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Background. Gene expression profiles of 181 breast cancer samples were analyzed to identify prognostic features of nuclear receptors
NR5A1 and NR5A2 based upon their associated transcriptional networks. Methods. A supervised network analysis approach was
used to build the NR5A-mediated transcriptional regulatory network. Other bioinformatic tools and statistical methods were
utilized to confirm and extend results from the network analysis methodology. Results. NR5A2 expression is a negative factor in
breast cancer prognosis in both ER(−) and ER(−)/ER(+) mixed cohorts. The clinical and cohort significance of NR5A2-mediated
transcriptional activities indicates that it may have a significant role in attenuating grade development and cancer related signal
transduction pathways.NR5A2 signature that conditions poor prognosis was identified based upon results from 15 distinct probes.
Alternatively, the expression ofNR5A1predicts favorable prognosiswhen concurrentNR5A2 expression is low.A favorable signature
of eight transcription factorsmediated byNR5A1was also identified.Conclusions. Correlation of poor prognosis andNR5A2 activity
is identified by NR5A2-mediated 15-gene signature. NR5A2 may be a potential drug target for treating a subset of breast cancer
tumors across breast cancer subtypes, especially ER(−) breast tumors. The favorable prognostic feature of NR5A1 is predicted by
NR5A1-mediated 8-gene signature.

1. Introduction

Breast cancer (BC) is the second most commonly diagnosed
cancer but ranks 5th as cause of death worldwide in 2012 [1].
Incidence and mortality rates vary among populations in the
tested areasworldwide bymore than 5-fold [2]. In general, the
more developed areas have higher ratio of age-standardized
incidence rate/mortality rate (ratio = 4.34) than less devel-
oped areas (ratio = 2.53) [3]. Despite significant advances in
treatment options being available for BC, the heterogeneous
nature of breast cancers demands a personalized medicine
approach [4].

Differentiating the signal transduction pathways govern-
ing development and prognosis of breast cancer subtypes is

vital to design optimal intervention strategies especially for
the ER(−) subtype that has fewer treatment options than
the ER(+) subtype [5]. Research suggests that dissection of
integrated transcriptional data and identification of relevant
signal transduction pathways can be statistically correlated
with tumor subtype, thus predicting clinical disease pro-
gression and informing treatment options [6, 7]. We have
recently developed a supervised network analysis approach to
effectively predict functional regulatory networks mediated
by a target transcription factor within a given population [8–
10]. The target transcription factor involved in controlling
disease progression can be initially characterized using the
supervised network prediction. We further demonstrate the
utility of this approach in predicting the prognosis relevant
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signature in a subset of tumor samples [11]. Several aberrantly
expressed transcription factors including estrogen receptor
alpha (ER𝛼) and progesterone receptor (PR) are known
as the clinical biomarkers in breast cancers. Zheng et al.
suggested that there may be 1,850 to 4,105 putative human
transcription factors (TFs) [12]. We suspect that a significant
subset of those TFs may be involved in key regulatory events
governing BCdevelopment. Dissecting the complex interplay
between TFs and their gene partners on a system-wide basis
in breast cancer subtypes is critical for better management
and outcomes for breast cancer patients.

Human NR5A2 was first cloned and characterized as
a novel human hepatocyte transcription factor, hB1F [13].
Computer analysis of the NR5A2 promoter region indicates
several transcription factor binding sites including SREBP,
RORA1, GATA, TBP, C/EBP, HNF1, and HNF3 [14]. Liver
receptor homologue-1 (LRH-1) or NR5A2 belongs to one of
six subfamilies of nuclear receptors (NRs 1–6) [15]. Fayard et
al. [16] described the biological evidence supporting LRH-
1(NR5A2) as an orphan nuclear receptor involved in devel-
opment, metabolism, and steroidogenesis. The phosphatidyl
inositols are ligands of both NR5A2 and NR5A1 [17]. How-
ever, NR5A1 and NR5A2 are still considered to be orphan
receptors [15]. There is also a positive correlation between
immunohistochemistry (IHC) and NR5A2(LRH-1) mRNA
levels [18]. Based upon NR5A2(LRH-1) immunolocalization
in human breast carcinomas, Miki et al. suggested NR5A2 as
a regulator of in situ steroidogenesis.

The physiological and pathophysiological activities of
NR5A2 can be due to both estrogen dependent and inde-
pendent activities. Annicotte et al. [19] directly implicated
NR5A2 in estrogen dependent breast cancer development.
It is expressed via ER𝛼 binding to the estrogen response
element (ERE)within its promoter region.The immunohisto-
chemistry (IHC) stain of NR5A2 is elevated in breast tumors
and is preferentially coexpressed with ER𝛼. In addition,
Thiruchelvam et al. [20] reported that ER𝛼 is NR5A2(LRH-1)
target gene product andChand and colleagues [21] implicated
NR5A2 in promotion of migration and invasion in breast
cancer independent of estrogen sensitivity.

