets are ranked within the top-10 and top-100 targets

by TDR, respectively. Conversely, among the top-39 targets

ranked by TDR (which in fact contained 47 targets, several of

which having the same rank), 9 were found in the set of high

priority targets, 3 in the set of high affinity targets, 13 in the

predicted antimalarial target space of 147 targets, and 11 in the

predicted druggable genome of 226 targets. Only 11 targets (23%)

were not present in any of our predicted or prioritized target sets.

Altogether, this provides further evidence that the prediction and

prioritization strategies used in this work lead to a malaria-relevant

target space that complements nicely the target information

currently available in TDR.

Discussion

Ligand-target malaria network
The complete ligand-target network connecting 1,908 pheno-

typically active compounds (white circles) with all 147 predicted

plasmodial targets is presented in Figure 4. A fully scalable image

is available as Supporting Information (Figure S1), allowing to

zoom into individual targets to read their corresponding identi-

fiers. The target nodes encode both the protein family (node color)

and the priority class of the target (node shape). Targets belonging

to the same OrthoMCL group share the same ligands and are

therefore merged into a common node. The network contains also

those clinically used drugs that were assigned to at least one of the

147 targets associated with phenotypically active hits, namely,

chloroquine, mefloquine, artemether, quinine, pyrimethamine,

proguanil, sulfadoxin, and atovaquone highlighted as light blue

circles.

Up to 68% of all compounds displayed in the network are linked

to a single target or target group. In fact, there are only six targets

that can be recognized as strong network hubs, labeled with letters

A to F in Figure 4: (A) Hsp90 (PF07_0029, linked to 204

compounds), (B) the plasmepsin group containing plasmepsin I, II,

IV and VI (PF14_0076, PF14_0077, PF14_0075, PFC0495w,

linked to 191 compounds), (C) bifunctional dihydrofolate reduc-

tase-thymidylate synthase (PFD0830w, linked to 189 compounds),

(D) acyl-CoA synthetase (PFF0945c, linked to 148 compounds), (E)

serine/threonine protein kinase ARK2 (PFC0385c, linked to 102

compounds) and (F) the falcipain group including falcipain 2a, 2b

and 3 (PF11_0165, PF11_0161, PF11_0162, linked to 73
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compounds). All but Hsp90 and acyl-CoA synthetase are

contained in the list of 39 high priority targets collected in

Table 1, which is due to the fact that these two targets do not

appear to be enriched with phenotypically active compounds.

Nonetheless, they are in the set of 59 targets identified as having a

significant bias towards higher affinity predictions for phenotyp-

ically active compounds compared to the inactive ones.

A heatmap inset has been added in Figure 4 next to each of the

six network hubs described above. These heatmaps illustrate the

structural similarity between all compounds linked to each of those

six target groups using pairwise Tanimoto indices calculated from

their MACCS key fingerprints with Open Babel [28]. As can be

observed, perhaps with the exception of the plasmepsin group,

compounds appear organized in multiple small clusters of similar

structures (red squares along the diagonal) that share only low to

medium similarity with the remaining compounds of the same

target group. Assuming that different chemical series may exhibit

different binding modes with respect to the same target, this

finding reflects the fact that affinity for those targets can be

achieved with diverse chemotypes potentially having different

target and ADME profiles, thus offering a wealth of opportunities

to address drug resistance and safety issues.

Multi-target malaria drug discovery
Most of the compounds are linked to one single target. It is

worth stressing, however, that many compounds are involved in

multi-target profiles, as it becomes apparent in Figure 4.

