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Abstract: Nontyphoidal salmonellosis (NTS) is the second most commonly reported gastrointesti-
nal infection in humans and an important cause of food-borne outbreaks in Europe. The use of
antimicrobial agents for animals, plants, and food production contributes to the development of
antibiotic-resistant Salmonella strains that are transmissible to humans through food. The aim of
this study was to investigate the presence and the potential dissemination of multidrug-resistant
(MDR) Salmonella strains isolated in the Marche Region (Central Italy) via the food chain. Strains
were isolated from different sources: food, human, food animal/livestock, and the food-processing
environment. Among them, we selected MDR strains to perform their further characterization in
terms of resistance to tetracycline agent, carriage of tet genes, and plasmid profiles. Tetracycline
resistance genes were detected by PCR and plasmid replicons by PCR-based replicon typing (PBRT).
A total of 102 MDR Salmonella strains were selected among the most prevalent serovars: S. Infantis
(n = 36/102), S. Derby (n = 20/102), S. Typhimurium (n = 18/102), and a monophasic variant of S.
Typhimurium (MVST, n = 28/102). Resistance to sulfisoxazole (86%) and tetracycline (81%) were
the most common, followed by ampicillin (76%). FIIS was the most predominant replicon (17%),
followed by FII (11%) and FIB (11%) belonging to the IncF incompatibility group. Concerning the
characterization of tet genes, tetB was the most frequently detected (27/89), followed by tetA (10/89),
tetG (5/89), and tetM (1/89). This study showed the potential risk associated with the MDR Salmonella
strains circulating along the food chain. Hence, epidemiological surveillance supported by molecular
typing could be a very useful tool to prevent transmission of resistant Salmonella from food to humans,
in line with the One Health approach.

Keywords: Salmonella serovars; antibiotic resistance; tet genes; multidrug-resistant (MDR);
extensively drug-resistant (XDR); antimicrobial resistance genes (ARGs); plasmid profile; PCR-based
replicon typing (PBRT); food chain

1. Introduction

Nontyphoidal salmonellosis (NTS) is a common infection mainly caused by the in-
gestion of food or beverages contaminated by several zoonotic serovars with the potential
to interact with human and animal hosts [1,2]. The most prevalent serovars responsible
for human illnesses acquired in the European Union during 2019 were, in decreasing
order, S. Infantis, S. Enteritidis, the monophasic variant of S. Typhimurium (MVST), S.
Typhimurium, and S. Derby [3].
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Food-producing livestock and domestic pets are most often sources of NTS food-
borne outbreaks [1]. Indeed, NTS is linked to the consumption of Salmonella-contaminated
food mostly from poultry, pork, and egg products. However, in the last few decades,
the sporadic occurrence of these microorganisms was also detected in fruit and vegetable
produce [3,4]. Furthermore, poor hand washing and contact with infected pets are some
of the contamination routes. Thus, as a consequence of the growth in consumption of
products of animal origin and the integration of companion animals in households, there is
an increased potential for exposure to Salmonella via the food chain [4].

When contaminated food is ingested, the pathogen attacks and invades the intestinal
epithelium of the distal ileum triggering sickness that appears as acute gastroenteritis within
4 to 72 h. Fever, chills, nausea, vomiting, abdominal cramping, headache, and diarrhea
are the main symptoms [1,4]. Usually, in healthy individuals, NTS is a self-limited disease
resolving in a few days without medical intervention, but some patients may develop
chronic sequelae such as reactive arthritis or irritable bowel syndrome [4,5]. On the other
hand, in vulnerable patients (immunocompromised, very young or elderly persons) NTS
infection can systematically spread to other body organs causing febrile illness [2–4]. Hence,
NTS is a public health concern representing an economic burden for both developed and
developing countries, due to costs associated with surveillance, prevention, and treatment
of disease [1,6,7].

