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Abstract

Background: Identifying protein-coding regions in genomic sequences is an
essential step in genome analysis. It is well known that the proportion of false
positives among genes predicted by current methods is high, especially when the
exons are short. These false positives are problematic because they waste time and
resources of experimental studies.

Methods: We developed GeneWaltz, a new filtering method that reduces the risk of
false positives in gene finding. GeneWaltz utilizes a codon-to-codon substitution
matrix that was constructed by comparing protein-coding regions from orthologous
gene pairs between mouse and human genomes. Using this matrix, a scoring
scheme was developed; it assigned higher scores to coding regions and lower scores
to non-coding regions. The regions with high scores were considered candidate
coding regions. One-dimensional Karlin-Altschul statistics was used to test the
significance of the coding regions identified by GeneWaltz.

Results: The proportion of false positives among genes predicted by GENSCAN and
Twinscan were high, especially when the exons were short. GeneWaltz significantly
reduced the ratio of false positives to all positives predicted by GENSCAN and
Twinscan, especially when the exons were short.

Conclusions: GeneWaltz will be helpful in experimental genomic studies. GeneWaltz
binaries and the matrix are available online at http://en.sourceforge.jp/projects/
genewaltz/.

Introduction
The complete genome sequences of many organisms, including Homo sapiens [1,2]

and Mus musculus [3], have been published. These studies have revealed that the

majority of genes in the mammalian genome comprise non-coding regions and only

a small percentage of genes comprise protein-coding regions. Thus, identifying pro-

tein-coding regions from nucleotide sequences is an essential step in genome

analyses.

Thus far, a large number of computational methods have been developed for the

prediction of protein-coding regions to facilitate gene identification studies [4-6]. Most

gene prediction methods can be classified into 2 categories: ab initio methods and

homology-based methods. The ab initio methods predict genes solely on the basis of

signals of the target sequences and the model of gene structure [7,8]. Homology-based

methods employ sequence similarity to known genes or proteins in the databases
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[9-11]. Most homology-based methods, such as Twinscan [12], incorporate the

algorithms that are used in ab initio methods.

Wang et al. reported that the proportion of false positives among genes predicted by

these methods are high, especially when the exons were short [13]. False positives

among predicted GENSCAN result in waste of time and resources.

We developed GeneWaltz, a new filtering method for reducing the risk of false posi-

tives in gene finding. We focused on the fact that coding regions (CDSs) generally dif-

fer from non-coding regions by exhibiting a characteristic substitution pattern because

of functional constraints on the protein sequences. For example, synonymous substitu-

tions are more frequently observed in CDSs than nonsynonymous substitutions. Gene-

Waltz was named after the observation that the DNA sequence alignments of CDSs

tend to have a single nucleotide difference after every 3 sites because of the synon-

ymous substitutions that are frequently observed at the third positions of codons. By

applying the theory of extreme value [14], GeneWaltz identifies candidate CDSs and

tests whether these scores are significantly higher than those of the non-coding homo-

logous sequences. Although GeneWaltz is a homology-based method, it does not use

algorithms that are used in ab initio methods. GeneWaltz requires the comparison of

2 DNA sequences from different species but does not require any prior models of tran-

scription, splicing, or translation.

Algorithm
Scoring scheme

GeneWaltz uses a lod score, which was first introduced by Dayhoff et al. [15], for mea-

suring the similarity between 2 amino acids. To derive the lod score of an amino acid,

the logarithm of the ratio of the observed frequency of a pair of amino acidsis divided

by the random expected frequency of the same pair of amino acids. If the observed

and expected frequencies are equal, the lod score is zero. A positive score indicates

that a pair of amino acids is commonly observed, whereas a negative score indicates

that a pair of amino acids is rarely observed. The general formula for any pair of

amino acids is given as
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where Sij is the score of the 2 amino acids i and j, pi and pj are their individual prob-

abilities, and qji is the frequency of the pair of amino acids i and j.

Because each codon has 3 nucleotides, we used the same scoring scheme for codon

pairs
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where Sijk,lmn is the score of a codon pair ijk and lnm, and i, j, k, l, m, and n

are nucleotides. This scoring scheme is similar to that of Zhang et al.[16]. oijk,lmn and

eijk,lmn are the observed and expected frequencies of the codon pair ijk and lnm,

respectively. A positive score indicates that a pair of codons is commonly observed in

coding regions, while a negative score indicates that a pair of codons is rarely observed

in coding regions.
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In order to obtain the observed frequency in equation (2), we used the 7,645 ortholo-

gous gene pairs between the human and mouse genome as described by Clark et al.

[17]. The alignment of these genes consists of 1,982,115 codons. We obtained the

expected frequency of each codon pair from the alignment, and the expected frequency

of each codon pair was the average of its observed frequency among the human-mouse

orthologous codon pairs. Insertions, deletions, and undetermined sequences were

excluded.