In this study, we demonstrate the clinical importance of
NR5A2 relative to its prognostic role in breast cancers. To
identify specific prognostic features of NR5A2, we analyzed
the network of NR5A2 using the supervised approach. We
conclude thatNR5A2 is an indicator of poor clinical outcomes
in ER(+)/ER(−) tumor (1 : 1 ratio) cohort and its ER(−)
subcohort.

2. Materials and Methods

2.1. Features of Surgical Specimens for Generating the Dataset
of Gene Expression Profiles. We analyzed 181 tumor samples
from primary infiltrating ductal breast carcinomas (IDCs)
that have eight molecular subtypes based on the immunohis-
tochemical analysis of estrogen receptor (ER) alpha, proges-
terone receptor (PR) A, and Her-2/neu (HER) biomarkers.
Determination of Her-2/neu gene copy number for HER
(IHC protein intensity (IHC score): 2+) was established by

chromogenic in situ hybridization (CISH), and IHC/CISH
status was used for determining HER status.

Ninety IDC specimens (90/181) were in subgroups IE
(ER(+)PR(+)) (𝑛 = 61) and IIE (ER(+)PR(−)) (𝑛 =
29). Ninety-one of the 181 IDC samples were in sub-
group “triple negative” (TN) (ER(−)PR(−)HER(−)) (𝑛 =
48), ERBB2+(ER(−)PR(−)HER(+)) (𝑛 = 29), ER(−)
PR(+)HER(−) (𝑛 = 5), ER(−)PR(+)HER(+) (𝑛 = 6),
and ER(−)HER(?) (𝑛 = 3). All samples were obtained
from patients who underwent surgery at the National
Taiwan University Hospital (NTUH) between 1995 and
2007. All patients provided informed consent according
to the guidelines approved by the Institutional Review
Board at NTUH (200706039R, Research Ethics Commit-
tee at National Taiwan University Hospital, Taipei, Tai-
wan). The microarray data from this study have been
submitted to the NCBI Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE24124. The abbreviation for each gene expression array
dataset was “A.” In this study, we designated 90A as the gene
expression microarray dataset for 90 ER(+) breast tumors. It
consists of two subsets that are group IE (61A) and group IIE
(29A). The definition for 91A is the gene expression microar-
ray dataset of 91 ER(−) breast tumors. It consists of subsets
for TN (48A), ERBB2+(29A), ER(−) PR(+)HER(−)(5A),
ER(−)PR(+)HER(+)(6A), and ER(−)HER(?)(3A). The 181A
cohort includes datasets from the 90A and 91A cohorts.

2.2. Microarray Data Analyses. The global gene expression
profile per breast tumor specimen was analyzed using a
Human 1A (version 2) oligonucleotide microarray (half a
genome size: 22 k) (Agilent Technologies, USA). Heatmaps
of gene expression data were displayed after unsupervised
hierarchical clustering [10]. For unsupervised hierarchical
clustering, the log2 ratio of mean expression data for each
gene was first centered by subtracting the median across
all samples to discriminate the subclass of the dataset.
Then, the selected gene expression profiles were analyzed by
R2.15.1 software for displaying the gene list (𝑦-axis) derived
from hierarchical clustering analysis on the gene profiles of
selected arrays (𝑥-axis) to generate the heatmaps. In addition,
Gene Spring GX7.3.1 (Agilent Technologies, USA) was used
for generating Venn diagrams and for retrieving updated
gene annotations. ANOVA tests for the relationship between
mRNA level of NR5A2 and a clinical index of interest in
a given population as well as the statistical methods for
establishing NR5A2 transcriptional regulatory network were
described previously [8, 10, 22]. The same data analyses
described above were used for analyzing other transcription
factors of interest.

Kaplan-Meier (K-M) survival analyses [23] using the
“survival” package in R (version 2.15.1) were performed using
the gene profiles from the 90A cohort, 91A cohort, and
181A cohort or the extracted gene pools of interest in the
assigned cohorts. The weight of hazard ratios associated with
the prognostic gene signature and the traditional prognostic
factors in a given cohort of interest was quantified using both
the univariate and multivariate COX proportional hazard
(COXPH) regression model in the R package.
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2.3. Experimental Design. Network analysis only predicts
the TF-target regulatory associations in a given population
transcriptome but not in a given population proteome.
Moreover, this association is measured using the data from
the sample population prepared for systems biochemistry
study. Therefore, the expression of mRNA levels in the
microarray setting represents the sum expression of mRNAs
due to transcriptional activities that may occur across mul-
tiple organelles, cells, and tissues of the tumor or nontumor
samples. Network analysis predicts the interactions of the
TF and its target gene at the systems transcriptome scale.
Further localization of the network gene expression for the
given TF using the cell model or other appropriate models is
required for subsequent validation of the network prediction.

The association between NR5A2 and the identified target
gene was measured by both the coefficient of intrinsic
dependence (CID) and Galton Pearson’s correlation coef-
ficient (GPCC). CID measures nonlinear association and
GPCC measures linear association. Such combined statis-
tical analyses (CIDUGPCC) provide predictive power in
measuring gene-gene expression relationship particularly for
the regulatory relationship between TF and its target gene.
Multivariate CID measures the association between TFs and
their shared target gene.