The rise in the occurrence of antimicrobial-resistant (AMR) strains in the food chain
increases the risk associated with this zoonotic infectious disease minimizing treatment
options and increasing human mortality [8,9]. The emergence of antimicrobial resistance in
the food chain is considered a cross-sectoral problem due to: (i) the misuse and overuse
of antibiotics in agricultural and livestock production, (ii) the dissemination of antimicro-
bial resistance genes (ARGs) among bacteria intentionally added during processing (e.g.,
starter cultures and probiotics), (iii) the post-contamination by the environment, after food
processing, (iv) the cross-contamination with AMR bacteria colonizing other foods during
industrial processing and handling by the consumer [10,11].

The selective effects of antimicrobial use accelerate the natural development of re-
sistance mechanisms activated by bacteria, and the acquisition of ARGs can occur at any
stage of the food chain facilitated by mobile genetic structures such as plasmids, integrons,
and transposons, in addition to vertical transfer [11,12]. Indeed, the presence of resistance
determinants in foodstuffs increases the gene pool by which pathogens can achieve and
transfer ARGs to other bacteria, thus representing an indirect risk to public health [11].

Horizontal gene transfer has been repeatedly described in Salmonella, especially for
tetracycline resistance genes (tet) because some of the most frequently detected, such as tetA
and tetG, are located on mobile genetic elements [13]. As observed in the latest report of
the European Food Safety Authority (EFSA), Italy showed a high level of resistance toward
tetracyclines, confirming the alarming effects caused by the abuse of these broad-spectrum
agents in both human and veterinary medicine [3,13]. In light of recent scientific issues
on antimicrobial resistance, the EFSA updated technical specifications for the implemen-
tation of molecular typing methods during routine monitoring. EFSA proposal aims to
reach harmonised surveillance of antimicrobial resistance in food-producing animals and
derived food to ensure continuity in following up the dynamic evolution of AMR food-
borne pathogens [14]. Mobile genetic elements play a pivotal role in the dissemination of
antimicrobial resistance along the food chain and their study is crucial to better understand
their epidemiology, apply control measures and reduce the presence of the pathogen in
food [11].

In this study, we selected a group of strains isolated in the Marche Region including
those serotypes mainly detected in Salmonella strains. Within this collection, we evaluated
their distribution in each one of the niches considered (animal, food, environment, and
human), their antimicrobial resistance, and plasmid profiles in order to obtain a general
view of isolates circulating in our region. Our aim was to investigate the presence and the
potential dissemination of AMR Salmonella isolates via the food chain.
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2. Results
2.1. Salmonella Strains

A total of 102 AMR Salmonella strains, of serovars S. Derby (n. 20), S. Typhimurium
(n. 18), MVST (n. 28), and S. Infantis (n. 36) were collected and analysed for this study.
Strains of animal origin (n. 16) were from pigs (n. 5) and poultry (broiler, n. 8; pigeon,
turkey, and laying hen, n. 1 each); food samples (n. 35) included meat products (pork meat,
n. 20; bovine, n. 4; chicken, n. 7), and mollusks (n. 4). Environmental samples (n. 9) were
swabs from food processing rooms (n. 2), slaughter rooms (n. 4), and poultry farms (n. 3)
(Table 1). Human clinical Salmonella strains (n. 42) were isolated from faeces (n. 37), blood
(n. 2) urine (n. 2), and other clinical samples (n. 1) (Table 1).

Table 1. Source and serotypes of Salmonella strains.

Source Serovars Strain n.