Maximal Segment Pair

Let us define the region score as the sum of the individual codon pair scores in an

alignment. An example of DNA sequence alignment between the human and mouse

genome is shown in Figure 1. Three adjacent nucleotide pairs were treated as 1 codon

pair, and the sum of the scores was calculated for all possible aligned regions. A high

region score indicated many codon pairs with high scores in that region and suggested

that the region was a coding region. GeneWaltz calculates the region scores for all

frames in both strands.

Let us also define a Maximal segment pair (MSP) by the highest scoring pair of iden-

tical length segments chosen from 2 aligned sequences. The boundaries of an MSP are

chosen to maximize its score; therefore, a MSP may be of any length. GeneWaltz heur-

istically attempts to calculate the MSP score, which provides a measure of the prob-

ability that any pair of sequences is within a protein-coding region. Our interest is in

finding whole regions that are likely to be protein-coding regions. We, therefore, define

a segment pair to be locally maximal if its score cannot be improved either by extend-

ing or by shortening both segments.

Cutoff Value of the Score and Significance Level

It should be noted that although coding regions are expected to have high region

scores, non-coding regions might have high region scores by chance alone. An impor-

tant advantage of the MSP measure is that recent mathematical results allow the statis-

tical significance of MSP scores to be estimated under an appropriate random

sequence model [12,18].

For GeneWaltz, we developed a statistical test to examine whether the identified

region was in actuality a coding region t by estimating the probability that those

Figure 1 Region Scores and Candidate Coding Regions (CDSs). The region score is the sum of the
individual codon pair scores in an alignment. Human and mouse DNA alignment and codon scores are
also shown. Three adjacent nucleotide pairs were treated as 1 codon pair. A high region score indicates
that the region might be a CDS because that region contains many codon pairs with high scores. Note
that the region scores should be calculated for all frames in both strands.
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regions with a given region score appeared by chance. Karlin and Altschul [12] devel-

oped a theory of local alignment statistics for their BLAST search algorithm. Applying

their theory, the probability (P) that a non-coding region with its length N has a MSP

whose region score is greater than S by chance is approximately obtained by

P kN aS= −exp( ), (3)

where a and k are constants. GeneWaltz can search all locally maximal segment

pairs with scores above a specified cutoff. GeneWaltz tests the null hypothesis that the

observed DNA sequence is not a protein-coding region by using equation (3).

We determined the values of a and k using computer simulations. Non-coding

sequences were generated on the computer, and the GC content was set as 40%

because the GC content of human and mouse genomes are approximately 40% [1-3].

Since the nucleotide identity between the human and mouse genome is approximately

70% [19], 30% of the nucleotides of the generated sequences were randomly selected

and substituted by different nucleotides that were chosen to keep the average GC con-

tent the same. We generated 100 sequences of 100,000 bp. From these generated

sequences, the regions with high scores were obtained by the algorithm described

above, the number of high-scoring regions was counted, and the scores were recorded.

Figure 2 shows the scatter plot between the proportion of high-scoring regions and

their scores. By using the log-linear regression method, k and a can be estimated by

the least square method as k = 0.282 and a = 1.219. The regression line is shown in

Figure 2.

Performance Evaluation
Materials

To evaluate the performance of gene prediction methods, we used the dataset referred

to as Set 1 by Korf et al. [12]. The dataset was downloaded from the Twinscan website

http://genes.cs.wustl.edu/. This dataset consists of 68 mouse genomic sequences and

their top homologs from the human genome. The dataset was constructed by first

Figure 2 Log-linear plot between the maximal segment pair (MSP) scores and their proportion of
occurrences in the computer simulation. The straight line is the regression line.
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searching the GenBank release 121 for all mouse sequences longer than 30 Kb that had

annotated protein-coding regions. Pseudogenes were excluded from the data by search-

ing for stop codons and frame shifts. The 68 mouse sequences comprised a total of 7.6

Mb with a mean length of 112 Kb and a median length 98 Kb. The data used to con-

struct a codon substitution matrix shared some genes with this data set, but the pro-

portion of overlapping genes was small.

Methods

We utilized GENSCAN [7] and Twinscan 1.3 [12] to predict genes using the Huma-

nIso.hmat as the parameter matrices and the Twinscan website http://genes.cs.wustl.

edu/, respectively. For comparison, we divided the nucleotides into 2 categories: true

positives and false positives. True positives were nucleotides of exons with a prediction

that matched the annotation, whereas false positive regions were predicted as exons by

the gene-finding method, but did not match the annotation. We assessed the perfor-

mance of these methods by measuring the positive predictive value, the specificity, and

the false positive rate. These values are defined as follows:

The positive predictive valuse
true positives

true positive
=

ss false positives

The sensitivity
true positives

true posit

+

=
iives false negatives

The false positive rate
False positiv

+

= ees
true positives false negatives+

(4)

In this paper, the predicted exons did not have to exactly match the true ones, and

mismatch at the boundaries was accepted.

All predicted exons obtained by the gene-finding methods were tested by GeneWaltz

by setting the cutoff value as P = 0.01. We conducted the chi-square test to compare

the ratio of true positives to all positives to examine the effectiveness of GeneWaltz.