Colocalization of the transcription factors or of other
inferred target genes with the given TF conditions multi-
ple outcomes. TF-target regulatory interaction predicted by
CIDUGPCC is one such outcome. However, the supervised
network analysis specifically enriches and efficiently dissects
the inferred functional regulatory association that can also
be partially validated by in vitro biological evidence [8–11,
24].The positive regulatory associations at the transcriptome
level support but do not confirm similar associations at the
proteome level.

Network analysis is a highly sensitive measurement of
both known and novel TF-target gene expression relation-
ships in a population of interest. Here, we employ a strategy
to couple network analysis with K-M survival analysis to
identify the prognostic relevant transcriptional regulatory
subnetwork of NR5A2. Further, we integrate steps to control
confounders and quickly locatemajorNR5A2 prognostic fea-
tures. First, three populations of interest (i.e., 90A cohort, 91A
cohort, and 181A cohort) were subcategorized based upon
prognostic potentials into four types. Second, the subpool of
genes was identified which shared prognostic predictors of a
given type with the putative network of the NR5A2. Third,
genes in a given feature type were proposed to be major
prognostic features ofNR5A2 based on cumulative analysis of
the NR5A2 transcriptional regulatory network in relation to
biochemical profiles, malignant phenotypes, and supporting
evidence from other studies that are described in the Results
and Discussion. Fourth, the overlapping gene set in the 91A
and 181A cohorts was selected as the consensus prognostic
signature ofNR5A2 and the overlapping gene set between fea-
ture type IV (the overlapping gene pool between type IV and
181A relevant network; see Table S5.8 in SupplementaryMate-
rial available online at http://dx.doi.org/10.1155/2015/403576)
of NR5A2 and NR5A1 in the 181A cohort was selected. This
effectively distinguished the prognostic features of NR5A2

from those of NR5A1. Finally, the prognostic signatures
relevant to clinicopathological parameter(s), subtype(s), and
treatment response(s) were predicted and their prognostic
relevance in a subset of breast cancers was identified using
K-M and COXPH survival analysis.

3. Results and Discussion

3.1. The Clinical and Prognostic Relevance of NR5A2 in a
Breast Cancer Population Is ER𝛼 Independent. Preliminary
data suggests the prognostic value of NR5A2 in 91A and 181A
cohorts, supporting the concept that these NR5A2 features
may be clinically relevant in both cohorts (Figure 1). We
found no significant clinical impact of NR5A2 in the 91A
cohort (Figure 2(a)). However, ANOVA tests indicate that
histological grade,mitotic counts, and nuclear pleomorphism
are positively associated with NR5A2 in the 181A cohort
(Figure 2(b)).

Both NR5A1 and NR5A2 are members of the same
transcription factor family. However, NR5A1 is a prognostic
predictor for favorable clinical outcomes in the 181A cohorts
(Figure S9.2 in Supplementary Material) and is a positive
determinant of lymphovascular invasion (LVI) in both the
91A and 181A cohorts (Figure S9.3 in Supplementary Mate-
rial). It is also a positive determinant of HER(+) in the 181A
and 90A cohorts (Figure S9.3 in Supplementary Material),
while it is a negative determinant of LYM in the 90A cohort.

We investigated the expression patterns of NR5A family
members in different cohorts. The median expression level
of NR5A2 in the breast tumor component is not signif-
icantly different from that in the nontumor component
(Figure 2(c)). In contrast, Zhou et al. [25] showed elevated
NR5A2 in microdissected tumor versus nontumor tissues
using real-time PCR that quantified NR5A2 mRNA levels.
This discrepancymay be due to cohort dependent factors and
methodology differences in tumor sample preparation.

Figure 2(d) demonstrates a significant difference in
NR5A2 and NR5A1 expression levels in the 90A, 91A, and
181A cohorts. NR5A1 levels also are significantly higher than
NR5A2 levels and independent of ER status (Figure 2(d)).

NR5A2 and ESR1 may mutually upregulate each other
in the 90A cohort but differences are not significant based
on network analysis in our model. The median expression
level of NR5A2 in ER(+) breast tumor samples (90A cohort)
is similar to that in ER(−) ones (91A cohort) (Figure 2(d)).
Moreover, the top 10% high level or 90th percentile ofNR5A2
in ER(−) as well as in 181 breast cancer samples predicts
poor prognosis (Figures 1(a) and 1(b)). This suggests that
the prognostic value of NR5A2 may be mainly due to ER𝛼
independent transcriptional events of NR5A2.