Altogether they form a large interconnected network component

containing 121 targets. In particular, kinases (shown as red nodes

in Figure 4) form a tightly connected subnetwork. Indeed, in

contrast to the traditional one drug – one target drug discovery

paradigm, drug polypharmacology has gained a lot of attention in

recent years [29–32]. For the particular case of malaria, small

molecules acting with biologically relevant affinity on multiple P.

falciparum targets represent an interesting strategy to retain

therapeutic efficacy against the potential emergence of parasite

resistance on individual targets, a concept already proposed for

antimalarial protein kinase inhibitors [33,34]. This is also

supported by the observation that parasites show relatively slow

resistance development against artemisinin, a drug that is believed

to act on multiple targets [2]. Accordingly, phenotypically active

compounds linked to multi-target profiles containing some of the

identified high priority targets could be very attractive novel

starting points for malaria drug discovery. The complete list of 272

predicted profiles of potential interest for malaria drug discovery is

provided as Supporting Information (Table S2).

Figure 5 shows the relationship between the target length of the

272 complete profiles predicted (x-axis) and the number of high

priority targets included in them (y-axis). The size of the circles is

proportional to the number of compounds assigned to a predicted

profile of a given target length and number of high priority targets.

The two large leftmost circles reflect the fact that the majority of

the compounds are assigned to a single target. In general, it is

observed that target profiles become enriched with high priority

targets as the total number of targets in the profile increases. For

example, among all compounds that have predicted affinities for

three or more targets, 33% contain only up to two high priority

targets, whereas more than twice as many (67%) contain three or

more high priority targets in their profile (highlighted grey area in

Figure 5). In contrast, it is also observed that about 48% of all

compounds are not predicted to address any of the 39 high priority

targets identified above (bottom row in Figure 5). However, among

those compounds, 89% are predicted for at least one target that is

either enriched or biased towards high affinity values for

phenotypically active compounds.

In total, 64 unique profiles containing at least three targets, of

which at least one is considered a high priority target, were

identified (Table S2). The largest predicted target profile contains

31 targets, 25 of which are high priority targets. Among them,

there are 20 kinases, three tubulins, a lysine-tRNA ligase and the

multidrug resistance protein MDR1 (see Table 1). The compounds

matching this profile are staurosporine and two close derivatives

(GNF-Pf-1389, GNF-Pf-70 and GNF-Pf-3072). Staurosporine is a

well-known kinase inhibitor that binds to many kinases with high

affinity but little selectivity [35]. These three compounds are

included in the upper-most circle. Several additional target profiles

containing exclusively or predominantly kinases are also located in

that profiling region.

The largest circle within the highlighted area in Figure 5

corresponds almost entirely to target profiles composed solely by

the four high priority plasmepsin targets (Figure 4B). Since the four

Figure 4. Drug-target network of 1,908 active compounds predicted for 147 P. falciparum proteins. Node colors encode target families
(red: kinase; orange: protease; yellow: other enzyme; green: ribosomal protein; magenta: transporter/channel; blue: other protein; grey: unknown
function), node shapes encode prioritization (hexagon: high priority; triangle: high affinity target; diamond: enriched target; square: other
predictions). Targets from the same orthologous group are merged into one common node. Compounds are shown as white circles and grouped
according to their target profiles. Edge width corresponds to the number of compounds in the respective group. Clinically used drugs are highlighted
in light blue. The numbering corresponds to chloroquine, mefloquine, and artemether (1), quinine (2), pyrimethamine (3), proguanil (4), sulfadoxin (5),
and atovaquone (6). Capital letters are used to identify the target hubs of Hsp90 (A), plasmepsin I, II, IV, and VI (B), bifunctional dihydrofolate
reductase-thymidylate synthase (C), acyl-CoA synthetase (D), serine/threonine protein kinase ARK2 (E), and falcipain 2a, 2b, and 3 (F).
doi:10.1371/journal.pcbi.1003257.g004

Figure 5. High priority targets versus total number of targets
within a predicted profile. The size of a circle relates to the number
of compounds that address a profile of the given characteristics.
doi:10.1371/journal.pcbi.1003257.g005
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plasmepsins are contained in the same OrthoMCL group, a

compound predicted for one of them is automatically assigned to

all of them. Actually, this is a reasonable prediction since

plasmepsin functionality is highly redundant within the P.

falciparum food vacuole in which three of the four predicted

plasmepsins are located. Due to this redundancy, it is unlikely that

a selective plasmepsin inhibitor could stop parasite growth [36].

