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a b s t r a c t

Pharmacological perturbation studies based on protein-level signatures are fundamental for drug dis-
covery. In the present study, we used a mass spectrometry (MS)-based proteomic platform to profile the
whole proteome of the breast cancer MCF7 cell line under stress induced by 78 bioactive compounds.
The integrated analysis of perturbed signal abundance revealed the connectivity between phenotypic
behaviors and molecular features in cancer cells. Our data showed functional relevance in exploring the
novel pharmacological activity of phenolic xanthohumol, as well as the noncanonical targets of clinically
approved tamoxifen, lovastatin, and their derivatives. Furthermore, the rational design of synergistic
inhibition using a combination of histone methyltransferase and topoisomerase was identified based on
their complementary drug fingerprints. This study provides rich resources for the proteomic landscape of
drug responses for precision therapeutic medicine.
© 2023 The Authors. Published by Elsevier B.V. on behalf of Xi’an Jiaotong University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Molecular profiling of drug-response phenotypes expands our
knowledge of cancer pharmacology and provides guidance for
precision medicine [1]. Systematic molecular profiling is a useful
approach to understand the mechanisms of action (MOA) of drugs
in cancer cell lines [2]. Currently, different layers of omics data are
considered to reflect cell-line perturbation after compound treat-
ment. These layers include genomic data at the DNA or messenger
RNA (mRNA) level, as well as metabolomics and proteomics data.
As end products encoded by genes, targets of small molecules, and
direct executors of all biological functions, proteins are superior in
acting as functional and proximal readouts that directly reveal drug
actions [3]. Genomic sequences are not disturbed during short-
term drug stimulation, which restricts their application in deci-
phering molecular mechanisms. Metabolites and transcripts do not
provide a direct readout of the perturbagen response, limiting their
ability to capture slight signal changes. In recent years,
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breakthroughs in mass spectrometry (MS)-based proteomic tech-
nology have promoted the technical feasibility of exploring unbi-
ased proteome perturbations in drug responses. To date, large-scale
proteomic drug responses as signature profiles and the integration
of drug sensitivity in perturbed cancer cell lines have been reported
[4e7]. These preliminary studies explored the current under-
standing of potential biomarker and drug target discovery. How-
ever, some important drug types such as the immunomodulatory
drugs (IMiDs) were not included in these studies. Recently, a
proteome-wide atlas of drug MOA in the colon cancer cell line
HCT116 has been reported [8]; however, the cancer type of the cell
lines dominates the molecular classification [9]. Additionally, these
databases have not been exhaustively utilized for their potential
applications in pharmacological exploration, particularly for
exploring novel drug MOA and predicting drug combinations.

To fill this gap, we used a Tandem Mass Tag (TMT)-based pro-
teomic strategy to establish proteomic signature data for 78 distinct
bioactive small molecules in the breast cancer epithelial MCF7 cell
line. We then compared and analyzed the signature of the pub-
lished proteomic data underlying compound treatment with our
dataset. Based on the similarity of protein expression profiles, we
uncovered novel mechanism or “off-target” effects of bioactive
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compounds. Furthermore, we revealed and validated a rational
design for a drug combination strategy. Our results provide a
resource for the systematic characterization of the molecular re-
sponses to drug treatments. These datasets can serve as functional
proteomic platforms to facilitate drug discovery and inform new
therapeutic approaches.

2. Experimental

2.1. Compounds

The compounds were obtained commercially or from the com-
pound library of the Institute of Medicine, Chinese Academy of
Sciences. The details of these compounds are listed in Table S1.

2.2. Cell lines

MCF7 cells were cultured in Dulbecco's Modified Eagle's Me-
dium (DMEM; Gibco, Waltham, MA, USA) with 2 mM L-glutamine
(Amresco, Solon, OH, USA),10% fetal bovine serum (FBS; Gibco), and
100 units/mL of penicillin/streptomycin (Meilunbio, Dalian, China)
and incubated at 37 �C in 5% CO2. Cells were collected after drug
treatment for 12 h. Three experimental periods were conducted,
the details of which are listed in Table S1.

2.3. Quantitative proteomics

The cells were cultured in a 15-cm dish at approximately 90%
confluency, washed with 1� phosphate-buffered saline (PBS,
Meilunbio) and lysed using freshly prepared lysis buffer (8 M urea,
100mMNH4HCO3, and 2� protease inhibitor cocktail (Roche, Basel,
Switzerland); pH 8.0). The cell lysate was incubated at 4 �C for
30 min and then sonicated for 2 min with 30% energy (ultrasonic
cell disruptor JY92-II, Ningbo Scientz Biotechnology Co., Ltd.,
Ningbo, China).

For each sample, 50 mg of proteins (determined by bicinchoninic
acid assay) was reduced with 5 mM dithiothreitol (Sigma-Aldrich,
St. Louis, MO, USA) for 30 min at 56 �C. Cysteine was alkylated by
incubating with 15 mM iodoacetamide (Sigma-Aldrich) at room
temperature for 30min. The reactionwas terminated by incubation
with 30 mM L-cysteine (Sigma-Aldrich) for 30 min at room tem-
perature. Protein lysis was diluted to 2 M with 100 mM NH4HCO3
and digested with trypsin (Hualishi Scientific, Beijing, China) at a
ratio of 50:1 (protein:enzyme, m/m) for 16 h at 37 �C. The samples
were treated with trypsin (Hualishi Scientific) at a protein:enzyme
ratio of 100:1 (m/m) for 4 h. The digested lysates were desalted
using tC18 cartridges (Sep-Pak, Waters, Milford, MA, USA) and
dried using a SpeedVac.