3.2. NR5A2Tumor Suppressive andTumor Promoting Features

3.2.1. Clinically Significant Transcriptional Profiling of NR5A2.
We identified the clinically significant NR5A2 cluster includ-
ing 39 TFs (39/2299) as NR5A2 partners during early tumor
development in the 181A cohort (Table S1.1). This was
obtained by overlapping the significant gene pools of each
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Figure 1: Kaplan-Meier survival analysis on NR5A2 in 91A and 181A cohorts. The survival curves of a breast tumor group with top 10% high
NR5A2mRNA levels versus the group with low NR5A2mRNA levels in 91A cohort and 181A cohort, respectively.

clinical parameter (i.e., histological grade, mitotic count, and
nuclear polymorphism), which includesNR5A2 as one of the
clinical relevant determinants, derived from ANOVA tests.
Forty-six TFs (46/2685) with clinical relevance are identified
in the putative NR5A2 transcriptional regulatory network
(Figure 3(a), Table S1.2). Only six TFs (6/400) are shared
by the NR5A2 cluster and the network (Table S1.3). Based
on the clinically significant gene profiling, NR5A2 may be
involved in regulating SOX15, SALL2, NR4A2, GTF2i, and
TFEC. In addition, both clinically significant and cohort
relevant networks of NR5A2 share 39 TFs (39/2380) as TF
partners of NR5A2 (Figure 3(b), Table S1.4). The putative
network of clinically significant (CS) and 181A cohort rele-
vant NR5A2 appears to preferentially regulate genes which
are determinants of histological grade, mitotic counts, and
nuclear pleomorphism (Figure 3(c)). The gene expression
pattern of these putative NR5A2 target genes suggests a
role in early tumor development that may predominantly
suppress tumor progression (Figures S10.1–10.3). Network
analysis that identified components that overlapwith the gene
determinants of 10 clinicopathological parameters predicts
an array of NR5A2-regulated target genes that, in part, may
contribute to the tumor suppressive activities. The heatmaps
of these overlapping gene pools align tumor suppressive gene
expression patterns with early onset of select clinical parame-
ters. No further statistical evaluationwas possible because the
partial gene pool regulating the clinical parameters was also
a component of NR5A2 transcriptional regulatory network.
In addition, the consensus expression pattern had only a
relatively small 𝑛 number of samples that limits value for
further statistical analysis. The tumor suppressors, SALL2,
SOX15, and FOXJ1, are upregulated by NR5A2 (Figure S10.1)
[26–28] and the malignant activities of ESRRA and MYBL2
are suppressed by NR5A2 (Figure S10.1) [29–32]. Oncogenic
activities also may be stimulated by NR5A2 due to upregula-
tion of NR4A2 and HOXC6 gene expression (Figure S10.1).
For example, expression of NR4A2 has been reported to

increase proliferation [33] andHOXC6 expression conditions
tumorigenesis and drug resistance [34].

3.2.2. Pathway Analysis of NR5A2. Cancer related profiling of
NR5A2was evaluated in 13 signal transduction pathways.The
most relevant activities ofNR5A2 in 91A and 181A cohorts are
characterized by similar target preference but with a different
preferential order (Figures 3(d) and 3(e)). Importantly, these
data indicate that the pathways are suppressed by NR5A2
(see partial results in Figures S7.1–7.12). NR5A2 preferentially
suppresses ribosome, VEGF, cell cycle, ERBB2, and PDGFRB
signal transduction pathways.Moreover, suppression of ribo-
somal proteinmRNA levels in the histological grade category
(grade, NP, and MC) (Figures S7.13–7.15) indicates NR5A2
tumor suppressive role due to its regulation of common
genes in both clinically significant and cancer related pathway
profiling.

3.3. The Prognostic Relevant Gene Profiles in Two Feature
Types Are Differentially Regulated by NR5A2 and NR5A1.
NR5A1 and NR5A2 recognize the same promoter regions
of their shared target genes [35]. Network analysis predicts
thatNR5A2 andNR5A1 significantly downregulate each other
in 90A and 181A cohorts but not in the 91A cohort. Such
differential regulatory patterns among cohorts may affect the
most relevant prognostic features of both. In addition, the
clinical relevance ofNR5A2, as predicted by the ANOVA test,
is only significant in the 181A cohort. Therefore, we selected
the 181A cohort population to further identify significant
prognostic features of NR5A2.

In this study, the 91A, 90A, and 181A cohorts were sub-
classified according to prognostic predictors into four types.
Type 1 is defined as the gene pool significant for prognosis
in the 90A, 91A, and 181A cohorts based on K-M analysis.
Type 2 is the gene pool significant for prognosis in the 91A
and 181A cohorts but less significant for prognosis in the 90A
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Figure 2: Continued.
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Figure 2: Clinical impact ofNR5A2 in two cohorts of infiltrating ductal breast carcinomas. ANOVA test results ofNR5A2(16670)mRNA levels
in eight clinical indices: progesterone receptor (PR), HER-2/neu (HER), lymphovascular invasion (LVI), lymph nodal category (lymph node
metastasis status (LYM), number of lymph nodemetastases (LNM)), age, tumor size (size), histological grade (grade), nuclear pleomorphism
(NP), mitotic count (MC), tubule formation (TF), and cancer stage in 91A cohort and 181A cohort, respectively (a, b). (c, d): box plot analysis
of NR5A2(16670) mRNA levels in two cohorts (i.e., nontumor component (NT) and 181A cohort) (c). The number on the 𝑦-axis inside the
box plot C stands for the expression level ofNR5A2. The 𝑥-axis for each box stands for 25 nontumor (NT) and 181A cohorts, respectively. Box
plot analysis for pairwise comparison of NR5A2(16670) mRNA levels and NR5A1(652) mRNA levels in three cohorts (i.e., 90A cohort, 91A
cohort, and 181A cohort) (d). The number on the 𝑦-axis inside the box plot D stands for the expression level of the given TF which is listed in
the 𝑥-axis, respectively. The red dot line within the box is the mean value for each subgroup in the plot. The black line within the box is the
median value for each subgroup in the plot. The Agilent feature number for NR5A2 is 16670. 652 is the Agilent feature number for NR5A1.