Thus, as compounds contained in this group are all known to be

phenotypically active in a cell-based assay, there is a reasonable

probability for them to be pan-plasmepsin inhibitors, consistent

with the assignment to all members of the orthologous group. A

similar argument can be made for the neighboring target profiles

composed uniquely by three high priority targets. This circle

contains compounds predicted to interact with either all three

falcipain targets (Figure 4F) or all three tubulin targets (see

Table 1).

Beyond these family-directed kinase, protease and tubulin target

profiles, a number of profiles composed of more diverse target

combinations that can lead to novel opportunities for malaria drug

discovery were also identified. Among them, a multi-target profile

composed of three proteins predicted for a congeneric series of 19

2,4-diaminoquinazoline compounds is worth to be highlighted

(Figure 6A). It comprises the serine/threonine protein kinase

ARK2 (PFC0385c), heat shock protein 90 (Hsp90, PF07_0029)

and a cell division cycle protein 48 homologue (CDC48,

PFF0940c). While the exact biological function of ARK2 in the

parasite is not yet known, this kinase is considered essential during

the erytrothytic stage of the plasmodial life cycle [18]. In addition,

a compound containing a similar diaminoquinazoline chemotype

(CHEMBL552038) was found to inhibit the human orthologue

Aurora kinase A with an experimental Ki value of 24 nM [37].

Kumar et al. showed that a known inhibitor of Hsp90, one of the

most abundant chaperones in eukaryotes, is not only binding to

the plasmodial protein but is also able to inhibit plasmodial

growth, suggesting an essential role of Hsp90 in parasite

development [38]. The role of the plasmodial CDC48 homologue

is not yet discussed in the literature. However, orthologous

proteins of several model organisms like Saccharomyces cerevisiae,

have been shown to be essential [39]. The human orthologous

valosin-containing protein (VCP) plays a crucial role in protein

degradation through unfolding, segregating and translocating

protein substrates [40], and is described to play an important

role in guarding genome stability as it is part of an essential

complex in ubiquitin-governed DNA-damage response [41]. In

this respect, some compounds containing the exact diaminoqui-

nazoline chemotype shown in Figure 6A (PubChem CIDs

46224519 and 46224526) have been already reported to inhibit

VCP with IC50 values up to 0.8 mM [42]. Interestingly, four

additional compounds containing a similar diaminoquinazoline

chemotype are predicted for kinases GSK3 (PFC0525c, com-

pounds TCMDC-135161 and TCMDC-134695), PK5

(MAL13P1.279, TCMDC-134695) and CLK1 (PF14_0431,

GNF-Pf-2821 and GNF-Pf-4374). All of them are considered

essential for erythrocytic parasite proliferation and diaminoquina-

zolines are known to inhibit at least the human GSK3b [18,37].

This opens the possibility to add even more essential targets to the

profile of the shown chemotype. The exact details of the complete

multi-target profile associated with each individual compound

within this series are provided in Supplementary Table S2.

Another interesting profile consisting of six targets (Figure 6B)