TMT (Thermo Fisher Scientific Inc., Waltham, MA, USA) reagents
(6-plex or 10-plex) were used for peptides labeling according to the
manufacturer's protocol. Simply, 0.4 mg of TMT reagent was added
to each sample and then incubated at room temperature with mild
shake for 60 min. The reaction was terminated by 4 mL of hydrox-
ylamine (5%, m/m) and mixed. The peptides were desalted by tC18
cartridges (Sep-Pak, Waters). The same control lysate (MCF7 cell
lines treated with dimethyl sulfoxide (DMSO; WAK-Chemie Medi-
cal GmbH, Jena, Germany) was used across all TMT-6plex groups
with two biological replicates.

The mixed samples were then re-suspended in 0.1% (V/V) tri-
fluoroacetic acid (Sigma-Aldrich), and separated into 80 fractions
using high pH reverse-phase high performance liquid chromatog-
raphy (HPLC) with XBridge Peptide BEH C18 column (5 mm,
4.6 mm � 250 mm, 130 Å, Waters). The flow rate was set at 1 mL/
min. The gradient was set to 90 min from 0% to 95% of buffer (98%
(V/V) acetonitrile (ACN; pH 8.5; Thermo Fisher Scientific Inc.). The
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80 fractions were concatenated into 20 fractions and dried using a
SpeedVac.

2.4. Liquid chromatography-mass spectrometry (LC-MS) analysis

Each fraction of the dried peptides was re-suspended in formic
acid (0.1%, V/V) and separated using an EASY-nLC 1000 LC system
(Thermo Fisher Scientific Inc.). The gradient was set to 70 min from
8% to 46% ACN. A home-made capillary column (75 mm i.d. � 20 cm
length) packed with C18 beads (size 1.8 mm, 100 Å, Dikma Tech-
nologies, Beijing, China) was used.

The peptides were analyzed using an Orbitrap Fusion mass
spectrometer (Thermo Fisher Scientific Inc.). The full scan range
was m/z 450e1500. The maximum injection times were set to 50
and 80ms for the full andMS/MS scans, respectively. The resolution
at m/z 200 was set to 60,000 and 15,000 for the full and MS/MS
scans, respectively. The automatic gain control targets was set to
500,000. Fifteen top ions were used for analysis. The high collision
dissociation normalized collision energy was set to 40%.

2.5. MS data pre-processing

MaxQuant software (1.5.3.8) with human database fromUniProt
(96,447 sequences, downloaded on June 6, 2019) was used for raw
data parsing. The parameters were set with an false discovery rate
(FDR) of 0.01 at the level of protein, peptide, and modification.
Enzyme specificity was set to trypsin/P with tolerance of 2 missed
cleavages. The fixed modification was carbamidomethyl (cysteine
residues) with acetyl (protein N-term) and oxidation (M) set as
variable modifications. TMT label was set to 6-plex TMT for pro-
teomic data. The MaxQuant settings for the 10-plex labelled sam-
ples were the same with that of 6-plex labelled samples. The
MaxQuant setting of 6-plex labelled samples was used for our drug-
response proteomic landscape. In addition, theMaxQuant setting of
10-plex labelled samples was used for the drug combination assays
(EZH2i and topotecan).

The reverse or potential contaminant proteins were deleted. The
intensities from the same gene were summed and then normalized
by the median intensity for each sample. Thirty-two expression
matrices were combined by gene symbols. The ratio of sample
(drug treatment) abundance to control (DMSO) abundance was
calculated as the relative abundance and then log2 transformed.

To balance the confidence and reservation of the scope of data
set to low abundant proteins, the data set was filtered for proteins
measured in 50% of all samples. The missing values was imputed by
the minimum value of the data set. The batch effect was removed
by the R tool, ComBat [10,11]. We used time point information (P1,
P2, and P3) as batch covariate while other parameters are default
(par.prior ¼ TRUE, mean.only ¼ FALSE, BPPARAM ¼ bpparam
(“SerialParam”), mod ¼ NULL, ref.batch ¼ NULL) for “Combat”
function.

2.6. Protein-protein interaction (PPI) networks

ThePPIwasanalyzedusing the STRINGwebsite (https://string-db.
org/) using all of the commonly downregulated/upregulated proteins
(Student's t-test, P < 0.05 and fold change >1.5 in at least 60% drugs
for each class type). In total, 201 downregulated proteins (59 in the
adenosine monophosphate (AMP)-activated protein kinase (AMPK)
inhibitor, 37 in the bromodomain and extraterminal (BET) inhibitor,
one in the cyclin-dependent kinase (CDK) inhibitor, 22 in the DNA
alkylatingdrug, 6 in theDNA/RNA synthesis inhibitor,15 in the IMiDs,
38 in the phosphatidylinositol-3-kinase (PI3K) inhibitor, 11 in the
proteasome inhibitor, 10 in the topoisomerase inhibitor, and 2 in the
tubulin inhibitor) were identified, resulting in 160 unique proteins.

https://string-db.org/
https://string-db.org/
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Similarly, 229 upregulated proteins (42 in the AMPK inhibitor, 38 in
the BET inhibitor, 3 in the CDK inhibitor, 15 in the DNA alkylating
drug, 5 in the DNA/RNA synthesis inhibitor, 2 in the
histone deacetylase (HDAC) inhibitor, 48 in the IMiDs, 26 in the PI3K
inhibitor, 28 in the proteasome inhibitor, 16 in the topoisomerase
inhibitor, and 6 in the tubulin inhibitor) were identified, resulting in
187 unique proteins. The PPI networks were plotted by the R tools
“igraph”.