Animals

S. Infantis 8
S. Derby 1
S. Typhimurium 1
MVST 6

Environment

S. Infantis 5
S. Derby 1
S. Typhimurium 0
MVST 3

Foods

S. Infantis 11
S. Derby 8
S. Typhimurium 7
MVST 9

Humans

S. Infantis 12
S. Derby 10
S. Typhimurium 10
MVST 10

Total 102

2.2. Antibiotic Susceptibility Profiles

All Salmonella strains analysed in this study were resistant to one or more antibiotic
classes, except for one unique environmental Salmonella isolate, that was intermediate
resistant to streptomycin and ciprofloxacin and sensitive to all other antibiotics tested.
Nevertheless, this last strain was included in our collection in order to obtain a reasonable
number of environmental strains, in light of the limited size of this niche. The supple-
mentary Figure S1 showed the distribution of antibiotic resistance detected among strains
isolated from the different niches. Independently of isolation origin and serovar, a high
rate of resistance was recorded to sulfisoxazole (88 out of 102 strains, 86%) and tetracycline
(83/102, 81%), followed by ampicillin (78/102, 76%), streptomycin (61/102, 60%) and
nalidixic acid (38/102, 37%). Finally, 26 strains (25%) were resistant to cefotaxime and
confirmed as extended-spectrum β-lactamase (ESBL)-producing Salmonella. Moreover, a
high proportion of Salmonella isolates (42%; 43/102) showed intermediate sensitivity to
ciprofloxacin, a 2nd generation fluoroquinolone, whereas meropenem resistant strains were
not detected (Figure 1A).

As shown in Figure 1B, the majority of strains (47/102, 46%) were resistant to three
or more antibiotic classes, hence they were classified as multidrug-resistant (MDR) [15],
whereas the 44% of strains (45/102) were classified extensively drug-resistant (XDR) be-
cause they were resistant to at least one agent in all but two or fewer antimicrobial categories
(i.e., bacterial isolates remain susceptible to only one or two categories) [15]. The remaining
9 strains showed resistance to up two antibiotics of two categories.
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Figure 1. Resistance rate of Salmonella strains analysed in this study. (A) Strains were resistant
to one or more antibiotic classes, and the major resistance was detected against sulfisoxazole and
tetracycline. R: resistant (black), and I: intermediate (grey) resistant strains. AMP, ampicillin; CTX,
cefotaxime; CAZ, ceftazidime; AMC, amoxicillin+clavulanic acid; FOX, cefoxitin; TE, tetracycline; C,
chloramphenicol; CIP, ciprofloxacin; NA, nalidixic acid; PEF, pefloxacin; CN, gentamicin; S, strepto-
mycin; SXT, trimethoprim-sulfamethoxazole; ST, sulfisoxazole; TMP, trimethoprim. (B) Distribution
of Multi-and Extensively Drug-Resistant Salmonella strains. The major part of strains were resistant to
three or more antibiotic classes (multidrug-resistant; MDR) whereas 44% were resistant to at least one
agent in all but two or fewer antimicrobial categories (extensively drug-resistant; XDR) (B).
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The resistant phenotype was not equally distributed among serovars. In S. Infan-
tis, strains resistant to tetracycline, sulfamides, streptomycin, nalidixic acid, pefloxacin,
ampicillin, and cefotaxime were the most frequently observed, while reduced sensitivity
to ciprofloxacin was noticed among a relevant number of strains which were resistant to
other antibiotics. Streptomycin, sulfisoxazole, and tetracycline were the most observed
resistance phenotypes in S. Derby. S. Typhimurium and MVST showed similar antibiotic
resistance profiles: ampicillin, sulfisoxazole, streptomycin, and tetracycline were the most
diffused resistance phenotypes in both serovars, and S. Typhimurium also showed a certain
proportion of strains resistant to chloramphenicol (Figure 2).

2.3. Tetracycline Resistance Genes

Among the 83 resistant strains and the three strains with intermediate sensitivity to
tetracycline, a tet gene was determined in 43 strains, while the remaining 43 strains tested
negative for each target. The gene most frequently detected was tetB (27/86), followed by
tetA (10/86) and tetG (5/86), while tetM was found in a single strain isolated from humans
and was in combination with tetB. On the other hand, tetC and tetD were not detected
(Table 2).