includes protein kinase 5 (PK5, MAL13P1.279), the three

tubulin targets alpha 1 (PFI0180w), alpha 2 (PFD1050w) and

beta (PF10_0084), a putative ABC transporter (PF14_0244), all

included in the high-priority set, and a subunit of the

mitochondrial inner membrane translocase complex

(PF13_0300). This profile was predicted for one compound

(TCMDC-132054) but the target profiles of another six com-

pounds containing the same acridinone chemotype were found to

overlap partially, thus strengthening the signal for these predic-

tions (see Table S2). Among the six targets, PK5 is considered to

play a crucial role in the asexual proliferation cycle of intraeryth-

rocytic parasite stages [18]. Also, tubulins are well-known essential

antimalarial targets for parasite development, due to the fact that

inhibition of microtubule formation affects cell division, motility

and structural integrity of the parasite [43]. In fact, some of the

closest similarity neighbors to TCMDC-132054 are 2-phenyl-4-

quinolone derivatives, which are experimentally known to inhibit

tubulin polymerization with submicromolar affinity [44]. The

physiological role of the transporter PF14_0244 is not yet clear but

the orthologous human ABCG2 transporter is involved in breast

cancer drug resistance. Interestingly, one of the screened

acrinidone derivatives (GNF-Pf-2549) was already shown to be

able to inhibit the ABCG2 transporter with an IC50 value of

4.8 mM [45]. Finally, PF13_300 is a candidate for the TIM23

analogue in P. falciparum, a central part of the TIM23 pathway

involved in protein import into the mitochondrial inner membrane

and matrix in S. cerevisiae [46]. TCMDC-123947 is a close

acridinone analogue of TCMDE-132054 known to inhibit S.

cerevisiae TIM23 with an experimental IC50 value of 13.6 mM [47].

The last example of a multi-target profile of potential relevance

to malaria (Figure 6C) contains the three cysteine proteases

falcipain 2a (FP2A, PF11_0165), 2b (FP2B, PF11_0161) and 3

(FP3, PF11_0162), all belonging to the high-priority subset, two

targets biased towards higher affinity values for active compounds,

namely, the heat shock protein Hsp90 (PF07_0029) and the Rab

GTPase Rab2 (PFL1500w), and mannose-6-phosphate isomerase

(MPI, MAL8P1.156). Similarly to the previous case, this profile

was predicted for one compound only, GNF-Pf-2272, but partial

overlap is found in the predicted target profiles of three close

pyrimidotriazinedione derivatives. It ought to be said that the

affinities of GNF-Pf-2272 for human orthologues of two of the

targets included in this profile are already known experimentally.

These are Hsp90 and MPI, for which IC50 values are reported to

be in the range of 400 nM and 6.1 mM, respectively [48,49]. The

role of Hsp90 in P. falciparum was already discussed above.

Regarding MPI, its exact biological function in P. falciparum is not

clear nor is it known to be essential. Yet, eukaryotic MPI in

general is involved in several metabolic pathways. Among others,

the product of MPI, mannose-6-phosphate, is acting as a signaling

molecule for intracellular trafficking and MPI was shown to be

essential for cell wall biosynthesis in several yeast species [50,51].

As for the predicted affinities, the falcipains are known to play a

crucial role in haemoglobin degradation, an essential process

providing amino acids for protein biosynthesis during the parasites

intraerythrocytic stages [52,53]. Predictions were obtained for

their human orthologues cathepsin L, cathepsin S and cathepsin

K, with the close analogue GNF-Pf-67 being a known inhibitor of

cathepsins S and K with IC50 values of 176 nM and 225 nM,

respectively [54,55]. Finally, Rab GTPases in eukaryotes are

involved in the regulation of vesicular transport. With respect to

Rab2 in particular, Quevillon et al. showed that this gene is

transcribed in P. falciparum infected erythrocytes and they predicted

a role in vacuole size regulation based on phylogenetic comparison

to yeast [56].

For all targets involved in the presented multi-target profiles

there exists experimental evidence that they might play central

roles in the life cycle of the parasite. This evidence is either based

on plasmodial proteins or orthologues from other species. In many
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cases there is also evidence available that the presented or closely

related compounds are actually active on those targets. Therefore,

the predicted profiles are reasonable and promising candidates for

new starting points in the search for multi-target malaria drugs.

However, it has to be mentioned that all those predictions were

obtained from an orthologous projection to the plasmodial

genome. Most of the original models were built from interaction

data on human or other mammalian targets. Thus, the predicted

compounds implicitly bear the risk for undesirable side effects due

to the inhibition of host targets. This risk is even increasing with

increasing profile sizes and, along with that, an increasing

promiscuity of the compounds. For example, as mentioned above

2,4-diaminoquinazolines similar to those predicted for the profile

in Figure 6A are already known to inhibit the human orthologues

of ARK2 and CDC48 as well as additional human kinase targets.

Moreover, compounds containing the 2,4-diaminoquinazoline

scaffold are well known inhibitors of parasitic but also human

DHFR [57–59].