2.7. The “querying” process

The querying signatures were obtained from the proteome data
of public articles. Proteomic data were downloaded and mapped to
our database using gene names. Significantly regulated genes
(Student's t-test, P < 0.05, fold-change > 1.5) were used as querying
signatures andwere comparedwith our database using Spearman's
correlation. The similarity between the querying signatures and our
database was defined using the following criteria: 1) the P value of
Spearman's correlation should be less than 0.05; 2) the absolute
correlation coefficient of Spearman's correlation should be larger
than 0.2; and 3) wemainly considered the top five correlated drugs
in our database.

2.8. Immunofluorescence and assessment

MCF7 cells were plated in 12-well dishes on glass coverslips and
treated with colchicine (10 or 20 nM) or xanthohumol (5, 10, or
15 mM) for 24 h before staining with Tubulin-Tracker Red. Then, the
cells were washed in PBS and fixed with 4% paraformaldehyde for
30 min. Next, the fixed cells were washed with 0.1% (V/V) Triton X-
100 in PBS for 5 min; this was repeated twice. Subsequently, cells
were incubated with Tubulin-Tracker Red for 1 h in dark and then
washed thrice with 0.1% (V/V) Triton X-100 in PBS. Immunofluo-
rescence was examined using confocal microscopy (Olympus
FV1000) and photographed at �40 or �100. Cells were counted
from six images per well (�40) with a minimum of 100 cells in
total.

2.9. Determination of 20S proteasome activity

In vitro assay was performed to estimate 20S proteasome ac-
tivity after treatment with different compounds. In Tris-HCl buffer
(50 mM, pH 7.5), 250 ng commercial human 20S proteasome was
reacted with 100 mM Suc-LLVY-AMC at 37 �C for about 30 min with
the treatment of 10 mM tamoxifen or 4-hydroxy tamoxifen using
0.5 mM carfilzomib as control. Hydrolyzed 7-amino-4-
methylcoumarin (AMC) was measured using a microplate reader
(Spark Cyto, Tecan, Zürich, Switzerland) with a filter of 360 nm
excitation and 460 nm emission.

2.10. Cell viability assay

Different cell lines (CRBNþ/þ HCT-116 or SMMC-7721) were
cultured in 96-well plates for 24 h with different compounds
(including CC-885, benzethonium chloride, MLN4924, and statin
drugs). After 48 h of treatment, the absorbance (450 nm) was
measured for Cell Counting Kit-8 (Meilunbio) on a plate reader
(Infinite 200pro, Tecan). Each assay was repeated no less than three
times. The combination index (CI) was estimated using the Com-
puSyn (version 1.0) to define the potential synergistic effect.

2.11. Gene set enrichment analysis

Proteomic profiling data of SMCC-7721 cells treated under
different conditions (DMSO, topotecan, and topotecan þ GSK126)
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were used for gene set enrichment analysis (GSEA). The GSEA was
performed using the oncogenic gene set (C6) from MsigDB (v 6.2).
The permutation type was selected as “gene-set”.

2.12. Docking procedure

Docking was performed using Schr€odinger (version 2.4, New
York City, NY, USA, 2010). The LigPrep module was used to prepare
small molecules. The Epik was used to determine the protonation
states of the molecules [12]. Protein preparation and grid gener-
ation was conducted using crystal structure of DDB1-CRBN E3
ubiquitin ligase bound to lenalidomide (Protein Data Bank (PDB)
ID: 4CI2) before docking. Glide module (version 6) was used to
perform docking procedure with standard precision mode. The
binding interactions were analyzed and displayed using PyMOL
(version 1.8).

2.13. Data and materials availability

All MS raw data have been deposited to the iProX Consortium
with Project ID: IPX0003183000 (URL: https://www.iprox.cn/page/
project.html?id¼IPX0003183000).

3. Results

3.1. Construction of the dynamic proteomic landscape of drug
response in MCF7 cell line

To establish a systematic study of perturbed proteomes induced
by the 78 distinct bioactive compounds, we used a 6-plex TMT
labelled proteomic approach with biological replicates in the MCF7
cell line (Fig. 1A). An overview of these small molecules is provided
in Table S1, which covers almost all types of anticancer drugs. The
targets of the selected compounds were involved in a broad range
of signaling pathways, tyrosine kinases, proteasomes, DNA syn-
thesis/repair enzymes and epigenetic enzymes (Fig. 1B and
Table S1). In addition, the proteome profiles of IMiDs such as
lenalidomide, thalidomide, and their derivatives, which target
protein degradation, were collected in our dataset (Fig. 1B). The
concentrations of the compounds were selected based on their 10-
fold half-maximal inhibitory concentration (IC50) values. For com-
pounds with no apparent effect on cell viability (IC50 � 1 mM),
dosing concentrations were controlled at 10 mM for proteomic
analysis (Table S1). The duration of the compounds was set to 12 h
to avoid non-apparent signals or extensive cell death effects when
the profiles were obtained too early or late.