Table 2. tet genes detected in tetracycline-resistant and intermediate strains, and serovars.

tet Genes Resistant Strains Intermediate Strains

tetA 10
2 S. Derby, 7 S. Infantis, 1 S. Typhimurium 0

tetB 27
1 S. Derby, 24 MVST, 2 S. Typhimurium 0

tetC 0 0

tetD 0 0

tetG 3
S. Typhimurium

2
S. Typhimurium

tetM 1
MVST 0

To note, almost all determinants were heterogeneously distributed both in terms of
serovars and niches. However, tetA was not found in MVST that was instead characterised
by the carriage of tetB for the 97% of tetracycline-resistant strains. Further, tetG gene was
detected only in S. Typhimurium strains, and all were isolated from food (Table 2).

2.4. Replicon Typing

Among the 102 strains analysed by PBRT only 12 out 30 replicons were detected (HI2,
I1α, N, I2, FIB, I1γ, A/C, FIIS, X1, FIB KN, FII, X4), as described in Figure 3A.

Overall, 58 strains were untypeable because they were negative for all replicons
whereas 28 strains were positive for 1 replicon, 11 for 2 replicons, and 5 for 3 replicons. FIIS
was the most predominant replicon (17%), followed by FII (11%), and FIB (11%). However,
we observed specific replicon distribution among strains belonging to the serovars con-
sidered in this study. Indeed, the IncX group was detected in S. Infantis and MVST, IncF
in S. Typhimurium, S. Infantis, and MVST whereas IncI and IncH were detected only in
S. Derby.
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Figure 2. AMR profile of Salmonella strains investigated in this study, according to serovar. R: resistant (black), and I: intermediate (grey) strains. MVST: monophasic
variant of S. Typhimurium. AMP, ampicillin; CTX, cefotaxime; CAZ, ceftazidime; AMC, amoxicillin+clavulanic acid; FOX, cefoxitin; MEM, meropenem; TE,
tetracycline; C, chloramphenicol; CIP, ciprofloxacin; NA, nalidixic acid; PEF, pefloxacin; CN, gentamicin; S, streptomycin; SXT, trimethoprim-sulfamethoxazole; ST,
sulfisoxazole; TMP, trimethoprim.
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Furthermore, replicons IncI and IncH were detected in strains isolated from human
and food samples, IncF group was the most detected in strains isolated from animal, food,
and human samples whereas, among strains isolated from the environment, only the IncX
group was detected (Figure 3B).

Results of the PBRT analysis allowed us to define 18 PBRT profiles (i.e., combinations of
replicons). The prevalent profile included strains with the single replicon FIIS (n = 11/102),
followed by I1α (n = 4/102), and FIB,FII (n = 4/102). All PBRT profiles detected in the
present study comprised strains of the same serovar, except for HI2 detected in both S.
Derby and MVST, and X1 detected in MVST and S. Infantis (Figure 3B). Multireplicon status
(two or more replicons) was recorded in 16 strains, with a maximum of three replicons
in five MVST strains. Multireplicon profiles were the following: FIB,A/C,FII (n = 1),
I1α,FIB,FII (n = 1), and FIB,FIIS,FII (n = 3). Four out of these five strains having the
multireplicon profile were resistant to tetracycline, three of which carried tetB gene or tetB
combined with tetM.

In this study, the possible association between the Inc group and resistance phenotypes
was also investigated. Results of statistical analysis (Hypothesis test–difference between
two frequencies in large samples) showed significant association between IncF presence
and resistance to sulfisoxazole (p < 0.00001), chloramphenicol (p < 0.0001), streptomycin
(p < 0.01), ampicillin (p < 0.01) and tetracycline (p < 0.05).

3. Discussion

In this study, the characterisation of Salmonella strains belonging to the main serovars
isolated from the food chain in the Marche Region (Central Italy) is reported. The decision
to select S. Infantis, S. Derby, S. Typhimurium, and MVST as the target of the investigation
was derived from taking into account the epidemiology of main serovars circulating at
the regional level in both veterinary and human samples [16–21]. The dominance of these
four serovars was consistent with that observed at the national and European levels, as
described by the last reports of Entervet and EFSA/ECDC [3,22].