The purpose of this study, however, was to deconvolute the

molecular targets of non-optimized antimalarial HTS hits and to

Figure 6. Selection of diverse multi-target profiles. The structures shown correspond to (A) the core scaffold of a set of 19 2,4-
diaminoquinazolines, (B) TCMDC-132054, and (C) GNF-Pf-2272. The corresponding distributions of predicted affinities over multiple targets are
provided on the right-hand side. For the set of 2,4-diaminoquinazolines (A), average predicted affinities are shown, with error bars giving the
standard deviation over all compounds. Asterisks within the bars indicate the priority class of the respective target (‘****’ = high priority, ‘***’ = high
affinity, ‘**’ = enriched, ‘*’ predicted target). Targets of the same orthologous group are joined to a single bar.
doi:10.1371/journal.pcbi.1003257.g006

Target Space for Malaria Drug Discovery

PLOS Computational Biology | www.ploscompbiol.org 10 October 2013 | Volume 9 | Issue 10 | e1003257



identify promising starting points for the development of novel

multi-target malaria drugs. At this stage, this was done irrespective

of any potential host interaction. Nevertheless, we strongly

recommend keeping this inherent risk of adverse reactions in

mind for any follow-up study. In particular when reaching the

stage of lead optimization it remains to be seen whether these

compounds can be developed into safer, more efficacious, drug

candidates.

Conclusions
Traditional malaria drug discovery has focused on the

identification of small molecules that target individually some of

the essential P. falciparum proteins identified to date. For example,

chemotypes containing biguanides or aminopyrimidines are

representative of an entire drug class targeting DHFR-TS

(PFD0830w) and sulfonamides like sulfadoxine are designed to

inhibit DHPS (PF08_0095). Indeed, with the exception of the

artemisinin derivatives, all drugs are supposed to act very

selectively on individual targets, which is fully supported by the

above presented profiling results. Unfortunately, the long-term

therapeutic usefulness of these chemical series has been severely

hindered by the ability of the parasite to mutate and become

resistant to those treatments. In this respect, artemisinin can be

seen as the prototype of a multi-target malaria drug and the

identification of a new generation of purposely designed multi-

target drugs is emerging as an attractive strategy to overcome

resistance by making more difficult for the parasite to evolve and

survive to multiple mutations on essential proteins. However, the

practicality of such a strategy is reduced to being able to prioritize,

among the millions of possible combinations of P. falciparum

proteins, those that could potentially lead to effective antimalarials.

Beyond defining the P. falciparum target space likely to be most

relevant to malaria drug discovery, the predictions derived in this

work provide a first approximation to prioritizing the multi-target

space addressed by phenotypically active antimalarials, thus

paving the way towards more effective and robust malaria drugs.

Materials and Methods

Screening data sets
All processed data sets were downloaded from the ChEMBL –

Neglected Tropical Disease archive [10]. The St. Jude set was

divided into active and inactive compounds according to the 1,134

hits listed in the accompanying data sheet. Each data set was first

filtered for duplicates. Then, the three sets of active hits were

pooled and duplicates between the three sets were removed again.

A set of 490 contradicting compounds, that is, compounds present

in both the active and the inactive sets, were removed from the

analyzed data sets. This happened in the case that a compound

was found to be inactive by the St. Jude group but at the same time

reported as a hit by the GSK or Novartis groups.

Duplicates within and across data sets were filtered using Open

Babel 2.3.0 [28]. Due to the fact that the topological descriptors

applied in the subsequent target profiling (see below for details) do

not distinguish stereo-isomers, such cases were treated as the same

molecule during filtering. Contradictory assignments of the same

molecule to both the active and the inactive set were detected in

the same way. The whole pre-processing work-flow is shown in

Figure 7.