A total of 32 batches of TMT-labelled samples were analyzed in
our study. The resulting dataset contained quantitative proteomic
data for>15,000 proteins (8,889 genes<1% false discovery rate, and
�1 unique peptide) (Table S2). The average number of proteins
identified in each TMT group was approximately 6,400 (Figs. S1A
and B). All the proteomic data presented a unimodal distribution
(Fig. S1C) and passed the quality control process (Figs. S1A�E).
Because the different time points for the experiments (P1, P2, and
P3) that could result in the batch effect when data from multiple
batches were integrated, we removed it by using a widely used
Combat method (Figs. S1D and E) according to the previous study
[13e15]. An overview of proteomic profiling with different drug
treatments revealed the dynamics of regulated proteins especially
down-regulated proteins, as well as the highest and lowest abun-
dant proteins identified by the median protein regulation across all
compounds (Fig. 1C). The Spearman's correlation coefficient of
protein expression was found to be much higher in corresponding
compounds with similar pharmacological mechanisms than in
those with distinct pharmacological mechanism (Fig. 1D). In
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Fig. 1. Proteomic landscape of drug treatment. (A) Workflow of the proteomic profiling and bioinformatic analysis. (B) Summary of the information for compounds we used. (C)
Overview of the proteomic profiling with different drug treatment. Shown are the dynamics of protein abundances (log2 ratio). The highest- and lowest-abundance proteins,
identified by the median of protein regulation across all compounds, are shown in the upper right and bottom-left box respectively. (D) The spearman correlation between samples
with different drug treatment. The color represents different class of drugs as shown in Fig. 1B. (E) The results of principal components analysis. The color represents different class
of drugs as shown in Fig. 1B. TMT: tandemmass tag; AMPK: adenosine monophosphate (AMP)-activated protein kinase; BET: bromodomain and extra-terminal domain; CDK: cyclin
dependent kinase; HDAC: histone deacetylase; IMiDs: immunomodulatory drugs; PI3K: phosphatidylinositol-3-kinase; Dim: dimension.
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addition, principal component analysis (PCA) was performed on the
signatures of all the 78 compounds. As expected, most compounds
with similar mechanisms clustered closer than the others (Fig. 1E),
such as cytotoxic drugs, epigenetic inhibitors, and inhibitors tar-
geting the ubiquitin-proteasome system. Compared with these
small molecules, compounds targeting the cell cycle were far from
each other in the PCA analysis (Fig. 1E), which may indicate a wide
variation in the diverse mechanisms and biological effects of CDK
inhibitors. Known IMiDs-dependent targets [16] were down-
regulated after treatment of IMiDs; however, some of them were
not quantified which may be due to cell-type specificity (Fig. S1F).

3.2. The application scope of our proteomic signature resource

We further estimated the application potential of our database
to understand the underlying pharmacological mechanisms using
proteomic data from different cell lines, different processes of drug
treatment, and different previously reported proteomic platforms.
For these analyses, proteomic signatures from other groups were
collected and used as input data to query the database. In this
131
process, different therapeutic classes of drugs or bioactive “tool”
compounds were included (Table S3), and the similarity was
compared using proteome data in our and other groups.

A previous deep proteome dataset showed the proteomic
response to treatment with nine compounds derived from different
drug types in MCF7 and A549 cell lines in a TMT-based quantitated
manner [4]. All signatures of the nine drugs in both cell lines were
used as input data for the “query” process, and detailed results of
the top five drugs with high similarity (P < 0.05, rho > 0.2) in our
dataset were obtained (Fig. 2A) [4]. Most of the perturbations
caused by drug treatment on the proteome were recapitulated in
our database in both the MCF7 and A549 cell lines. For example,
only one Mdm2 inhibitor (nutlin-3a) was used to establish our
database, and our data showed that its signature ranked at the top
(rho ¼ 0.45) after the query of nutlin-3a signatures in both cancer
cell lines (Fig. 2A). Moreover, notably higher similarity was
observed between the signature of bortezomib and that of our
three proteasome inhibitors (bortezomib, rho ¼ 0.42; carfilzomib,
rho ¼ 0.4; and MG-132, rho ¼ 0.4) in the database (Fig. 2A). In
addition, the signatures of the tubulin inhibitors vincristine



Fig. 2. Proteomic alteration revealed the mechanism of drug effect. (A) The querying results of our database using signatures from published proteome data [4] based on Tandem
Mass Tag (TMT) labeling method. (B) The querying results of our database using signatures from published proteome data [17e22] based on stable isotope labeling by amino acids in
cell culture (SILAC) labeling and label-free method. BET: bromodomain and extra-terminal domain; CDK: cyclin dependent kinase; CHEK: checkpoint; HDAC: histone deacetylase;
MAPK: mitogen-activated protein kinase; Mdm2: murine double minute 2; IMiDs: immunomodulatory drugs; NAE: NEDD8-activating enzyme; PARP: poly(adenosine diphosphate-
ribose) polymerase; PDGFR: Platelet-derived growth factor receptor; TGF: transforming growth factor; SAHA: suberoylanilide hydroxamic acid; PI3K: phosphatidylinositol-3-kinase.
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(rho ¼ 0.6) and colchicine (rho ¼ 0.58) in our database were
captured when the proteomic signature of vincristine treatment
was used as input data (Fig. 2A). A relatively low similarity was
found for cytotoxic drugs, which may be due to their similar
pharmacological effects after treatment with DNA synthesis in-
hibitors, DNA alkylating drugs, and topoisomerase inhibitors
(Fig. 2A). No drug in our database was similar to raltitrexed (a DNA
synthesis inhibitor). For querying the proteomic signature of two
tyrosine kinase inhibitors (dasatinib and gefitinib), we only found
that the profiles of the BCR/ABL kinase inhibitor imatinib or Src/Abl
inhibitor bosutinib were in the top five ranks but other tyrosine
kinase inhibitors were out of the top five ranks (Fig. 2A), which
indicated that the signature, at the phosphorylation level but not
the protein level, may be more representative of kinase inhibitors.
Our results indicate that our database can be utilized for the MCF7
cell line as well as other cell lines.

