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Abstract

White matter lesions (WML) commonly occur in older brains and are quantifiable on

MRI, often used as a biomarker in Aging research. Although algorithms are regularly

proposed that identify these lesions from T2-fluid-attenuated inversion recovery

(FLAIR) sequences, none so far can estimate lesions directly from T1-weighted

images with acceptable accuracy. Since 3D T1 is a polyvalent and higher-resolution

sequence, it could be beneficial to obtain the distribution of WML directly from

it. However a serious difficulty, both for algorithms and human, can be found in the

ambiguities of brain signal intensity in T1 images. This manuscript shows that a

cross-domain ConvNet (Convolutional Neural Network) approach can help solve this

problem. Still, this is non-trivial, as it would appear to require a large and varied

dataset (for robustness) labelled at the same high resolution (for spatial accuracy).

Instead, our model was taught from two-dimensional FLAIR images with a loss func-

tion designed to handle the super-resolution need. And crucially, we leveraged a very

large training set for this task, the recently assembled, multi-sites Japan Prospective

Studies Collaboration for Aging and Dementia (JPSC-AD) cohort. We describe the

two-step procedure that we followed to handle such a large number of imperfectly

labeled samples. A large-scale accuracy evaluation conducted against FreeSurfer

7, and a further visual expert rating revealed that WML segmentation from our Con-

vNet was consistently better. Finally, we made a directly usable software program

based on that trained ConvNet model, available at https://github.com/bthyreau/

deep-T1-WMH.
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1 | INTRODUCTION

White matter lesions (WML) frequently occur in the brain later in life

(Prins & Scheltens, 2015) and can be characterized in terms of aspect

and spatial distribution. On T2-fluid-attenuated inversion recovery

(FLAIR) MRI scans, they appear as punctuated or even patchy white

matter hyperintensities (WMH) that are spatially distributed around

the ventricles or extend deep into the white matter in some cases.

Such lesions are also visible, albeit less prominently, as hypointense

patches on T1 images.

Historically, MRI has been used to quantitatively evaluate WML

for clinical and research purposes using visual rating scales, with the

Fazekas scale (Fazekas et al., 1987) being one of the most employed.

However, in practice, WMH rating scales are of limited use beyond a

purely descriptive purpose. More recently, quantitative information

has become available thanks to computerized image processing (Frey

et al., 2019). These two metrics can partially concur (Cedres

et al., 2020; Koikkalainen et al., 2019).

The etiology of WML can vary (Wardlaw et al., 2019) and is still

not well understood (Alber et al., 2019; Debette & Markus, 2010).

Large occurrences of WML in the brain have reportedly been associ-

ated with negative brain traits, such as cognitive decline, dementia,

stroke, or intracranial hypertension (Atwi et al., 2018; Fazekas

et al., 1993; Habes et al., 2018; Lampe et al., 2019; Ngai et al., 2007;

Ni et al., 2021; Pantoni, 2010; Pozorski et al., 2019; Sarica

et al., 2019; Tubi et al., 2020). However, despite these broad correla-

tion trend reports, no definitive conclusion has been made or

accepted (Rhodius-Meester et al., 2017; Vangberg et al., 2019). A

large meta-analysis of the predictive power of several factors for

dementia found either mixed or no evidence for an effect of WMH

(Ansart et al., 2021).

In order to disentangle the multiple putative causative factors

associated with WML, more research should be undertaken involv-

ing larger, wider cohorts and automated image analysis which is

capable of efficiently and reproducibly extracting the number of

characteristics of WML from images. Consequently, WMH segmen-

tation remains a popular technical problem among the image

analysis research community. A frequent approach relies on atlases

and histogram clustering methods (Schirmer et al., 2019). Tools

such as LST (Schmidt et al., 2012), BIANCA (Griffanti et al., 2016;

Sundaresan et al., 2019), and UBO (Jiang et al., 2018) were ranked

favorably in a recent comparison (Heinen et al., 2019). Moreover,

deep learning methods have attracted increasing attention over the

past few years. Unfortunately, (Balakrishnan et al., 2021) noted

that only eight of 37 authors made their method available at all,

which may explain their lack of adoption by the wider clinical

community.

In this manuscript, we address the problem of WMH identifica-

tion from a multi-modality (T1-weighted imaging) and large-scale

learning perspective. We rely on Convolutional Neural Networks

(ConvNets) for image learning. Our source material comprises a very

large, aggregated dataset of 7694 brain images acquired in the con-

text of the JPSC-AD project (Ninomiya et al., 2020), a multisite,

population-based prospective cohort initiated in 2016 and has thus

far recruited over 10,000 participants. To facilitate the collaboration

of hospitals, the MR-imaging component of the project was designed

with flexibility in mind, with only T1-weighted images being the com-

mon requirement.

1.1 | Challenges

The following challenges should be considered when performing

WMH identification in the most effective way.