We evaluated gene-finding methods in terms of how successfully they identify true

CDSs with few false positives, and summarized the results by plotting the partial receiver

operating characteristic (partial ROC) curves by using various cutoff values. In order to

obtain as many data points as possible, positives and negatives were counted based on the

number of nucleotides instead of the number of exons when ROC curves were drawn.

Results
The gene prediction results are shown in Table 1. Of the 3,061 exons predicted by

GENSCAN, 1,818 exons were true positives and the rest were categorized as false posi-

tives. Of the 2,689 exons predicted by Twinscan, 2,209 exons were true positives and

the rest were categorized as false positives.

Table 1 Numbers of True and False Positives in Gene Finding

GENSCAN Twinscan

True Positives False Positives True Positives False Positives

Before GeneWaltz 1818 1243 2209 480

After GeneWaltz 1345 262* 1619 203*

*Significantly different.
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When the exons predicted by GENSCAN were tested by GeneWaltz, 1,345 true posi-

tives passed the test but only 262 false positives passed the test (Table 1). When the

exons predicted by Twinscan were tested by GeneWaltz, 1,619 true positives passed

the test but only 203 false positives passed the test. The chi-square test showed that

GeneWaltz significantly reduced the ratio of false positives to all positives predicted by

both GENSCAN and Twinscan. The MHC genes did not pass the GeneWaltz test

(data not shown).

Figure 3 shows the relationship between the ratio of true positives to all positives

obtained by gene-finding methods and the exon size. The exon size was measured by

the number of codons, not by the number of nucleotides. This figure indicates that

predicted genes contained a large number of false positives, especially when exon the

length was shorter than 100 codons.

Figure 3 also shows that the positive predictive value was drastically improved by fil-

tering these predicted genes by using GeneWaltz. The ratio of true positives to all

positives and the exon length improved after filtering using GeneWaltz, especially

when the exon lengths were short (Figure 3).

Figure 4 shows the partial ROC curves using Twinscan and GENSCAN across sev-

eral thresholds of the GeneWaltz P-value. A partial ROC curve plots the true positive

rate for recovering true CDSs on the y-axis and the false positive rate on the x-axis

over a range of small values of false positive rates.

Discussion
We developed GeneWaltz, a new filtering method for testing coding regions. The ratio

of true positives among all positives will be improved by the GeneWaltz filtering pro-

cess, especially when the length of exon is longer than 100 codons.

There must be an open reading frame (ORF) in a region for a gene-finding method

to predict a non-coding region as a gene. An ORF is a region between a start and a

stop codon in the same frame, and such nucleotide triplets that do not actually code

any amino acid sequences can occur by chance in genome sequences. However, ORFs

Figure 3 Scatter plot of the ratios of true positives to all positives predicted by GENSCAN and
Twinscan before and after filtering GeneWaltz versus exon length. The unit of exon length is 3
nucleotides.
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that do not code amino acids are usually not very long, which is why a large portion of

short predicted genes are false positives.

False positives in gene prediction indicate that our knowledge of coding regions is

still limited. Studies to further elucidate gene structure information such as splicing

sites, promoter regions, starting points for transcription and translation, will improve

the accuracy of finding CDSs. However, DNA sequences do not always contain infor-

mation about gene structures. For example, short sequences determined by next-gen-

eration sequencers [20] may not contain gene structure information. In such cases,

GeneWaltz will be helpful for finding genes. The ROC curve showed that a high sensi-

tivity was not achieved by GENESCAN and Twinscan by increasing the sensitivity of

these methods by changing the program parameters. However, filtering using Gene-

Waltz yielded a high sensitivity.

For this evaluation, we constructed an empirical codon substitution matrix from

orthologous gene pairs between mouse and human since we analyzed human genes.

We are presently developing a general model of codon substitution [21] so that users

can calculate a new scoring matrix using such codon substitution models in the future.

GeneWaltz did not detect MHC genes, presumably because the matrix used in this

study was an average of many genes whereas MHC genes have evolved under a posi-

tive selection pressure and show distinct nucleotide substitution patterns compared to

other genes [22]. A specialized matrix might be necessary to detect such extraordinary

proteins.

The current version of GeneWaltz are based on the sequence comparison of two

species. If we can utilize the comparison of three or more genomes, better results will

be obtained. Further studies of comparison of more genomes are required.

GeneWaltz binaries, the matrix, and the user manual are available at http://en.

sourceforge.jp/projects/genewaltz/.

Figure 4 The partial receiver operating characteristic (partial ROC) curves using Twinscan and
GENSCAN across several GeneWaltz p-value thresholds. A partial ROC curve plots the true positive rate
for recovering true causal single-nucleotide polymorphisms (SNPs, y-axis) and the false positive rate (x-axis)
over a range of small values of false positive rates.
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Availability and requirements
• Project name: GeneWaltz

• Project home page: http://en.sourceforge.jp/projects/genewaltz/

• Operating systems: Platform independent

• Programming language: Java and C

• Other requirements: None

• License: MIT license

• Any restrictions to use by non-academics: License needed
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