We next explored whether our TMT-based drug signature
database could also be used to explore pharmacological mecha-
nisms using proteomic signatures produced from other quantifi-
cation methods, such as Stable isotope labeling by amino acids in
cell culture (SILAC) or label-free quantitative proteomic methods.
Our results showed that the proteomic signatures from different
types of drugs acquired using both SILAC and label-free proteomic
strategies [17e22] correlated well with the proteomic profiles of
similar drugs identified in our database (Fig. 2B).

These results showed the broad application potential of our
dataset in exploring pharmacological mechanisms using the prote-
omic data produced by our group and others, although the differ-
enceswere unavoidable in fields such as cancer cell types, proteomic
strategies (TMT-based, SILAC-based, and label-free-based methods),
132
compound concentrations, and duration. This result is consistent
with those obtained at the transcriptomic level [1]. However, we
could not ignore the “false positive” or “false negative” query results,
which may be due to the initial experimental designs of our and
other groups.

3.3. The characterization of commonly changed proteins under the
treatment of different drugs

Next, to explore the potential molecular mechanism of drug
activity, we determined the commonly regulated proteins in each
drug type (Student's t-test, P < 0.05 and fold change > 1.5, in at least
60% of drugs for each drug type). Using this criterion, we identified
187 commonly upregulated proteins and 160 commonly down-
regulated proteins. To explore the correlation between each type of
drug perturbation, we constructed PPI networks for these proteins
using the String database (Fig. 3A), in which 78 upregulated pro-
teins with 128 interactions and 94 downregulated proteins with
432 interactions were acquired (Fig. 3A). Interestingly, more in-
teractions were observed among commonly downregulated pro-
teins than among commonly upregulated proteins. Interactions
among commonly regulated proteins may indicate complementary
possibilities of different drug perturbations.

To identify more important proteins for the commonly down-
regulated proteins of each type of drug perturbations, we estimated
the gene dependence of all the commonly downregulated proteins
in each drug class using the DepMap database (https://depmap.org/
portal/download/). The average gene essentiality scores (CRISPR-
Cas9 gene knockout scores (CERES)), which represent gene
dependence, were calculated for the 12 estrogen receptor (ER)-

https://depmap.org/portal/download/
https://depmap.org/portal/download/


Fig. 3. Proteomic alteration by the treatment of each drug type. (A) Protein-protein interaction (PPI) networks of upregulated/downregulated proteins from nine class of com-
pounds. (B) The representative downregulated proteins with the CRISPR-Cas9 gene knockout scores (CERES) < �0.6 of MCF7 cell line and the mean CERES < �0.6 of 12 estrogen
receptor (ER) positive breast cancer cell lines for each type of drugs. The number shows mean of fold-change for protein in each type of drugs. (C) The prognosis power of the
potential key proteins. The color of circle represents the protein expression positively (red) or negatively (blue) correlated with the poor prognosis in breast cancer. Log-rank P-value
was used for the significance.*P < 0.05 and **P < 0.01; n.s.: no significance. NA: not available. AMPK: adenosine monophosphate (AMP)-activated protein kinase; BET: bromodomain
and extra-terminal domain; IMiDs: immunomodulatory drugs; PI3K: phosphatidylinositol-3-kinase.
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positive breast cancer cell lines (similar to MCF7 in genetic back-
ground; Table S4) for the downregulated proteins (Fig. 3B). The
results showed downregulated proteins with both CERES < �0.6 in
MCF7 cell line and average CERES<�0.6 (defined as essential genes
[23]) in 12 ER-positive breast cancer cell lines as the potential key
proteins for pharmacologic activity (Fig. 3B). Interestingly, four U.S.
Food and Drug Administration (FDA)-approved drug targets
defined in the Human Protein Atlas (HPA) database (https://www.
proteinatlas.org/search/protein_class:FDAþapprovedþdrugþtarg-
ets) were identified as potential key proteins for pharmacological
activities, including TOP2A, RRM2, DHFR, and ESR1. Furthermore,
we explored the prognostic power of the above potential key pro-
teins using The Cancer Genome Atlas breast cancer data analyzed in
the HPA database (https://www.proteinatlas.org/humanproteome/
133
pathology). Our results also indicated that for each drug type,
higher expression of some key proteins was positively associated
with poor prognosis (Fig. 3C). The co-inhibition of these key pro-
teins may have positive effects on breast cancer. We provided re-
sources for the discovery of new therapies.

3.4. Our dataset revealed pharmacological mechanism of natural
products

Natural products, originating mainly from plants and microor-
ganisms, have diverse chemical skeletons with broad biological
activities [24]. Nearly 40% of FDA-approved compounds were nat-
ural products in the past 30 years [24e28]. Because natural products
are not rationally designed based on known targets, they have been
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Fig. 4. Drug mechanism querying of natural products. (A) Workflow of the drug mechanism prediction of natural product. (B) MCF7 cells treated with dimethyl sulfoxide (DMSO),
colchicine, or xanthohumol (XN) for 24 h. Then the a-tubulin morphology was detected by immunofluorescence with anti-a-tubulin and 4',6-diamidino-2-phenylindole (DAPI)
staining. Shown was the representative images which visualize alpha-tubulin (red) and nuclear (blue). (C) Average immunofluorescence intensity was count from 6 different
regions. One-way analysis of variance was used in the analysis. Compared with DMSO, ***P < 0.001 and ****P < 0.0001. AMPK: adenosine monophosphate (AMP)-activated protein
kinase; IMiDs: immunomodulatory drugs; BET: bromodomain and extra-terminal domain; CDK: cyclin dependent kinase; TGF: transforming growth factor; HDAC: histone
deacetylase; Mdm2: murine double minute 2.
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reported to have multiple targets. Our dataset then provided an
opportunity for exploring new mechanism based on the “query
assay” of proteomic signatures of natural products (Fig. 4A). The
proteomic data with statistical significance (Student's t-test,
P < 0.05, fold-change > 1.5) from previous study [29e32] were used
as signatures (Table S5) queried in our database, and drugs with
similar profiles tended to appear at the top of the list with a highly
positive Spearman's correlation (P < 0.05, rho > 0.2) (Fig. 4A).