With the exception of S. Typhimurium which presents a global distribution [23],
geographical differences emerged comparing the serovars predominant in Europe with
those in the USA, with the prevalence of S. Enteritidis and S. Newport for the latter [23,24].

All serovars considered in the present work are commonly found along the food chain
and they are able to cause infections in humans [23]. S. Typhimurium and its monophasic
variant (MVST) are associated with pig and pork meat [3]. In food-processing environ-
ments, these pathogens can spread throughout processing lines and, thus, reach utensils,
surfaces, and hands of employees [25]. Indeed, the prevalence of S. Typhimurium and
its monophasic variant is similar in both farms and slaughterhouses, and strains isolated
from swine and humans show important correlations in terms of molecular profiles [23,26].
S. Derby is continuously detected in pig, slaughter, and pork meat [3], and several studies
demonstrated correlations between strains isolated from pigs and those of human ori-
gin [27,28]. S. Infantis is reported as the most frequent poultry-adapted S. enterica serovar
with an increasing occurrence in broiler flocks, derived meat, and breeding hens [29,30].

From a health perspective, these findings are remarkable because the spread along
the food chain of serovars with the ability to cause infections in humans represents a
great concern. Indeed, Salmonella is the second pathogen responsible for food-transmitted
diseases and is an important cause of foodborne outbreaks in the EU [3].

Over recent years, the risk associated with the increasing incidence of these serovars
in humans and animals has been complicated by the spread of MDR clones in several
European countries, including Italy [31,32]. The overuse of antimicrobial agents in therapy
and prophylaxis of human and animal infections, as well as growth-promoting agents in
food animal production, favored the emergence of Salmonella strains resistant to several
classes of antibiotics, including those used as the primary choice for clinical treatment [33].
In light of this, we presented new and updated data concerning not only the occurrence
of the most prevalent serovars detected at the regional level but also their molecular



Antibiotics 2022, 11, 725 9 of 15

features in terms of antibiotic resistance and plasmid profiles. We found a heterogeneous
distribution of phenotypic resistance among the serovars investigated, confirming also
the typical multi-resistance pattern frequently determined in Salmonella strains circulating
in Europe [34].

Tetracyclines, which are broad-spectrum drugs widely used in human and veterinary
medicine, represent one of the main agents toward which Salmonella developed a high level
of resistance [35]. As reported by the latest ESVAC (European Surveillance of Veterinary
Antimicrobial Consumption) report, of the overall antimicrobials used in the 31 countries
in 2020, the largest amounts were for penicillins (31.1%), tetracyclines (26.7%), and sul-
fonamides (9.9%) [36]. In our study the highest resistance rate was determined toward
sulfisoxazole, followed by tetracycline, both classified as highly important antibiotics for
human medicine [37]. Thus, the responsible use of them is strongly recommended in order
to keep the associated risk as low as possible [38].

This study demonstrated wide dissemination of tetracycline resistance in Salmonella
strains (80%) along with the considered food chain settings. This was in accordance with
the last report released by EFSA where a rate of tetracycline resistance higher than the
European average was described for Italy [34]. Among all tetracycline-resistant strains
of our collection, 49% harboured one or more tet genes (tetA, tetB, tetC, tetD, tetG, tetM),
matching with other studies carried out both in Italy and in Europe [39–41]. The fact that
only 49% of strains resistant to tetracycline were positive for at least one tet gene is not
surprising because this resistance could be due to different genes or other mechanisms
such as mutations within the ribosomal binding site, activity of efflux pumps or enzymatic
inactivation of tetracycline drugs [42]. In agreement with other authors, the genes most
frequently detected in the present work were tetA and tetB belonging to Group-I and
associated with an efflux pump mechanism [43–46]. On the contrary, all strains of our
collection were negative for tetC and tetD. This result is not uncommon and could be due
to the low ability of those genes to confer resistance to tetracycline [46], leading to their
infrequent detection. The presence of these genes in strains isolated from animals increases
the risk associated with circulating Salmonella strains in livestock for many reasons. Firstly,
animals can transfer these strains to humans when farmers come into close contact with
them. Secondly, animals can release strains through faecal material contributing to the
spread of ARGs within livestock, and cross-contamination events, due to low hand hygiene
compliance which can occur during processing.