In silico target profiling
After pre-processing (Figure 7), both active and inactive

molecules screened in phenotypic assays were processed with the

target profiling approach implemented in the PredictFX software

[16]. Given the two-dimensional structure of a molecule (smiles or

sd/mol file), PredictFX returns the predicted affinities for those

targets for which ligand information is available in public sources

of pharmacological data [60–64]. Three ligand-based methods are

implemented in the applied version of PredictFX that rely on

descriptor-based similarities, fuzzy fragment-based mapping, and

target cross-pharmacology.

Descriptor-based similarities are calculated using three types of

two-dimensional descriptors, namely, PHRAG, FPD, and SHED

[65,66], each one of them characterizing chemical structures with

a different degree of fuzziness and thus, complementing each other

in terms of structural similarity and hopping abilities. Pharmaco-

phoric fragments (PHRAG) are all possible fixed-length segments

of five atom-features that can be extracted from the topology of a

molecule. In contrast, feature-pair distributions (FPD) capture the

overall spreading of pairs of atom-centered features at different

predefined bond lengths. Finally, Shannon entropy descriptors

(SHED) are derived from simplified FPD, in which, instead of

using the actual feature-pair counts at each path length, the

variability within all possible feature-pair distributions is quantified

using the concept of Shannon entropy [66]. When using PHRAG

and FPD, the similarity between two molecules corresponds to the

overlapping fraction of their respective profiles [65], whereas with

SHED, Euclidean distances are calculated instead [66]. All three

descriptors were assessed on their ability to discriminate active

from random compounds for all targets chemically represented in

publicly available sources. As a result of this validation analysis,

compounds below similarity values of 0.76 and 0.87 for PHRAG

and FPD, respectively, and above a distance value of 0.52 for

SHED were considered to be outside the applicability domain of

these descriptors. For each of the 4,681 targets for which a

PredictFX model was available, the ensemble of PHRAG, FPD,

and SHED molecular descriptors of all known ligands represents a

mathematical description of the target from a chemical perspec-

tive. On this basis, the affinity of a compound for a given target

can be estimated by inverse distance weighting interpolation from

the affinity landscape defined by all neighboring molecules

according to the descriptors and similarity/distance metrics used

[65,66].

Fuzzy fragment-based mapping exploits the fact that, when a

substantial chemical coverage is available for a given target, key

interaction points can be revealed from the presence of specific

chemical series with analogous scaffolds and multiple functional-

ities. Common trends within the same chemical series can be

considered ‘‘primary’’ features, while the variable functionalities

can be considered as ‘‘secondary’’ features. In this context, given a

biological target, a simplest active subgraph (SAS) can be defined,

Figure 7. Data work-flow and library sizes during pre-
processing of virtual target profiling.
doi:10.1371/journal.pcbi.1003257.g007
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which contains the minimum set of primary features required to

achieve activity within a congeneric set of compounds. In order to

generate a SAS model for a given biological target, all molecules

with affinities below 1 mM are sorted according to their chemical

complexity. Then, the simplest active molecule (SAM) is selected

and molecules containing it to a certain degree of similarity are

assigned to it. When all molecules have been processed, the next

available SAM is selected and the process is iterated until all

molecules are related to a SAM. The SAS identification protocol is

not restricted to identical subgraphs. Instead, similar topologies

can be identified, allowing a reasonable degree of scaffold

hopping. Once the SAS model for a given biological target has

been generated, it represents an alternative mathematical descrip-

tion of this target from a fuzzier ligand perspective and can be used

for virtual screening purposes.

Finally, the target cross-pharmacology index between two targets

A and B (XPIA,B) is defined as the fraction of compounds

experimentally known to be active (pACT$5.5) on target A and

target B at the same time relative to all known ligands active on

target A. If, for a given compound, an affinity to target A is predicted

based on a SAS model, all cross-pharmacologically related targets B

are identified for A. If no similarity-based or SAS-based affinity can

be predicted for B, interaction affinities can be inferred for target B

by using the corresponding cross-pharmacology index XPIA,B as a

weighting factor on the predicted affinity for target A. If several

targets A* are related to B, then the inferred affinity for target B is the

weighted average of all XPIA*,B derived affinity values.