We queried the proteomic signature of Rosemary extract from a
previous study in our database [29] (Table S5). Our results showed
that the three different proteasome inhibitors presented a high
positive correlation (rho ¼ 0.54 for carfilzomib, rho ¼ 0.52 for
MG132, and rho ¼ 0.45 for bortezomib), indicating that some major
components in Rosemary may inhibit proteasome activity. This hy-
pothesis was ultimately confirmed by a previous study showing that
carnosol, a dietary diterpene and major polyphenol in Rosemary
extract, inhibited 20S proteasome proteolytic activity [33]. Similarly,
signature of extract of Lippia origanoides [30] (Table S5) was found to
be similar to proteasome inhibitors in function (rho ¼ 0.24 for
MG132, rho ¼ 0.22 for carfilzomib), which was confirmed by a
previous study, as the polyphenol quercetin and apigenin were re-
ported to be abundant in it and showed inhibition of the 20S pro-
teasome [34]. In addition, the cyclin dependent kinase inhibitor Ro-
3306 ranked at the top of the list after the signature query of
odoroside A (rho ¼ 0.27), and its potential activity in causing cell
cycle arrest was supported by previous studies [31].

Chalcones exhibit anticancer activities, induce cell apoptosis,
disrupt angiogenesis, and inhibit tubulin assembly [32].We queried
the proteomic signature of xanthohumol (a prenylated chalcone
found in hops) [32] in our database (Table S5). The results showed
that its proteomic pattern was similar to that of the tubulin in-
hibitors colchicine (rho ¼ 0.39) and vincristine (rho ¼ 0.37). Thus,
we explored whether xanthohumol inhibited tubulin assembly
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using an immunofluorescence assay (Fig. 4B). Our results clearly
showed that the fluorescence shape size of the cytoskeleton was
relatively decreased in a dose-dependent manner when cells were
treated with xanthohumol (Fig. S2). The results also showed
decreased fluorescence intensity with an increased concentration
of xanthohumol in MCF7 cells (one-way analysis of variance,
P < 0.05), with the tubulin inhibitor colchicine as a positive control
(Fig. 4C). This result indicates the predictive power of our database
and suggests a new strategy for its application in natural product
discovery and development.

3.5. Proteomic signatures from clinically approved drugs identified
“off-target” pharmacological mechanisms

The polypharmacology of drugs presentsmultiple-target activity,
leading to adverse effects on human safety. Meantime, the unprec-
edented efficacy of polypharmacological drugs for the treatment of
multigenic diseases presents opportunities for modern drug dis-
covery and drug repurposing [35]. Therefore, effective inspection of
unknown mechanisms for FDA-approved drugs could not only
compromise drug safety, but also confer superior therapeutic effi-
cacy. By comparing the proteomic perturbation profiles of clinical
drugs with the signatures derived from our database, we could
predict potential “off-target” pharmacological effects based on the
positive Spearman's correlation result (P < 0.05, rho > 0.2) (Fig. 5A).

Tamoxifen and 4-hydroxytamoxifen, which are selective estro-
gen receptor modulators, have been used clinically to treat patients
with ER-positive breast cancer [36]. We extracted the proteomic
signature of 4-hydroxytamoxifen (Table S5) in a previous study [37]
and used this signature for database “query” process. Surprisingly,
we found that the proteomic fingerprints of 4-hydroxytamoxifen
presented potentially diverse pharmacological activities, such as
an AMPK activator (metformin), a proteasome inhibitor



Fig. 5. Off-target effect prediction of U.S. Food and Drug Administration (FDA)-approved drugs. (A) Workflow of the off-target effect prediction using published proteome profiling
treated with US FDA-approved drug. (B) The in-vitro validation of the 20S proteasome inhibition. The prediction used signatures from the published proteome data [37]. (C) The
pharmacological activities of CC-885 (25 nM) (left) and statin drugs (right) in HCT116 cell line. One-way analysis of variance was used in the analysis (n ¼ 6 for each group). (D) Cell
viability of MCF7 or cereblon (CRBN) knockout (KO) MCF7 cells treated with lovastatin (LOV, 25 mM) at different dose. Student's t-test was used in the analysis (n ¼ 6 for each group).
(E) Molecular docking result of LOV with CRBN protein. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. DMSO: dimethyl sulfoxide; MLN: MLN4924; WT: wide type.
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(carfilzomib), an Mdm2 inhibitor (Nutlin-3a), and an epigenetic
inhibitor (valproic acid and JQ-1). A previous study reported that
the tamoxifen derivative ridaifen-F (Fig. S3A) directly inhibited the
human 20S proteasome [38]. Therefore, we tested whether
tamoxifen and 4-hydroxytamoxifen could function as potential
proteasome inhibitors. Our results clearly showed that tamoxifen
and 4-hydroxytamoxifen could inhibit chymotrypsin-like activity
in 20S purified proteasome with Suc-LLVY-AMC labelled peptide as
a substrate and carfilzomib as a positive control (Fig. 5B). These
results indicate the potential application of our database for
exploring pharmacological effects.