cohort. Type 3 is characterized by the gene pool significant
for prognosis in the 90A and 181A cohorts but less significant
for prognosis in the 91A cohort. Type 4 is the gene pool
significant for prognosis in the 181A cohort but less significant
for prognosis in the 91A and 90A cohorts. We also identified
a subcategory of genes that contain prognostic predictors
in each cohort and components of the putative NR5A2
transcriptional regulatory network. These were classified as
genes within a given feature type. Four gene subcategories
have been derived from this classification strategy and have
been designated as feature types I–IV.

Figure 4 shows the pie distribution of prognostic relevant
gene pools identified in the NR5A2 transcriptional regu-
latory network of the 91A (Figure 4(a)) and 181A cohorts
(Figure 4(b)) and the NR5A1 transcriptional regulatory net-
work of the 181A cohort (Figure 4(c)). The percentage of
feature types I, II, III, and IV in the 91A cohort relevant
NR5A2 network is 7, 18, 3, and 72, respectively.The percentage
of feature types I, II, III, and IV in the 181A cohort relevant
NR5A2network is 2, 7, 40, and 51, respectively.Thepercentage
of feature types I, II, III, and IV in the 181A cohort relevant
NR5A1 network is 1, 6, 35, and 58, respectively.

3.3.1. Clinical Outcomes due to Feature Type II Gene Activity
Modulated by NR5A2. Feature types II and IV were selected
as the most relevant indicators of clinical outcomes for
NR5A1 and NR5A2 because NR5A1 and NR5A2 recognize
the same promoter regions of their shared target genes [35].
This suggests that the unique prognostic roles of NR5A1

and NR5A2 are due to their differential interactions in a
cohort dependentmanner.We foundNR5A1 to be a favorable
prognostic indicator in 181A cohort (Figure S9.2), andNR5A2
is a factor conditioning poor prognosis in the 91A and 181A
cohorts (Figure 1). Thus, the major prognostic features of
NR5A2 in relation to the regulatory interaction with NR5A1
are classified in feature type II. The feature type II predicts a
signature of 16 probes (Table S5.9 in SupplementaryMaterial)
that condition poor clinical outcomeswithNR5A2 activation.
As a result, the transcriptional dynamic of NR5A2 shows a
differential gene expression pattern in Figure 5. In this case,
the expression levels of NR5A1 are not suppressed by NR5A2
in the subset of tumor samples as predicted by network
analysis. Moreover, NR5A1 and NR5A2 do not compete for
gene regulation of the 16 probes that are putative shared target
genes. Instead, they are differentially coexpressed at mRNA
level and NR5A2 may override the regulatory activities of
NR5A1. Based upon these analyses, we identified a 15-gene
signature as a poor prognostic predictor in subcohorts I/II
and subcohorts III/IV (Figure 5 and Table S10.1). It is also
an independent prognostic factor in subcohorts III/non-III
(Table S10.1). This signature is shared across eight molecular
subtypes but enriched in ER(−) breast tumors. The prog-
nosis related activities of the 15-gene signature are listed in
Table 1. Only five (5/16) have been documented in support of
the network prediction including chemoresistant enhancers,
ATG4D and ATP6V1H [36, 37], EPHA2, which is a resistance
marker for anti-HER therapy [38], and two new drug targets
NR5A2 and NRP2 [39, 40].



International Journal of Genomics 7

G_NR5A2_181 MC_NR5A2_181

NP_NR5A2_181

1725 2009 2639

2685
593 845

836 8842

(a) Clinically significant NR5A2 tran-
scriptional regulatory network

305 2380 5019

CS_NR5A2 181_NR5A2

(b) Clinically significant and cohort enriched
NR5A2 transcriptional regulatory network