Remarkably, the localization of many ARGs on mobile genetic elements (plasmids,
integrons, and transposons) makes them easily transferred to both other bacteria and the
environment [47]. This is the case of tetA and tetB which are the most frequently detected
genes in our collection, confirming their increased ability to spread.

Hence, screening programmes supported by molecular typing methods are very useful
for the epidemiological tracing of serovar distribution in different sources along the food
chain, and also for the prompt identification of potential risks for the health of farmers,
food handlers, and consumers. For this reason, all strains were further characterised by
PBRT in order to understand the distribution of plasmid-related antimicrobial resistance
determinants based upon replicon types.

It is known that a variety of plasmid families are frequently found in Enterobacterales
promoting the rapid and consistent dissemination of ARGs [48]. The most common Inc
replicon types found in our collection were IncFIIS, followed by IncFII and IncFIB. The
dominance of IncF plasmids in AMR Enterobacterales isolated from humans and animals
has been widely assessed [48,49]. It was also demonstrated that IncF plasmids carry
multireplicon patterns where one replicon is strongly conserved while the others are
free to diverge. So, the selective pressure imposed leads plasmids to duplication and
dissemination [49]. Furthermore, the low copy number IncF plasmids contain the ADP-
ribosylating toxin, SpvB causing the systemic virulence typical of some serovars such as S.
Derby and S. Typhimurium [50]. For all of these reasons, the implementation of molecular
investigation in surveillance programmes achieves more and more relevance.
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Besides the described dominance of IncF, previous studies carried out in Italy recorded
the occurrence of different plasmid replicons. Dionisi and colleagues [32] characterised
S. Infantis isolated from different sources, between 2005 and 2011, identifying IncHI1 as
the dominant replicon. Instead, Franco and colleagues [31] investigated S. Infantis isolates
from different broiler chicken flocks detecting IncP replicon in all of them. Interestingly,
Di Cesare and colleagues [51] reported a large variety of Inc-plasmids among isolates
from animals and foodstuffs, highlighting the diversity of the Salmonella serovars. To note,
IncHI2 and IncFIIS were prevalent and detected only in specific serovars suggesting that
their distribution could be serovar-dependent [51]. This issue was found in accordance
with that observed in our study where IncH and IncI were found to be associated only with
S. Derby while IncX was detected only in MVST and S. Infantis strains originated from
food and human samples, suggesting their potential transmission along the food chain.

A large part of strains was untypeable by PBRT, and what could be a limitation for
the study actually highlights the need of monitoring circulating strains continuously, in
order to follow the dynamic evolution of Salmonella. This foodborne pathogen, as well as
other bacteria, has a tendency to modify its molecular elements to obtain advantageous
adaptability resulting in the escape of current assays.

It is clear that a better knowledge of molecular aspects in terms of resistance deter-
minants and plasmid content can be helpful to understand how resistant bacteria spread
within food settings.

4. Materials and Methods
4.1. Study Design and Selection of Strains

This study considered Salmonella strains isolated from different samples collected in
the Marche Region, Italy, between 2015 and 2021, in the framework of the official controls
provided by the Regulation (EC) No 2073/2005 on microbiological food safety criteria [52]
the National Poultry monitoring plan [53,54] and during self-monitoring controls both in
food [52] and veterinary sectors [54].

Salmonella strains were collected from microbiological analysis performed as part of
these controls and serotyped at the Regional Reference Centre for Enteric Pathogens of
the Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche, section of Tolentino
(Italy).