1.1.1 | Population heterogeneity

As much as possible, association studies should be founded on large

samples, with enough heterogeneity to cover a wide array of brain

health statuses. We believe that a large prospective research cohort is

more suitable than a small, specific subset of patients. On the other

hand, a larger dataset also requires a greater human annotation effort,

or at least, a larger evaluation effort.
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1.1.2 | Lesions load and localization

Apparent lesions can have different etiologies depending on their

shape and location, and therefore different predictive clinical impor-

tance (Lampe et al., 2019). Periventricular (PVWM) lesions and deep-

white matter lesions (DWM), which have varying effects on cognition

and arterial pressure, may be entirely different entities (Griffanti

et al., 2018). Small, irregular patches may be a sign of ischemia,

whereas larger, smoother periventricular lesions may simply be a

benign symptom of aging. Small punctate lesions may eventually

develop into pathologies, but their role still needs to be clarified

(Prins & Scheltens, 2015). Local features of the vasculature may also

have an impact (Debette et al., 2019). Overall, to date, the etiology of

WMH is still largely unknown, and existing classification scales partly

reflect this (van Straaten et al., 2006).

In the computational domain, consequently, an identification

algorithm should not rely solely on blindly aggregated metrics such as

total voxel overlap as its unique objective, or it will risk missing this

distinction and would become biased toward large patches, ignoring

the low voxel contributions of punctate lesions and leading to sub-

optimal clinical predictive power.

1.1.3 | Sequence and resolution

FLAIR is one of the optimal sequences for observing WMH, but 3D

FLAIR sequences with high SNR are not yet widespread in hospital

settings. Two-dimensional FLAIR sequences are easier to obtain but

suffer from poor resolution along the slice axis, which not only

reduces accuracy in that dimension but also introduces a source of

mismatch for longitudinal comparisons.

Alternatively, lesion-induced WMHs are visible on T1 weighted

images in most cases, where they appear as hypointense regions (and

the acronym WMH will refer to both contrast signals from now on). It

is common to use the T1-weighted contrast for structural, high-

resolution images of the brain, for example, to allow accurate esti-

mates of ventricle enlargement or hippocampal volume or atrophy

(Nogovitsyn et al., 2019; Thyreau et al., 2018). Therefore, it is useful

to obtain WMH delineation directly from regular 3D T1 images.

However, in a major difference from FLAIR, lesions-induced

WMH on T1 images appear with the same signal intensity as gray-

matter structures and would require considerably more attention from

an investigator to confidently identify them by visual inspection, par-

ticularly for infra-cortical lesions. This, however, can be accomplished

using moderns algorithms.

1.1.4 | Robustness and consistency

The model should be able to robustly identify lesions in all patients,

with a low failure or rejection rate. In technical terms of machine

learning, the model should be exposed to a dataset covering large pat-

terns of the population. When using small samples, it is tempting to

emphasize pixel-perfect metric scores that could easily be over-

sensitive to the particular sample or to a particular chosen threshold.

Some other types of loss exist, such as perimeter loss (el Jurdi

et al., 2021), but those still assume that the target, or its perimeter, is

well-defined. Therefore, while such metrics may be a perfect way to

evaluate a model's ability to learn accurately, they may not necessarily

be able to adequately gauge the success of the task itself.

1.2 | Objectives

The goals of this manuscripts are as follows:

• We explore the use of transfer-learning from 2D-FLAIR to 3D-T1,

introducing the use of a spatially sparse loss to handle super-

resolution needs;

• We leverage a new, very-large cohort, the JPSC-AD cohort. We

design a two-step learning scheme to better manage the mass of

data with limited human guidance;

• For validation, we run a large-sample automated quantitative com-

parison against FreeSurfer (Fischl, 2012), and a relatively large

(200 images) qualitative visual evaluation by experts.

• We embedded the model trained on the full dataset into an open-

source tool available for download

2 | MATERIALS AND METHODS

2.1 | Dataset

The MRI brain images were obtained from the Japan Prospective

Studies Collaboration for Aging and Dementia (JPSC-AD), a project

which collected data from over 10,000 participants across eight sites.

The strategy followed to elucidate risk factors and the etiology of

dementia is described in (Ninomiya et al., 2020). The mean age of the

dataset was 74.4, starting from 65, 42% was male, and 8.5% of the

dataset were diagnosed with dementia. The participants all underwent

an MRI exam with at least one T1-weighted acquisition. Other

sequences were collected and made available at the discretion of the

participating hospital. This level of flexibility was designed to encour-

age hospital participation. The scanners used in these hospitals were

diverse, including 1.5 T MRI (four Philips, one Hitachi, and one

General-Electric) and 3 T MRI (one GE and one Siemens) machines.

This study collected all the FLAIR acquisitions available giving a

total of 7699 images from six sites. The 2D FLAIR images comprised

18–24 slices depending on the scanning site, with slice thickness

ranging from 5.9 to 7.8 mm. The axial resolution ranged from 0.47 to

0.57 mm. One site performed a systematic Fazekas rating of all its

FLAIR images, but this information was not directly used for the pur-

pose of the main ConvNet development. Regarding structural imaging,

10,017 sagittal T1-weighted images were acquired (3D MPRAGE or

SPGR sequences). The voxel dimension was 1.2 mm along the sagittal

axis and varied from 0.93 to 1.02 mm in the other dimensions.
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2.2 | Preprocessing

The T1 images were processed on FreeSurfer 7.1. From these, 9985 could

complete a full image processing pipeline, while the remaining images

were excluded due to data handling mistakes or software failures, includ-

ing non-convergence within 24 h. However, we did not attempt to visu-

ally confirm all individual results. T1 images which had no corresponding

FLAIR image were of no further use to the work described here. The T1

images were registered and resampled into an MNI space clipped immedi-

ately below the temporal lobes, measuring 184 � 202 � 72 voxels of size

1 � 1 � 1.5 mm, which defines our working space for all T1-related Con-

vNet inputs and outputs in the following sections.