0 200 400 600 800 1000

Age

Size

LYM

LNM

LVI

TF

Stage

NP

MC

Grade

66

84

204

216

217

252

331

623

758

1097

(c) Clinically significant gene profiling of
CS 181 NR5A2 network

HSA
MRP
DRS
HR

BER
NER

Proteasome
p53

PDGFRB
ERBB2
VEGF

Cell cycle
Ribosome

1
2

5
6
7
8
9

13
18

22
22
24

58

0 20 40 60
(d) Biochemical profiling of 91 NR5A2network

0 20 40 60

HSA
MRP
BER
DRS
NER

HR
Proteasome

p53
PDGFRB

ERBB2
Cell cycle

VEGF
Ribosome

3
4
6
7

10
11

20
24
26

39
44

52
54

(e) Biochemical profiling of 181 NR5A2 net-
work

Figure 3: Clinical and/or cohort significance of transcriptional activities of NR5A2 in given population(s). (a) Clinically significant (CS)
NR5A2 transcriptional regulatory network (CS NR5A2 network). (b) Clinically significant and cohort enriched NR5A2 transcriptional
regulatory network (CS 181 NR5A2 network). (c) The bar chart for overlapping gene pools (𝑥-axis) between the CS 181 NR5A2 network and
clinical relevant genes in 10 clinical parameters (𝑦-axis). (d) The bar chart for overlapping gene pools (𝑥-axis) between 91 NR5A2 network
and genes in 13 signal transduction pathways (𝑦-axis). (e) The bar chart for overlapping gene pools (𝑥-axis) between the 181 NR5A2 network
and genes in 13 signal transduction pathways (𝑦-axis). The signal transduction pathways are derived from Kyoto Encyclopedia of Genes and
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Figure 6 illustrates differences in the transcriptional
dynamics of 15 probes in the 91A and 181A cohorts. The
regulatory mode of MRLC2 in cohort relevant NR5A2 net-
works (91A cohort versus 181A cohort) is switched. However,
approximately 10% of breast tumors in both cohorts share the
same gene expression pattern that was previously proven to
be a poor prognostic signature in subcohorts I/non-I, subco-
horts III/IV, and subcohorts III/non-III based on univariate
COXPH analysis (Table S10.1). The 15-gene signature is a
prognostic indicator for poor outcomes in subcohort III of
the 181A cohort based on results from multivariate COXPH
analysis. This functional prognostic signature does not fully
match themost relevant subnetwork ofNR5A2 in 91A cohort.
This misalignment occurs because the MRLC2 expression
distribution in subcohort I of 91A cohort is an exception
for cohort relevant NR5A2 network but normal for the 181A
cohort.

Interestingly, the prognostic relevant subcohorts I and
III have 7 probes (EPHA2, RAB40C, MKL1, GNAQ, NRP2,
ATG4D, and GCDH) that show a shifted expression pattern
when compared to the most relevant networks of NR5A2
in both 91A and 181A cohorts (Figure 6). Additionally, no
transcriptional dynamics are observed for ATP6V1H in
subcohorts I/II and III/IV (Figure 5). This is an atypical
case [11] derived from the dual coupling of the supervised
network and 90th percentile K-M survival analyses.The latter
method typically enriches the prognostic relevant subgroup
with relatively high sub-CID values for a given gene signature
[24].

3.3.2. Clinical Outcomes due to Feature Type IV Gene Activity
Conditioned by NR5A1. We found NR5A1 to be a prognostic
indicator for favorable outcomes in the 181A cohort (Figure
S9.2). NR5A1 downregulates NR5A2 in the 90A and 181A
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Figure 4: Pie distribution for four subpools of prognostic predictors from the networks of NR5A2 and NR5A1. (a, b) Pie distribution for
four subpools of classified prognostic predictors derived from the networks of NR5A2 in two selected populations. Two cohort relevant
networks of NR5A2 (91A cohort and 181A cohort) identify 131 probes and 302 probes to be the potential prognostic factors in the 91A and
181A cohort, respectively. The pie distribution illustrates four classified prognostic predictor subpools derived from overlapping between the
cohort relevant network of NR5A2 and four types of prognostic indicators in three selected populations (91A cohort, 90A cohort, and 181A
cohort). (a) The four feature types follow an order of type IV > type II > type III > type I. (b) Four feature types follow an order of type IV >
type III > type II > type I. (c) Four subpools of classified prognostic predictors derived from the networks of NR5A1 in 181A cohort; the 181A
cohort relevant network of NR5A1 predicts 1,334 probes to be the potential prognostic factors in 181A cohort. The feature type distribution
follows an order of type IV > type III > type II > type I.

cohorts but not in the 91A cohort as shown by network
analysis. However, Figure 2(d) shows that NR5A2 levels are
lower than NR5A1 levels in the 90A, 91A, and 181A cohorts.
We suspect that the competitive interaction between NR5A1
and A2, or NR5A1 predominant transcriptional regulatory
pattern,may determine the favorable prognosis acrossmolec-
ular subtypes. Therefore, we proposed feature type IV, which
includes genes regulated via mixed regulatory patterns, to be
the most relevant prognostic event driven by NR5A1.

BothNR5A2 andNR5A1 share common target genes (292
probes) in feature type IV (Table S6.6). We found 9 TFs
(9/14) within 292 probes that showed a distinct expression
pattern due to the opposite regulatory modes of NR5A1 and
NR5A2. Figure 7 shows heatmaps demonstrating differen-
tial gene expression patterns of 8 common components of
subnetworks for NR5A1 and NR5A2 in subcohorts A and
B. Kaplan-Meier survival analyses indicate their significance

in prognosis. A favorable prognostic signature regulated
by NR5A1 has been identified and its prognostic relevant
activities have been partially validated (Table 2). For instance,
GTF3C1 is a chemoresistance marker in breast cancer [41]
and MYB is a favorable prognostic factor [42]. Interestingly,
BATF is a poor prognostic factor in B-cell lymphoma [43] and
ESRRA is a poor prognostic factor in breast cancer [44] and
ovarian cancer [45]. FOXP1 predicts a favorable prognosis in
breast cancer [46] STAT2may predict favorable prognosis in
carcinoid tumors [47] and COXPH analysis suggests this 8-
gene signature is not a favorable prognostic signature in our
model system. Further evaluations of more comprehensive
populations are needed to fully establish the utility of these
interactions.