Only AMR strains of the main circulating serovars were selected including S. Derby
(n = 20/102; 20%), S. Infantis (n = 36/102; 35%), S. Typhimurium (n = 18/102; 18%), and
MVST (n = 28/102; 27%). The dominance of these serovars was derived from epidemi-
ological information about the main serovars circulating in both veterinary and human
samples [3,21]. Among them, we selected MDR strains to perform their further charac-
terisation in terms of resistance to tetracycline agent, carriage of tet genes, and plasmid
profiles.

Isolation sources included different points of the food chain, from farm and veterinary
environments to food and food processing plants. Animal samples were obtained mainly
from pigs and poultry (faeces, dust, and boot swabs collected on farms, viscera collected
during necropsy) while food samples included meat and fish products. Environmental
samples were obtained by collecting swabs from food processing rooms, slaughter rooms,
and poultry farms. Finally, human Salmonella strains were isolated from people with
gastrointestinal symptoms, some of them hospitalized. These strains were sent to the
Regional Reference Centre for Enteric Pathogens from the Regional hospitals’ analysis
laboratories participating in Enter-Net surveillance for Marche Region. Strain origin and
serotypes were reported in Table 1.

4.2. Serotyping Analysis and Antibiotic Susceptibility Testing

All Salmonella isolates from either veterinary, food or human samples were serotyped
according to ISO/TR 6579-3:2014 [55].
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Antimicrobial susceptibility of the Salmonella strains was determined by the disk diffu-
sion method, according to the Clinical and Laboratory Standards Institute guidelines (CLSI,
2021) toward the following antibiotic agents: ampicillin (AMP, 10 µg), cefotaxime (CTX,
30 µg), ceftazidime (CAZ, 30 µg), amoxicillin+clavulanic acid (AMC, 30 µg), cefoxitin (FOX,
30 µg), meropenem (MEM, 10 µg), tetracycline (TE, 30 µg), chloramphenicol (C, 30 µg),
ciprofloxacin (CIP, 5 µg), nalidixic acid (NA, 30 µg), pefloxacin (PEF, 5 µg), gentamicin
(CN, 10 µg), streptomycin (S, 10 µg), trimethoprim-sulfamethoxazole (SXT, 23.75/1.25 µg),
sulfisoxazole (ST, 300 µg), trimethoprim (TMP, 5 µg). Escherichia coli ATCC 25922 was used
as a control strain.

ESBL-producing Salmonella strains were confirmed by the double-disk synergy test
performed by positioning a disk of amoxicillin+clavulanic acid 30 µg between a disk of
cefotaxime 30 µg and a disk of ceftazidime 30 µg [56]. The CLSI interpretive criteria for
disk diffusion susceptibility testing of Salmonella were used [57].

4.3. Bacterial DNA Extraction and Plasmid Typing

Bacterial DNA was obtained by the boiling lysis method, incubating the isolated
colonies in distilled water for 10 min at 100 ◦C. The samples were then centrifuged at
15,000× g for 5 min and the supernatants were used for the following reactions.

All strains were typed by PCR-based replicon typing (PBRT) using the PBRT kit 2.0
(Diatheva, Fano, Italy) in order to identify plasmid replicons. This PBRT assay consists
of eight multiplex PCRs and allows the detection of 30 replicons of the main plasmids in
Enterobacterales.

All PCR reactions were carried out in accordance with the manufacturer’s instructions,
including positive controls. The amplicons were detected through capillary electrophoresis
on the AATI Fragment Analyzer (Agilent, Santa Clara, CA, USA) using the dsDNA 906
Reagent kit (Advanced Analytical, Ankeny, IA, USA). This amplicon analysis allows the
combination of two multiplex PCRs in the same lane, resolving up to eight peaks, as
previously published [58]. The positive peaks were successively analysed using the tool
“PBRT plugin” [58] developed in cooperation with the Advanced Analytical Company that
allows automatic peak calling and the recording of positive replicons.