A rigid registration matrix, from FLAIR to T1, was estimated using

NiftyReg Aladin (Modat et al., 2010). All of the 7699 registrations

were visually quality-checked based on a single middle slice, after

which only five further subjects were excluded.

2.3 | ConvNet model training

The overall idea was to use the lesion information obtained from

cleanly segmented 2D-FLAIR images as targets to train a 3D-T1

ConvNet. We achieved this by developing a two-step process. The

first step was to generate accurate labels in the 2D-FLAIR space, and

the second was to train the 3DT1 model from these sparse 2D-FLAIR

labels (Figure 1).

2.4 | FLAIR lesion ConvNet

As a first step, the LST (Schmidt et al., 2012) FLAIR segmentation

software was applied to all 2D FLAIR images. Despite LST being

considered accurate and a strong performer in comparative studies

(Heinen et al., 2019; Ribaldi et al., 2021; Vanderbecq et al., 2020), a

small but significant fraction of the results inevitably contained

some inaccurate or unsatisfactory segmentation (Figure S2). While

we could simply review all images and discard these failed cases,

this would risk losing some interesting corner-cases, which would

run contrary to our goal of robustness. Instead, we aimed to identify

such cases and manually fix a subset of them. To achieve this, we

rely on one ability of ConvNet, that is, they integrate knowledge

across multiple samples and learn the main trends of the data

before the particular deviations (Arpit et al., 2017). Therefore, we

first trained a “FLAIR” ConvNet model to mimic the LST segmenter

F IGURE 1 The two-step learning
process. The 2D FLAIR model (top) is
trained to output a consistent FLAIR
mask, initially based on the LST algorithm
but with some further manual corrections.
The T1 model (bottom) aims to learn a T1
WMH segmentation from those 2D-
FLAIR masks, learning across modality and
resolution. It also learns a cortical ribbon

as a secondary joint task. Both steps,
including relevant preprocessing, use the
same, single, training dataset.
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on a large training set and stopped the training when the loss func-

tion appeared to reach a slower convergence regime. Since the

dataset is large, and the ConvNets do not easily overfit, we rea-

soned that we would find many unusual or mis-segmented samples

among those that exhibited a large loss error.

Half of the dataset was used to train this FLAIR ConvNet, and

no test set was involved. The network had a simple U-Net architec-

ture, and the parameters are described in Table 1. The input format

was always the native FLAIR image space, even though the number

of slices varied between sites. Given its “convolutional” nature, the

network naturally handles input size variations, without the need to

introduce inflexible padding, or worse, resizing and resampling arti-

facts. Consequently, for practical simplicity, the mini-batch size was

set to 1 during the optimization, and batch-normalizations were

avoided in favor of instance-normalizations in the network. Geomet-

rical augmentation was performed with random rotations—only

around the axial axis, to avoid inter-slice resampling—and random

translations.

A set of images where the current segmentation had room

for improvement (mainly the false-negatives with many small

lesions missed, or missed lesions close to the cortex, or false-

positive due to bright artifacts), were hand-selected for further

consideration. To assist at this task, and because of the significant

number of images remaining (and the lack of a meaningful cut-off

threshold), the samples were displayed on a dedicated data navi-

gator, according to their estimated WMH-volume in different

regions (periventricular, deep white, and infra-cortical [defined

later]), and with an instant feedback feature showing each result

as a mosaic of slices, to better appreciate the model success

range.

In this process, many images (100 ~ 150), the most outlier ones,

were quickly explored. Although a dozen images were dropped due to

their segmentation being deemed unrecoverable (e.g., strong motion),

55 images, a number that mostly reflected the amount of effort

required, were eventually selected and manually corrected using ITK-

Snap (Yushkevich et al., 2006). The correction used the model output

as a starting point. Despite this, we spent, on average 15–20 min on a

single image.

The FLAIR ConvNet model was then re-trained on the curated

dataset. The weight attributed to the manually corrected samples was

increased by running 10 times more augmentation than the rest of

the samples. This second FLAIR ConvNet model was then used to

generate the reference FLAIR segmentations, which formed the target

of the next step, the T1 ConvNet.

TABLE 1 Topology of the ConvNets used through this study.