Using the same “query” strategy, we found lovastatin [39] and
benzethonium chloride [40] (BZN) may have similar pharmaco-
logical mechanism with IMiDs (Table S5). IMiDs such as thalido-
mide and its analogs can bind to the cereblon (CRBN) subunit of the
CRL4 CRBN E3 ubiquitin ligase, which confers ubiquitination and
proteasomal degradation of specific substrates. This pharmaco-
logical mechanism has been clinically approved for the treatment
of multiple myeloma [41,42]. In addition, neddylation inhibitors
such as MLN4924 can inhibit the activity of cullin-RING E3 ligases
and reverse the anticancer activity of thalidomide and its de-
rivatives [43]. We then conducted a cell viability assay using lova-
statin and its derivative atorvastatin in a MLN4924-dependent
manner with CC-885 (a novel thalidomide derivative with IMiDs
activity) as a positive control. The results showed that lovastatin
inhibited the cellular survival rate, and the addition of MLN4924
prevented the cytotoxic activity of these two statin drugs, which
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was consistent with the pharmacological results for CC-885
(Fig. 5C). In addition, two other statin drugs (atorvastatin and
revastatin) showed similar pharmacological activities (Fig. 5C),
indicating their potential “off-target” effects. The combination of
benzethonium chloride and MLN4924 did not have a similar effect
(Fig. S3B). Next, we compared the viability of CRBNþ/þ and the
CRBN�/� cell lines treated with lovastatin to explore the relation-
ship of statin drugs with CRBN subunit, and the results showed that
significantly stronger cytotoxic activity of lovastatin was observed
in CRBNþ/þ cell line in increasing drug dose (Fig. 5D). These results
indicated a possible dependency of CRBN on the pharmacological
activity of lovastatin. This hypothesis was further supported by
molecular docking results, which showed a potential interaction
between lovastatin and the CRBN subunit (Fig. 5E).

Polypharmacology of small molecule was mostly related to their
“off-target” effects and was a puzzling question in their clinical use
or rational design of synergistic combinations [44e46]. Our pro-
teomic pattern-based study contributes to a key element in drug
discovery in view of this problem.

3.6. Rational design of synergistic drug combinations by the
complementary proteomic profiles

Developing highly selective molecules targeting a definite
“driver” molecular event was as exciting as “targeted therapy”, but
its major limitation was the drug resistance through rewiring of
cellular signaling network [47]. Our proteomic platform can also be



Fig. 6. Combination therapy prediction for drug resistant exploration. (A) Workflow of the combination therapy prediction using published proteome profiling treated with drugs in
resistant versus sensitive cells. (B) The combination index for topotecan þ GSK126 combination at different dose in SMMC-7721 cells. The prediction used signatures from published
proteome data [48]. (C) The oncogenic pathway analysis for proteomic profiling of SMMC-7721 cells treated with dimethyl sulfoxide (DMSO), topotecan, and topotecan þ GSK126
combination. (D) The cell viability of SMMC-7721 cells treated with different drugs for triple-combination therapy validation. One-way analysis of variance was used in the analysis.
*P < 0.05 and ****P < 0.0001. GSK126: 10 mM; topotecan: 500 nM; AZD: AZD8055 (50 nM). AMPK: adenosine monophosphate (AMP)-activated protein kinase; NF-kB: nuclear factor
kappaB; CDK: cyclin dependent kinase; CHEK: checkpoint; HDAC: histone deacetylase; JAK: janus kinase; NA: missing value; FDR: false discovery rate.
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used to elucidate mechanistic biomarker candidates and identify
drug combination strategies (Fig. 6A). For primary drug resistance,
the proteomic profiles of sensitive and resistant cell lines can be
acquired with or without treatment with the corresponding drugs.
The difference between the proteomic signature under drug stim-
ulation could be used as input data for “query” process, and com-
pounds with negative Spearman's correlation coefficient (P < 0.05,
rho < �0.2) may be combined drugs utilized in the resistant cell
line. Similarly, for acquired drug resistance, the proteomic profile
difference between the sensitive and acquired resistant cell lines
was utilized as input data, and drugs in our database were
considered as potential combined drugs when the corresponding
Spearman's correlation coefficients were negative (P < 0.05, rho
< �0.2) (Fig. 6A). We then used our dataset to explore potential
drug combinations.

Our previous study reported one of the key drug resistance
mechanisms of the methyltransferase EZH2 inhibitor (EZH2i) in
solid tumors and showed that combined inhibitionwith BRD4 could
increase the sensitivity of EZH2i in solid tumors [48]. To validate the
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power of our database in exploring potential drug combination, we
queried the proteomic signature of EZH2i in primary resistant and
sensitive cell lines acquired previously [48] (Table S6). Our results
showed that the BRD4 inhibitor, JQ1, had a negative Spearman's
correlation coefficient (rho ¼ �0.23) with EZH2i resistance. This
drug combination of EZH2i and JQ1 was then validated in an EZH2i
resistant cell line in our previous study, which indicated the utili-
zation potential of our database for predicting drug combination
[48]. In addition, we determined that the topoisomerase inhibitor
topotecan presented a notably higher negative Spearman's corre-
lation coefficient (rho¼�0.46), suggesting its synergistic effectwith
the EZH2 inhibitor. Cell viability was significantly different between
the individual drugs and the combination of the two drugs
(Fig. S4A). We then calculated the CI of EZH2i and topotecan in
EZH2i resistant SMMC-7721 cell line, and the results showed a
synergistic effect (combination index < 1) between the EZH2 in-
hibitor GSK126 and topotecan at different doses (Fig. 6B and
Table S6). To determine the molecular mechanism of this synergistic
effect, we conducted a TMT-based proteomic strategy to compare
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the dynamic proteome changes in topotecan treatment with a
combination of the two drugs, using DMSO as a control in three
biological replicates (Fig. S4B). The GSEA pathway analysis (C6:
oncogenic pathway) showed several oncogenic pathways were
downregulated, including VEGF, TGFB, MEK, etc., by the combined
inhibition of EZH2 and topoisomerase compared with the single
treatment with topotecan and DMSO (Fig. 6C). It may be the po-
tential reason for the synergistic effect of these two drugs. However,
we also found that several oncogenic pathways were upregulated in
the combination group, in which the mammalian target of rapa-
mycin (mTOR) signaling kinase pathway was highly enriched
(Fig. 6C). This result suggests that the triple-combination inhibition
of EZH2, topoisomerase, and mTOR signaling pathway may display
better efficacy, which was further proven by cell viability experi-
ments with the treatment of these three drugs (Fig. 6D).