The method has been successfully validated retrospectively, on

its ability to predict the entire experimental interaction matrix

between 13 antipsychotic drugs and 34 protein targets [67] and to

identify cancer-relevant targets from selective cytotoxic com-

pounds in tumour cells [68], but also prospectively, on its capacity

to identify the correct targets for all molecules contained in a

biologically-orphan chemical library [69], to correctly anticipate

the affinity profile of the drug cyclobenzaprine [70], to identify a

confounding off-target of a widely used chemical probe [71], and

to predict the target of novel inhibitors of amyloid b-induced

neuronal apoptosis [72].

Prioritization and p-value calculations
To identify targets with a statistically significant enrichment of

active compounds among all their predictions, a permutation test

was performed based on the null-hypothesis that predictions were

uniformly distributed among all screened compounds. The

respective p-Values were calculated according to the following

formula:

pA(x,k)~
Xk

i~x

r

i

� �
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with n the total number of compounds (322,916), r the total

number of actives (18,955), k the total number of predictions for a

given target A and x the number of actives predicted for target A.

Thus, pA(x,k) is the probability of getting at least x actives among

the k predictions for target A, assuming that all possible

combinations of actives and inactives among k are equally likely.

If p is below a given confidence level the null-hypothesis can be

rejected, meaning that it is reasonably unlikely to obtain the

observed accumulation of active compounds by chance and the

enrichment can be assumed to be significant. The same formula

was used to calculate the probability of observing at least 36 and

15 out of 57 known druggable targets within a random target

space of size 147 and 39, respectively.

To test for a location shift between the predicted affinity values

for active and inactive compounds, a one-sided Wilcoxon rank-

sum test was performed as implemented in the stats-package of R

version 2.13.1 [73]. The test was based on the null-hypothesis that

no shift between affinity values for the two samples of active and

inactive compounds exists, and the alternative hypothesis that

predicted affinities for active compounds are shifted towards

higher values. In all statistical tests, a confidence level of 99.9%

(p,1023) was applied.

TDR targets prioritization
In order to prioritize P. falciparum targets using TDR Targets

database version 5, the following criteria were used (weights are

given in brackets) analogous to Agüero et al., supplementary figure

S2: [27] Target species is P. falciparum (for all queries); target is an

enzyme (100); molecular weight ,100,000 (20); number of

transmembrane segments = 0 (20); crystal structure of the target

available (50); structure model available (30); ortholog present in

all Plasmodium species (25); no ortholog present in Homo sapiens (25);

any evidence of essentiality in any species available (40);

druggability evidence index .0.6 (35); associated compounds

known from manual curation (35); any form of validation data

available (50); mapped publications available from PubMed (35).

Targets ending up with the same final weight got the same rank.

The search was performed on April 5th, 2013.

Supporting Information

Figure S1 Fully scalable version of the ligand-target malaria

network of 1,908 phenotypically active compounds (white circles)

linked to 147 P. falciparum proteins presented in Figure 4. Capital

letters are used to identify the target hubs of Hsp90 (A), plasmepsin

I, II, IV, and VI (B), bifunctional dihydrofolate reductase-

thymidylate synthase (C), acyl-CoA synthetase (D), serine/

threonine protein kinase ARK2 (E), and falcipain 2a, 2b, and 3 (F).

(PDF)

Table S1 Complete predicted antimalarial target space of 226 P.

falciparum proteins and their assigned compounds.

(XLSX)

Table S2 Complete list of target profiles predicted for

phenotypically active antimalarials.

(XLSX)
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69. Areias FM, Brea J, Gregori-Puigjané E, Zaki MEA, Carvalho MA, et al. (2010)

In silico directed chemical probing of the adenosine receptor family. Bioorg Med

Chem 18: 3043–3052. doi:10.1016/j.bmc.2010.03.048.

70. Mestres J, Seifert SA, Oprea TI (2011) Linking pharmacology to clinical reports:

cyclobenzaprine and its possible association with serotonin syndrome. Clin

Pharmacol Ther 90: 662–665. doi:10.1038/clpt.2011.177.
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