T1-WMH net T1-ROI net FLAIR net (WMH or ROI)

Input: a T1 image in the MNI workspace

Conv3(1, 24), InstNorm, ReLU, Conv3(24,

64), ReLU (block0)

MaxPool Conv3(64, 64), InstNorm, ReLU,

Conv3(64, 64), ReLU (block1)

MaxPool Conv3(64, 64), InstNorm, ReLU,

Conv3(64, 64), ReLU (block2)

MaxPool Conv3(64, 64), InstNorm, ReLU,

Conv3(64, 64), ReLU (block3)

MaxPool Conv3(64, 64), InstNorm, ReLU,

Conv3(64, 64), ReLU (block4)

MaxPool Conv3(64, 128), InstNorm,

ReLU,

Conv3(128, 64), ReLU

Unpool Conv3(64, 64), InstNorm, ReLU,

Conv3(64, 64), ReLU

Unpool Conv3(64, 64), InstNorm, ReLU,

Sum block3, Conv3(64, 64), ReLU

Unpool Conv3(64, 64), InstNorm, ReLU,

Sum block2, Conv3(64, 64), ReLU

Unpool Conv3(64, 64), InstNorm, ReLU,

Sum block1, Conv3(64, 64), ReLU

Conv3(64, 64), InstNorm, ReLU,

Sum block0, Conv3(64, 64), ReLU

Conv3(64, 24), ReLU), Conv1(24, 2),

Sigmoid

output: WMH and Cortex masks

Input: a T1 image in the MNI workspace

Conv3(1, 12, 3) ReLU, (block0)

MaxPool, Conv3(12, 16), ReLU,

Conv1(16, 16), ReLU (block1)

MaxPool, Conv3(16, 16), ReLU,

Conv1(16, 16), ReLU (block2)

MaxPool, Conv3(16, 16), ReLU,

Conv1(16, 16), ReLU (block3)

MaxPool, Conv3(16, 16), ReLU,

Conv1(16, 16), ReLU (block4)

MaxPool, Conv3(16, 16), ReLU,

Conv1(16, 16), InstNorm, ReLU,

Unpool, Conv3(16, 16), InstNorm, ReLU,

Sum block4, Conv3(16, 16), ReLU

Unpool, Conv3(16, 16), InstNorm, ReLU,

Sum block3, Conv3(16, 16), ReLU

Unpool, Conv3(16, 16), InstNorm, ReLU,

Sum block2, Conv3(16, 16), ReLU

Unpool, Conv3(16, 16), InstNorm, ReLU,

Sum block1 Conv3(16, 12), ReLU

Unpool, Conv3(12, 12), ReLU,

Sum block0, Conv1(12, 12), ReLU,

Conv3(12, 8), ReLU, Conv1(8, 4),

Softmask

output: Four label maps

Input: a FLAIR image in its native space

Conv3(1, 12), InstNorm, ReLU,

Conv1(12, 12), ReLU (block0)

MaxPool, Conv3(12, 16), ReLU,

Conv3(16, 16), ReLU (block1)

MaxPool, Conv3(16, 16), ReLU,

Conv3(16, 16), ReLU (block2)

MaxPool, Conv3(16, 16), ReLU,

Conv3(16, 16), ReLU (block3)

MaxPool, Conv3(16, 16), ReLU,

Conv3(16, 16), ReLU (block4)

MaxPool, Conv3(16, 16), ReLU,

Conv1(16, 16), InstNorm, ReLU

Unpool, Conv3d(16, 16, 3), InstNorm, ReLU,

Sum block4 Conv3d(16, 16, 3), ReLU

Unpool, Conv3d(16, 16, 3), InstNorm, ReLU,

Sum block3, Conv3d(16, 16, 3), ReLU

Unpool, Conv3d(16, 16, 3), InstNorm, ReLU,

Sum block2, Conv3d(16, 16, 3), ReLU

Unpool, Conv3d(16, 16, 3), InstNorm, ReLU,

Sum block1, Conv3d(16, 12, 3), ReLU

Unpool, Conv3d(12, 12, 3), InstNorm, ReLU,

Sum block0, Conv1(12, 12), ReLU,

Conv3(12, 8), ReLU, Conv1(8, 3), Sigmoid

output: WMH or ROIs, depending on the

loaded parameters

Note: Starting from block 2, Unpool halve

dimension in axial planes only

Note: All networks are U-shaped with skip-connections. Their main difference is the number of convolution kernels, which were hand-designed following a

trade-off between training speed, model capacity, and resolution. Conv3 and Conv1 refers to the convolution kernel voxel size (3 � 3 � 3 or 1 � 1 � 1).

MaxPool operators halve the dimensions and returns indices which are used by Unpool operators.
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2.5 | T1 lesions ConvNet model

The T1 ConvNet model, whose role is to segment the WMH lesions in

the T1 working space, is the main component of this work. The archi-

tecture is a variant of U-Net, and the parameters are listed in Table 1.

One important concern was the resolution gap between the two

modalities. While modern T1WI scans are mostly isotropic (~1 mm)

3D images, typical hospital FLAIR sequences produce a relatively small

set of thick (~6 mm) but high-resolution (~0.5 mm) 2D slices. Conse-

quently, beyond the obvious contrast difference between the two

modalities, the lesion-related information also differs in terms of its

spatial distribution. In particular, the T1WI image would contain more

detailed information in the axial direction than the 2D FLAIR could

provide. For cross-modality learning, while we could simply align the

two modalities with an interpolation algorithm, we observed that the

final results produced by this method were unsatisfactory. Instead, we

used the ConvNet ability to accumulate knowledge across multiple

samples in order to supply the missing details of each individual image.