Next, we explored potential combination strategies for acquired
drug resistance by querying the proteomic differences between
acquired resistant and sensitive cell lines [49e54] (Table S6). Based
on the negative correlation, corresponding drug combinationswere
estimated to potentially overcome different types of drug resis-
tance (Table S6).

Therefore, a system-wide proteomic approach at the protein
level integrated with pharmacological analysis could raise rational
design of potential drug combinations and facilitate new thera-
peutic options.

4. Discussion

Studying intracellular dynamic molecular networks perturbed
by drug stimulation can provide useful information for revealing
MoAs and “off-target” effects of compounds. Perturbation experi-
ments on cancer cell lines have advanced our understanding of the
biological consequences of phenotypic changes under stress [55].
Recently, pharmacologic and genomic perturbation studies have
been conducted on cell lines at the genomic level, in which
genome-wide “cancer dependency maps” [23,56,57] and
transcriptome-wide “Connectivity Map” [58] have pioneered this
concept and provided a system-level view of phenotypic and
cellular effects in cancers. Large-scale drug signature profiles at the
transcriptional level have been successfully utilized to identify
connections between different compounds, characterize novel
pharmacological mechanisms, and explore new drug uses [1,58].
However, the relatively low correlation coefficient between tran-
scriptomic and proteomic data, as reported in both cell lines [59,60]
and clinical tumor samples [61], reveals the limitations of using
mRNA data as a reliable readout. Proteomes, being directly influ-
enced by chemical substances, exhibit superior specificity for
compound interference compared to transcriptomes. Therefore,
reverse-phase protein array or MS-based protein-level readout
assays have been used to quantitatively predict how cancer cells
employ their adaptive protein response under the stress of drug
treatment [4e7]. These two proteome-wide methods are comple-
mentary due to their identification scales and study purposes,
which highlight the value of the systematic proteomic character-
ization of behaviors or adaptations in cancers.

In this study, we present a TMT-based proteomic platform for
the global proteome perturbation profiling of 78 compounds in the
MCF7 cell line, which covers almost all types of anticancer drugs.
We explored the functional relevance of our dataset using a
“querying” process based on the similarity of proteomic signatures
acquired in other studies. We uncovered the microtubule-
inhibitory activity of the chalcone xanthohumol, and the potential
“off-target” effects of tamoxifen and lovastatin. In addition, the
protein responses of different compounds were used for the
rational design of drug combination therapies, and we found a
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synergistic effect between the EZH2 inhibitor GSK126 and the DNA
synthesis inhibitor topotecan. These results indicate the successful
utility of our protein response dataset, which facilitates therapeutic
opportunities for new uses of conventional drugs.

We also recognize the current limitations of the rational design
of our project. First, we controlled concentration at 10 mM for most
of the compounds we used, and the duration was set as 12 h.
However, this design is somewhat unsuitable for compounds such
as epigenetic inhibitors. Second, we only used the MCF7 cell line in
our database. As an important cell line for drug screening, MCF7 has
been used to identify transcriptomic drug responses [1]. Although
our dataset was suitable for query processing of proteome signa-
tures acquired in other cancer cell lines, some false negative or
positive results were unavoidable, such as the BZN signature (from
the A549 cell line). This may have resulted from the difference in the
origin of the tumor tissues, as we only used the MCF7 cell line for
dataset establishment. Mutation information (Dep-Map Public 19Q3
[62], https://depmap.org/portal/download/), such as PIK3CA E545K
and GATA3 frameshift mutations, may contribute to proteomic sig-
natures. We also found a significant difference (Fisher's exact test,
P ¼ 0.0073) in the number of non-silent mutations between the
MCF7 and A549 cell lines. The power (n¼ 2 for each drug treatment)
was unsuitable for multiple testing. Third, proteomic signatures at
the post-translational modifications (PTM) level are also important,
in which dynamic PTM changes in phosphorylation, epigenetic
modification, acetylation and ubiquitination directly reflect molec-
ular perturbations in signaling pathways, gene expression, energy
metabolism, and protein turnover events, respectively. Therefore,
the integration analysis of proteomic and diverse PTM-omics with
phenotypic drug response or pharmacological data provides new
insights into drug combinations, especially for kinase inhibitors,
ubiquitination system modulators, epigenetic inhibitors, and
metabolism inhibitors. Additionally, we noted that the first hit of
some signatures was not the drug type itself, such as for 8-
azagunaine, and no drug in our database was similar to raltitrexed
(a DNA synthesis inhibitor). This discrepancy may be due to the loss
of drugs with a signature similar to that of 8-azaguanine and ralti-
trexed, indicating the incompleteness of our database.

5. Conclusions

In conclusion, our data portal raised functional connectivity by
comparing proteome profiles to identify novel biological effects,
which promoted the integrated analysis of various data types and
facilitated the investigation of drug behaviors in cancer therapy.
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