3.4. Partially Antagonistic Interactions between NR5A1 and
A2 in the Regulation of Pathophysiological and Prognostic
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Table 1: Literature based validation of 16 prognostic predictors predicted in the NR5A2 transcriptional regulatory network.

Feature number Gene symbol Elevated in 91A and 181A cohorts Prognostic features listed in the literature
2551 TAS2R8 Poor prognosis Undefined
16670 NR5A2 Poor prognosis Poor prognosis in PR(−) breast cancer [15]
1761 ATG4D Poor prognosis Enhancing chemoresistance [36]
2967 ATP6V1H Poor prognosis Early relapse in ER(+) BCs treated with tamoxifen [37]

11875 EPHA2 Poor prognosis Poor prognosis (resistance to anti-HER (trastuzumab)
therapy) [38]

4013 A 23 P23110 Poor prognosis Undefined
10235 RAB40C Poor prognosis Undefined
4332 MKL1 Poor prognosis Undefined
8615 GNAQ Poor prognosis Undefined

7774 NRP2 Poor prognosis Poor prognosis in lung cancer and other cancers but
not in breast cancer [40]

7864 TNFSF9 Poor prognosis Undefined
14025 RHO Poor prognosis Undefined
4337 GCDH Poor prognosis Undefined
17978 MRLC2 Poor prognosis Undefined
22368 NDUFS2 Good prognosis Undefined
15037 PIP5K1A Good prognosis Undefined

Table 2: Summary of eight transcription factors regulated by NR5A1 predicting favorable prognostic values.

Feature number Gene symbol High level and prognosis Prognostic features listed in the literature Regulation by NR5A1
17400 GTF3C1 Poor Adriamycin/cytoxan resistance [41] Up
5586 MYB Good Good prognosis [42] Down
6776 BATF Good Poor prognostic predictor in B-cell lymphoma [43] Up
5480 ESRRA Good Poor prognosis [44, 45] Up
14511 FOXP1 Poor Good prognosis [46] Down
878 ATF6B Good Undefined Up
3113 GATA5 Good Undefined Up
2002 STAT2 Poor Good prognosis in carcinoid tumors [47] Up

Relevant Activities. NR5A1 and A2 show an inverse regula-
tory mode in six biochemical activities: cell cycle regulation,
tumor progression and carcinogenesis, steroidogenesis [48],
sustained angiogenesis, the Warburg effect, and epithelial
mesenchymal transition (EMT) (Figure S10.5). Network
analysis predicts that these tumor promoting activities are
partially regulated by NR5A1 and A2. NR5A1 has relatively
higher activities than NR5A2 in cell cycle regulation, sus-
tained angiogenesis, the Warburg effect, and EMT. However,
NR5A2 may impact steroidogenesis, tumor progression, and
carcinogenesis to a greater degree than NR5A1. Typically,
CYP19A1 coding for aromatase is upregulated by NR5A2 in
the 181A cohort (Figures S10.5B and S10.5C). CYP19A1 also
indicates poor prognosis in ER(−) breast cancers comprised
of TN and ERBB2 (Figure S9.1 77A). Our data support
the concept that NR5A2 is a regulator of steroidogenesis
in breast cancers. Also, this suggests the need for further
investigation of TN and/or ERBB2 subtypes to evaluate
whether an aromatase inhibitor may be a treatment option
for a subset of ER(−) breast cancers.

3.5. Functional Subtyping of Breast Cancers via the Gene
Signatures Potentially Driven by a Transcription Factor or
Multiple Transcription Factors. The final goal of functional
subtyping of breast cancers via the TF(s) mediated gene
signature(s) is to develop the clinical biomarker(s) that can
be located by IHC stain and be reproducible in other gene
expression datasets. Functional subtyping of breast cancer
via gene signature may facilitate decision making for cocktail
treatments in clinical experiments to optimize personalized
medicine strategies. Although using meta-analysis may add
some clarity to the interpretation of our results, this has
not been done for this study, in part, due to the absence of
appropriate comparator data or groups.