2.6 | Loss function

To achieve this, we used a spatially sparser loss (Figure 2). The primary

output of our network—the WMH mask in T1 space—is dynamically

sampled at points where the FLAIR provides the actual training signal,

that is, the loss calculation simply ignores all voxels of T1 space that

do not map closest to a FLAIR voxel center. This loss is sparse in the

sense that each sample contributes only a few slices' worth of training

information, less than the higher T1 processing resolution model

would optimally need. However, by virtue of being exposed to a large

number of subjects, themselves augmented with random affine trans-

forms, the model generalizes naturally from the sparse training infor-

mation to the full processing resolution.

Second, a T1 lesion model must learn to precisely distinguish subcorti-

cal lesions from the cortex itself. Therefore, as an auxiliary helper task, we

explicitly trained the model to produce a cortical ribbon mask as a second-

ary output. This was performed entirely in the T1 input space. From previ-

ous experience, this is a relatively easy task in terms of required ConvNet

model capacity and should not, therefore, hinder the primary outcome.

Besides providing a supplemental, explicit training signal, this helped us to

understand the behavior of the model during its optimization.

We used a Euclidean distance in both parts. We favor this simple

metric as it can easily be interpreted in terms of an independent voxel

probability. The final loss function is thus the weighted sum of the

sparse FLAIR lesion signal and the cortical segmentation loss:

L¼Σ FLAIRð Þ S out1ð Þ�FLAIR_wmhð Þ2þ0:001

�Σ T1ð Þ out2�T1_ribbonð Þ2,

where the outi are the model outputs in T1 space; S: T1 ! FLAIR is

the voxel sampling function; FLAIR_wmh and T1_ribbon are, respec-

tively, the target lesion and ribbon masks, in their own FLAIR and T1

spaces. The FLAIR_wmh masks are the one obtained from the previ-

ous step (the FLAIR-ConvNet step), while the T1_ribbon masks are

simply FreeSurfer cortical segmentations.

The training set was made from 4096 subjects (and included the

subjects used to train the FLAIR ConvNet). In order to augment the

T1 dataset, and in addition to the random affine transformations, we

randomly altered the image histogram to simulate the variation of

contrast of different scanners and sequences.

2.7 | Regions of interest

A separate ConvNet model was created to quickly identify the main

regions of interest for WMH, based on prior knowledge. This region

F IGURE 2 Illustration of the sampling
performed during the loss computation.
The training signal for each voxel of the
target image, in FLAIR space, is back-
projected into a corresponding voxel of
the T1 output space, perhaps through an
augmentation transform, then back-
propagated further up through the
model's convolutional layers. The T1

voxels that are not directly linkable to a
FLAIR signal are not affected
(in particular, they do not receive an
interpolated signal).

THYREAU ET AL. 4003



set served two purposes. First, to organize the dataset in terms of

lesion load, to ease data exploration, and to spot outliers or other

unusual cases of interest. Second, to create the final, clinically relevant

summary of lesion distribution. Since these two purposes applied,

respectively, to the FLAIR and the T1 modality, which have different

constraints, two separate models were actually trained (Figure 3),

because we would not benefit from having a single multi-modal model

(Zopes et al., 2021) here.

We aimed to follow the common practice and guidelines

(Thompson et al., 2018), which separate the WMH in periventricular,

deep white, or juxtacortical (infra-cortical) lesions. For the per-

iventricular ROIs, we used a 9 mm-expanded mask of the ventricles in

MNI space, a somewhat arbitrary visually defined limit. We noted that

(Coupé et al., 2018) used 3 mm in MNI space but also observed that

this failed to adequately cover the periventricular lesions for a large

number of our elderly subjects. Nevertheless, on a Fazekas scoring

experiment, the PWML (periventricular) class was the most inconsis-

tently rated, which suggests that a simple ROI approach may never be

fully satisfactory.

The ROIs were generated using an initial combination of

FreeSurfer label masking, modality co-registrations, and morphometric

algorithms—all of which were relatively slow. This initial outcome was

then itself learned by two dedicated ConvNet, one per modality, using

4096 subjects. This not only benefited the eventual runtime speed

but also allowed to recover from algorithmic failures that may occur

during the ROI creation process.

One problem worth mentioning is that FreeSurfer, or other similar

tools, may sometimes get confused about pathologies in the white

matter, and may not explicitly label them as white matter because of

their unusual intensities, even when relying on spatial priors. How-

ever, for our purpose, the ROIs should cover the whole white matter,

without any holes. Furthermore, it is also known that some WML can

evolve into lacunar infarcts (de Jong et al., 2002; Gouw et al., 2008).

Therefore, to overcome this systematic source of error, our T1-ROI

model was trained on images with simulated lacunes that were gener-

ated by randomly scattering the white matter of the input images with

small dark-intensity patches.

2.8 | Evaluation

To evaluate the trained model, we first ran a large scale analysis

on the training set. We compare the mask of lesions estimated

from T1W images against the LST-estimated lesions from the

FLAIR images, computing the DICE coefficient as a measure of

overlap. Second, to give a clinical perspective, a manual expert

F IGURE 3 Two separate ConvNets were tasked with generating relevant regions of interest (ROIs) represented as color shades for 2D FLAIR
(top, greens) and for T1 images (bottom, blues). The FLAIR model, used for temporary usage, was only approximate because of the poor
resolution and lack of clearly visible structures. The final model, on T1, was intended to classify lesions (identified and depicted as yellow patches).
Still, the hard borders of the ROIs make the current aggregation method perfectible.
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rating is conducted on a subset of 200 test image, using two

expert raters.

