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Strains of the plant pathogen Pseudomonas syringae are commonly found in the phylosphere and are able to infect a number of
agriculturally important crops. Here, we report a high-quality draft genome sequence of Pseudomonas syringae pv. syringae
B301D-R, isolated from pears, which is a model strain for phytotoxin research in P. syringae.
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Pseudomonas syringae is a highly diverse plant pathogen with
significant economic and environmental impacts. It is also

an important model for plant-pathogen interaction research (1).
In order to suppress host defense responses and to promote dis-
ease symptom development, the pathogen utilizes type III-
translocated effectors (T3Es), as well as a variety of other secreted
substances, such as phytotoxins, exopolymeric compounds, phy-
tohormones, etc. (2–5). P. syringae pv. syringae B301D-R is a
spontaneous rifampin-resistant mutant of a strain isolated from
diseased pears (Pyrus communis) in England (6). P. syringae
B301D was used in a number of studies, some dealing with the
production and importance of the phytotoxins syringomycin, sy-
ringopeptin, and syringolin (7–16).

An 800-bp Nextera XT library was generated and sequenced at
Microsynth AG using the Illumina MiSeq platform. A total of
2,404,408 quality filtered reads with a total of 594,414,359 bases
were obtained, resulting in 98.5-fold average sequencing coverage.
The obtained reads were further de novo assembled using CLC
Workbench 6.0.1 into 81 contigs encompassing 6.04 Mbp in total.
Automatic open reading frame (ORF) prediction and functional
annotation have been performed with Prokka 1.8 (17) using non-
redundant protein sequence (nr) and custom databases.

The assembly size for P. syringae B301D-R is 6,036,561 bp, with
an average G�C content of 59.2%. It contains 5,185 protein-
coding sequences, 54 tRNA genes for all 20 amino acids, and 29
noncoding RNA genes. The genome contains a complete hrc/hrp
family type III secretion system and genes for twelve known T3Es:
HopM1, HopI1, HopAE1, HopAA1, HopAG1, AvrE1, HopAH1,
HopAL1, HopH1, HopA2, HopAI1, and HopBC1. Moreover, it
contains two complete type VI secretion system gene clusters and
twelve putative type VI effector-coding genes: seven of the VgrG
type and five of the Hcp1 type. The genome sequence completely
covers the syringolin biosynthesis gene cluster (PssB301D_04806
to PssB301D_04810), as well as most of the syringopeptin and
syringomycin biosynthetic genes, with the exception of sequences
encoding parts of nonribosomal peptide synthetases, which are
difficult to assemble using short reads. A mangotoxin biosynthesis
operon, commonly found among phylogroup II strains (18), was

not detected. B301D-R also contains genes required for produc-
tion of exopolysaccharides alginate, Psl, and levan.

In addition, we have generated transcriptome data for the wild
type B301D-R, as well as for its salA-deficient derivative DSL7 (19)
from cells grown on solid SRMAF medium (10) for 72 h at 18°C.
Total RNA isolates from three independent experiments were
combined together and sequenced using the Illumina MiSeq plat-
form at Microsynth AG. The salA gene encodes a transcriptional
regulator that, among other functions, controls phytotoxin pro-
duction in P. syringae (14, 19). So far, only limited microarray data
are available for this mutant (8), and therefore, whole-
transcriptome data allow the uncovering of the complete regulon
of SalA. Sequencing reads were deposited at the NCBI Sequence
Read Archive (SRA) under accession no. SRP035451.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession no. JALJ00000000. The version described in this
paper is the first version, JALJ01000000. The assigned NCBI tax-
onomy identification number is 1365665.
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