The tumor section contains ∼1 : 1 ratio of tumor cell
and nontumor components in our model. Microdissection
was not performed as a part of the sample preparation
because both tumor initiation and development involve the
interactions between tumor cells and nontumor cells [25, 49].
As a result, there is a low probability for accurately validating
an inferred gene signature containing the coexpressed TFs
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Figure 5: Validation of a prognostic signature conditioning poor outcomes in subsets of ER(−) IDCs and 181 IDCs. Poor clinical outcome
in a subset of ER(−) IDCs and a subset of 181 IDCs is determined by 15 probes that are predicted to be regulated by a transcription factor,
NR5A2. Panel (a, b) presents the heatmap displaying 15 prognostic relevant probes, which are predicted to show the consensus expression
pattern in both the 91A and 181A cohorts. These 15 probes are part of the most relevant transcriptional activities of NR5A2 in a subset of
ER(−) IDCs (a) or in the subset of 181 IDCs predominantly containing ER(−) subtype (b). Panel (c, d) demonstrates significant differences in
clinical outcomes based on Kaplan-Meier survival curves when comparing subcohorts I (12A)/II (12A) (c) and subcohorts III (18A)/IV (18A)
(d). “NT” stands for nontumor component.

with NR5A2 derived from the supervised network analysis
and functional clustering (e.g., 90th percentile K-M survival
analysis) to be colocalized in the nucleus of the same cell.
Similarly, there is a low probability for validating the 15 target
genes of NR5A2 localization in the same cell. For instance,
some limitations described below suggest the validation of
the 8-gene signature driven by NR5A2 using IHC staining of
clinical tumor samples and the reproducibility of this gene
signature in other datasets may not be a viable option for our
model.

Multiple biological and/or genetic effects impacting
pathophysiological outcomes can alter the intrinsic TFmedi-
ated transcriptional pathways during tumor initiation and
development. As a result, biological outcomes mediated
by altered TF transcriptional activities may have changed.
Statistical measures (CIDUGPCC andmultivariate version of
CID) facilitate predicting the most relevant transcriptional
pathways in a given sample population. However, several
limiting factors impact model validation. These include the
following: (1) due to tumor sample preparation without
microdissection, the microarray gene expression data used
for the network analysis cannot dissect cell type specific

networks of NR5A2. (2) There are a suboptimal number
of paraffin-embedded tumor samples (∼10% population)
for IHC staining. This is because NR5A2 is expressed in
both stromal and epithelial cells in the breast cancer tumor
section [25] and the tumor sections are collected at a single
time point. This limiting factor is important because of the
large number of gene products for the network components
needed to be stained. (3) The candidate cohort, which may
reproduce the key signature of NR5A2, needs to align with
the specific defining characteristics of the 181A cohort to
conclude the same prognostic relevance. The public datasets
have unique cohort characters that do not conclusively
reproduce the gene signatures from the181A cohort study
based on our limited meta-analysis experience.

Alternatively, the cell models (e.g., human breast cancer
cell lines) or other appropriate model systems (e.g., the
mouse model organism and others) can be used to evaluate
the unique or common activities of TFs in tumor cells
in a time dependent manner, which are predicted by the
supervised network analysis. Furthermore, results from time
course studies in the cell models and other model systems
inform validation of the predicted NR5A2 activities in a cell
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Figure 6: Inferred subnetwork of NR5A2 in regulating prognostic predictors during tumor progression. Tumor progression is predicted to
be controlled by an ER𝛼 independentNR5A2-mediated mechanism.The deviation between prognostic relevant subnetwork and the inferred
subnetwork of NR5A2 is due to differential data distribution among tumor samples. This diagram demonstrates that the supervised network
analysis can identify signatures conditioning poor prognosis possibly driven by NR5A2 in ∼10% studied cohort.

specificmanner or between different cell types via a paracrine
mechanism. Both IHC staining in cell models and collecting
an appropriate sample of each testing cohort will be necessary
to reproduce the gene signature in the testing cohort for the
identification of clinical biomarkers.

4. Conclusions

The prognostic value of NR5A2 is established by identi-
fying the most relevant prognostic indicators regulated by
NR5A2, which are expressed in both ER(−) (91A cohort) and
ER(+)/ER(−) (181A cohort) tumor cells. We analyzed two
cohort relevant networks to identify a common prognostic
signature which is relevant in 91A and 181A cohorts but
less so in the 90A cohort (i.e., feature type II). A 15-gene
signature was identified which is an independent prognostic
factor across eight molecular subtypes of 181 IDCs especially
enriched in ER(−) IDCs.This is the first report whereNR5A2-
mediated signature is a poor prognostic indicator in a subset
of breast cancers. Relative to therapeutic potential, NR5A2
may be a new target for the effective treatment of a subset of
breast cancers with the 15-gene signature.

In this study, we also found NR5A1 to be a favorable
prognostic indicator in the breast cancer population with

feature type IV and we identified an 8-gene signature to
be significant in a subset of breast cancers (subcohort A)
based on Kaplan-Meier survival analysis but not significant
by COXPH analysis.
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Figure 7: In vivo validation of a favorable prognostic signature in a subset of 181 IDCs. Panel (a) shows the heatmaps of a signature (8 probes)
for favorable prognosis to be regulated by NR5A1 and NR5A2 in two subcohorts (subcohort A and subcohort B), respectively. NR5A1 has an
opposite regulatory mode as compared to NR5A2 in a subset of 181 IDCs for this inferred subnetwork. Panel (b) shows the survival curves of
two subcohorts based on Kaplan-Meier survival analysis.
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