2.9 | Computational tools

Most of the spatial transformations and image processing were com-

puted using ANTs (Avants et al., 2009), although the modality co-

registration was conducted with NiftyReg. We also used the c3d tool

from ITK-Snap. The MRIs were processed on FreeSurfer 7.1 on four

multi-core machines, while the FLAIR images were processed using

LST on MATLAB. The various analyses and image processing scripts

relied on Python 3, NiBabel, and the SciPy stack. The data navigators

and rating interface relied on Matplotlib and other web technologies.

PyTorch (1.6 then 1.8) was used for the implementation of ConvNet,

conducted on an NVidia RTX 2048 GPU using the ADAM optimizer.

3 | RESULTS

3.1 | Qualitative example

Figure 4 depicts a single slice of MRI images of a random participant

under various conditions. The resolution gap between the FLAIR and

T1 sequences is clearly visible on this coronal view. The contrast

between the lesion and the gray matter is much lower on the T1,

which explains why it can be difficult for both people and classic

image processing algorithms to identify it accurately.

3.2 | Effect of the loss function

Figure 5 illustrates the effect of the sparse feedback on the resolution,

using a simple contrast-transfer task. In this experiment, a ConvNet

must produce a fake image of FLAIR contrast corresponding to an

input T1 image. The training is conducted using pairs of high-

resolution 3D T1 images and 2D FLAIR images, using either a stan-

dard voxelwise interpolating loss or a spatially sparse loss. Once

trained, visual inspection reveals that while the former appears to

learn spurious aliasing artifacts, the latter can preserve more spatial

features of the input T1 along the axial axis.

3.3 | Systematic automated comparison

We ran a large-scale automated comparison against FreeSurfer, using

the FLAIR image as a reference. The lesion ConvNet was trained on

4096 subjects, and the 3598 remaining images comprised the test set.

Each T1 image in the test set was analyzed for WMH by both

FreeSurfer 7.1 and our ConvNet. Next, the segmentation masks of

F IGURE 4 Methods overview. On this coronal slice, a periventricular lesion expands toward the insular cortex. The lesion is visible on the
original 2D-FLAIR image (a), and on the higher-resolution T1 image (b) although with less contrast. The LST algorithm outcome (c) correctly
identified the lesion on the FLAIR image. Our trained ConvNet successfully identified a similar area (d), although at the higher T1 resolution,
despite the contrast ambiguity. However, FreeSurfer (e) misclassified part of the lesion as the putamen, while SPM (f) wrongly included it in its
gray-matter mask.
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both methods were resampled into the original FLAIR resolution and a

DICE metric computed against the LST-segmented FLAIR. We

thresholded the probabilistic maps at 50%, although the actual thresh-

old value did not significantly alter the overall result.

Figure 6 shows the DICE distribution for each method with the

samples ordered by lesion volume. We note that the overall DICE

metrics are low, particularly for small lesion loads, but this does not

preclude us from using the metric for large-scale observation pur-

poses. This is due to the transfer-learning across modalities, which

reveals the difficulty of precisely locating the lesions and agreeing on

their boundaries in true anatomical space. Our ConvNet segmentation

was consistently better than FreeSurfer 7 (paired-t_[3598] = 116.0,

p = 0), although 1.63% of the test set showed a better DICE against

LST for FreeSurfer. Naturally, part of ConvNet's success can be attrib-

uted to its more explicitly chosen goal of segmenting a T1 in a way

that resembles a FLAIR LST delineation.

A selection of extreme points are highlighted to illustrate the vari-

ety of patterns that can occur. Low DICE values may be attributed to

the failure to segment FLAIR itself due to motion or intensity thresh-

old (e.g., top row). Other causes of low DICE were due to the plain

lack of lesions, where pixel-perfect segmentation is rarely achieved.

The best DICE scores were obtained when the lesion load was heavy,

although those cases are not necessarily the most relevant from a clin-

ical perspective, since it is often already too late for the subject to

positively alter the course of WMH evolution.

3.4 | Human visual rating

While certainly useful, the lesion mask obtained from using LST on

FLAIR also has limitations, even when disregarding putative cases of

algorithmic errors. To pursue the evaluation further, a random subset

of the dataset was selected for a visual investigation.

In order to submit a relatively large sample to visual judgment, we

designed a web rating user interface that enabled a three-way com-

parison between pictures of the three methods and allowed the

expert to pick the best and worst proposal, in a double-blinded setup.

We found that such a system of comparison was more suitable

than an absolute-scale rating requirement, which proved hard to keep

consistent across a large number of subjects, let alone across raters.

This also proved more reasonable in terms of the effort required by

the human experts, than an alternative like producing manual

segmentations.