4.4. PCR screening of Tetracycline Resistance Genes

Salmonella strains with tetracycline-resistant (n. 83) and intermediate (n. 3) phenotypes
were investigated to detect the presence of tetA, tetB, tetC, tetD, tetG, and tetM genes by
PCR. All PCR reactions were carried out following protocols indicated by the European
Reference Laboratory for Antimicrobial Resistance (EURL-AR, Technical University of
Denmark, National Food Institute) [59] (Table 3).

Table 3. Primer and amplicon features of PCR assays used for tet gene characterization.

Target Gene Primer Sequence Amplicon
Size (bp)

Tm
(◦C) Ref.

tetA
5′-GTAATTCTGAGCACTGTCGC-3′

956 57 [60]5′-CTGCCTGGACAACATTGCTT-3′

tetB
5′-CTCAGTATTCCAAGCCTTTG-3′

414 52 [60]5′-ACTCCCCTGAGCTTGAGGGG-3′

tetC
5′-GGTTGAAGGCTCTCAAGGGC-3′

505 65 [60]5′-CCTCTTGCGGGATATCGTCC-3′

tetD
5′-CATCCATCCGGAAGTGATAGC-3′

436 57 [61]5′-GGATATCTCACCGCATCTGC-3′

tetG
5′-GCAGCGAAAGCGTATTTGCG-3′

662 62 [62]5′-TCCGAAAGCTGTCCAAGCAT-3′

tetM
5′-GTTAAATAGTGTTCTTGGAG-3′

657 45 [62]5′-CTAAGATATGGCTCTAACAA-3′
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Positive control strains for the above-mentioned tet genes were also provided by the
EURL-AR (Table 4).

The PCR products were separated by electrophoresis on a 1.5% (w/v) agarose/midori
green advance color gel (Resnova, Rome, Italy) and finally recorded using UV transillumi-
nation. A 100 bp DNA ladder (GeneRuler 100 bp Plus, ThermoFisher Scientific, Waltham,
US) was included in all agarose gels as a molecular weight standard.

4.5. Statistical Analysis

The association between the presence of the Inc plasmid group and the resistance
phenotype was analyzed by the Hypothesis test–difference between two frequencies in
large samples. A p-value < 0.05 was considered significant.

Table 4. Positive control strains used for tet gene PCR-based characterisation provided by the
European Reference Laboratory for Antimicrobial Resistance (EURL-AR, Technical University of
Denmark, National Food Institute).

Species Strain Name tet Gene

E. coli tetA, NCTC 50078 tetA
E. coli tetB, CSH50::Tn10 tetB
E. coli tetC DO7 pBR 322, Tet tetC

E. coli tetD C600 psl 106, Tet
tetDx2 tetD

S. Typhimurium P502212 DT104
sul1 and tetG tetG

Staph. intermedius 2567, chromosomal tetM tetM

5. Conclusions

In conclusion, this study shows that a heterogeneous Salmonella serovars population
colonizes the food chain with the ability to reach consumers and cause serious illnesses.
Isolates analysed here were characterised by a high rate of resistance to a wide panel of
antibiotics, and particular attention was focused on tetracyclines considering the extensive
use of this agent in veterinary medicine. The presence of MDR strains carrying genetic
determinants on mobile genetic elements is a matter of concern for the spread of resistance
in food settings.

In this context, the monitoring of different serovars along the food chain and a bet-
ter knowledge of them from a molecular point of view are essential to managing risks
associated with consumer health.

Greater coordination across all sectors of the food chain is needed to fight antibiotic
resistance, and the implementation of molecular typing methods within routinary screening
programmes can become an important tool of the One Health preventive approach.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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amoxicillin+clavulanic acid; FOX, cefoxitin; MEM, meropenem; TE, tetracycline; C, chlorampheni-
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