A set of 200 subjects were randomly selected from the test set,

and pictures of each segmentation (ConvNet, FS7, and original LST)

were generated, thresholding the masks when appropriate (LST and

ConvNet). The model outcome was reviewed by two certificated radi-

ologists (Y. Tat and L. C) over their original FLAIR slices. This had the

following advantages: the expert raters were already used to

inspecting FLAIR image rather than 3D T1; images; the FLAIR images

had fewer axial slices and therefore needed less visual effort to review

a subject; and some interpolation artifacts could have otherwise

F IGURE 5 Illustration of the effect of
two loss functions, used here for a cross-
contrast transformation experiment. In
this example, a ConvNet was trained to
change an input T1-weighted image (top)
into its corresponding FLAIR contrast,
based on 2048 training pairs. The MRI
sequences used for the target FLAIR
contrast have a lower native vertical

resolution. Using a standard voxelwise
loss function (middle), the model over-
learned the interpolation artifacts.
However, using the spatially sparse
feedback-signal loss (bottom), the model
successfully learned the contrast
transform while maintaining the
resolution.
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revealed which image comes from the FLAIR space (i.e., LST method),

thereby partially nullifying the double-blind setup.

The two human raters independently rated the same 200 subjects.

Figure 7 depicts the number of times each method was ranked the

best. Some differences were observed among the two raters

(χ2 = 7.53, p = 0.023). When raters agreed on a positive rating

(152 out of 200 subjects), 91% were in favor of our ConvNet. Further-

more, when selecting LST as the best segmentation, their ratings were

unanimous for only 18% of the images, revealing the role of subjectiv-

ity in that choice. Finally, the raters largely agreed that the FreeSurfer

segmentations were generally less accurate, at least in our setup.

These method choices appeared to be irrespective of the lesion vol-

ume (i.e., the rater choices were insignificant as predictors of the vol-

ume, F_[3196] = 0.85, p = 0.46), even though one rater reported that

the rating task was easier and faster for images with larger lesion

loads.

4 | DISCUSSION

We endeavored to train a ConvNet to extract WMH from the T1

images. Obtaining a ground truth was not envisionable beyond a

small sample due to the large annotation effort required (and the

lack of such public datasets, with a compatible license). Instead, as a

starting point, we used cross-modality learning to benefit from the

algorithms that already existed for FLAIR images. A ConvNet was

trained to learn the dataset, and some of the most difficult cases,

selected by an informed-guess strategy, were hand-fixed and ret-

urned back to the training loop. Next, those cleaned masks of FLAIR

space were used as targets for the training of our main T1W Con-

vNet across contrasts, using a loss function intended to overcome

the resolution difference. We evaluated the results with an auto-

mated region-overlap comparison against other methods, then with

expert rating.

F IGURE 6 Agreement between the
T1-based segmentation methods and the
FLAIR segmentation method (top). The
graph shows the distributions of the
overlap as a DICE metric calculated in the
resampled FLAIR space and ordered by
lesion volume. Colors encode the two
methods, and the filled areas contain 90%
of the subjects at each volume bin. The

mean/SD DICE is 0.33/0.18 (FS7) and
0.55/0.19 (our). Selected MRI cases
(bottom), corresponding to numbers on
the plot, are selected to illustrate different
occurring patterns of overlap.
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The lack of ground truth was not only a technical matter, how-

ever, as we observed disagreement among the experts related to qual-

itative description of the lesions. In fact, on a Fazekas rating effort of

200 subjects from a single site, two experts from different hospitals

obtained an agreement (same rank on the 4-level qualitative scale) of

only 62.6% for deep-white lesions, and as low as 38% for the per-

iventricular lesions. Although reportedly not always necessary (Boutet

et al., 2016), our results suggest the need for some preliminary coordi-

nation before using the scale. In the design of our visual evaluations,

the two raters largely agreed across an equally sized set of

200 subjects.

4.1 | The use of T1 images

In this study, we targeted T1-weighted images. WMH lesions had

been associated, with various levels of confidence, with multiple brain

pathologies. Therefore, it is useful to access this information using

more than the FLAIR modality alone, particularly in the context of

cohort research, which often acquires a T1 image for structure locali-

zation and measurement purpose. In fact, the JPSC-AD large-cohort

project is such a case of a project that did not enforce a FLAIR acquisi-

tion at all the participating sites. As another example, (Tanaka

et al., 2021) studied a large cohort of various ages, but only acquired

T1 images rather than FLAIR.

Additionally, (Wei, Poirion, et al., 2019; Wei, Tran, et al., 2019)

compared the predictive power of both T1 and FLAIR lesions—

respectively segmented with FreeSurfer 6 and SPM-LST—and con-

cluded a “general equivalence between these two,” based on a similar

association with abnormal β-amyloid and tau, although other

researchers (Hotz et al., 2021) assessed that WMH lesions labeled by

FreeSurfer v6.0.1 are no substitute for manual effort. Still, a T1 image

provides potentially more spatial precision, which could prove useful

for accurate longitudinal monitoring of early smaller lesions, particu-

larly with tailored methods (Sudre et al., 2017).

4.2 | Cross-domain learning

Initially, we tried to work in T1 space directly, by using the masks gen-

erated by FreeSurfer as a training signal. Unfortunately, this method

turned out to be too unreliable, despite the ability of ConvNet to be

robust against occasional mislabeling in the training set (Thyreau &

Taki, 2020). We observed that the model initially learned to segment

a majority of the WMH, and then, instead of refining its learning,

appeared to unlearn whole classes of lesions as more training itera-

tions progressed and more inconsistent samples were presented. We

had to cease pursuing this initially attractive approach of copying

FreeSurfer T1-processed images, and instead developed the new

cross-contrast learning model described here.

We proposed a transfer-learning approach where the set of 2D

FLAIR images would provide sufficient information to train a T1 classi-

fier. A spatially sparse loss mostly solved the resolution issue. The rea-

son for this was because even though each image contains little

information individually, the whole training set was large. Such a spa-

tially sparse feedback loss is suitable for any similar cross-modality

learning setup where a super-resolution approach of the target is

required, due to images having widely different resolutions, by them-

selves or by the corresponding labels (e.g., to reduce the annotation

effort). Learning from sparser annotations is often a worthwhile goal

in the field of medical image segmentation.

4.3 | ConvNets for the WMH lesions

The ConvNet research work has often focused on the small sample

regime and architecture improvement (Fartaria et al., 2016;

Ghafoorian et al., 2017; Guerrero et al., 2018; La Rosa et al., 2020; Li

et al., 2018; Li et al., 2021; Liang et al., 2021; Moeskops et al., 2018;

Orbes-Arteaga et al., 2018; Valverde et al., 2017). Recently (Kuijf

et al., 2019) organized a competition, using 60 (3D or thin-sliced 2D)

FLAIR images as training set, and 110 manually labeled subjects for

evaluation. Here again, the focus was squarely on the ability of the

method to generalize from the provided sample. Notably, ConvNets

ranked favorably, although the organizers pointed that that three-

dimensional ConvNets achieved lower-ranking results, which they

attributed to the 2D nature of FLAIR images. They also noted that the

moderate recall of the individual observers is mainly caused by either

not segmenting or missing small WMHs (Kuijf et al., 2019). We hope

that the current work improved on that situation.

F IGURE 7 Results of the human expert evaluation. The bar chart
shows the number of times the method result was considered as the
best (or, for negative, worst) by the two raters (sub-columns). The
darkest areas represent segmentations where the two raters'
judgments agreed. The results may not sum exactly to 200 as ties
were allowed, albeit discouraged.
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Finally, we note that ConvNets provide attractive runtime proper-

ties. They offer robust results with a constant-time inference. Our

current implementation requires around 20 s to fully process a T1

image, using four threads of a recent CPU and can consume up to

4Gb peak memory. However, the network topology of our model was

partly defined by a practical concern: the maximum size that could

allow a single sample to fit in the GPU memory for a forward and a

backward pass, at the useful input resolution of 1 � 1 � 1.5 mm, and

with the added cortical-ribbon segmentation requirement. This is

because we wanted to focus on the dataset learning behavior, without

worrying about additional failures attributable to a more limited model

capacity. A logical future work would aim to reduce the model size,

using one of the many model reduction techniques proposed in the

field.

4.4 | Limitations of the final model

To validate our model, we ran an automated evaluation based on the

similarity with FLAIR masks, and compared it to the FreeSurfer

7 model. There are some limitations in this approach. The DICE coeffi-

cient was conducted in FLAIR space, considered as a rough ground-

truth, and therefore, would not capture the fine lesion details along

the slice axis. And as mentioned above, the FreeSurfer 7 output was

not always of satisfying quality. Importantly, we observed that the

DICE value was generally higher when the lesion volume was bigger.

This phenomenon is in part because, in the DICE computation, the rel-

ative impact of each missed voxel is stronger for small segmentations,

but also because the numerous smaller lesions are less consensual

over different methods, or even different human ratings. To highlight

this limitation, we reported the DICE coefficients as a function of the

lesion load.

The visual evaluation showed segmentation in FLAIR space even

when created from T1 images. Therefore, the accuracy was not

judged explicitly in the axial direction. The segmentation quality would

probably be evaluated even more favorably when seen through coro-

nal or sagittal slices; however, we aimed for a clinically realistic com-

parison. Overall, the limited axial resolution in many FLAIR sequences

is generally not perceived as a major hindrance for the descriptive

purposes of clinical reviews. It becomes a difficulty only when dealing

with quantification. Some successful quantitative algorithms of FLAIR

images actually rely on an additional structural image to compensate

for the loss of localization power, and they are generally only used for

research.

Finally, we note that the lesion delineation is necessarily sensitive

to the source image contrast and the threshold chosen, as often with

MRI image quantitative analyses. Our ConvNet has been trained on

the variety of scanner of the JPSC-AD cohort, and should therefore

generalize to most T1 images (see also Appendix S1 for an application

over the OASIS 3 dataset [(LaMontagne et al., 2019]); However,

should high accuracy be required, the lesion volume should not be

compared between different contrasts without care, as the actual

absolute volume value may impacted by the acquisition sequence.

5 | CONCLUSION

In this manuscript, we described the training procedure of a ConvNet

whose goal was to segment WMHs from T1 images, and which con-

stitutes the core component of a corresponding end-user software,

which is available for download. The training of the T1 model had

been achieved by transferring some information that is more reliably

found in FLAIR images, enhancing it using a limited amount of human

guidance, and making adjustments to the loss function. The large

JPSC-AD dataset used as training material was key to the robustness.

This study provides another good example of the power of ConvNet

from the perspective of working across domains to solve problems

more optimally.
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