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ABSTRACT: With the emergence of antibody-evasive omicron
subvariants (BA.2.12.1, BA.4, and BA.5), which can compromise
the efficacy of vaccination, it is of utmost importance to widen the
finite therapeutic options for COVID-19. Although more than 600
co-crystal complexes of Mpro with inhibitors have been revealed,
utilizing them to search for novel Mpro inhibitors remains limited.
Although there were two major groups of Mpro inhibitors,
covalent and noncovalent inhibitors, noncovalent inhibitors were
our main focus due to the safety concerns with their covalent
counterparts. Hence, this study aimed to explore Mpro non-
covalent inhibition ability of phytochemicals extracted from
Vietnamese herbals by combining multiple structure-based approaches. By closely inspecting 223 complexes of Mpro with
noncovalent inhibitors, a 3D-pharmacophore model representing typical chemical features of Mpro noncovalent inhibitors was
generated with good validation scores (sensitivity = 92.11%, specificity = 90.42%, accuracy = 90.65%, and goodness-of-hit score =
0.61). Afterward, the pharmacophore model was applied to explore the potential Mpro inhibitors from our in-house Vietnamese
phytochemical database, revealing 18 substances, 5 of which were in vitro assayed. The remaining 13 substances were then examined
by induced-fit molecular docking, revealing 12 suitable compounds. A machine-learning activity prediction model was developed to
rank the hit, suggesting nigracin and calycosin-7-O-β-glucopyranoside as promising Mpro natural noncovalent inhibitors.

1. INTRODUCTION
Since the declaration of COVID-19 as a global pandemic by
the WHO in 2019,1 the vast spread of SARS-CoV-2 has caused
more than 600 million confirmed cases and millions of deaths,
becoming one of the most detrimental global health crises in
modern history.2 Although vaccination has been approved
worldwide, treatments for SARS-CoV-2 remain limited.3,4

Moreover, with the surge of SARS-CoV-2 omicron subvar-
iants,5 especially the antibody-evasive ones (BA.2.12.1, BA.4,
and BA.5),6 the efficacy of COVID-19 vaccines and
therapeutic monoclonals is compromised.6 Thus, there is an
utmost need for the discovery of efficient therapeutic agents
against SARS-CoV-2. Several targets that play essential roles in
the viral replication are being studied in the search for SARS-
CoV-2 inhibitors, including the main protease (Mpro).7 Due
to its high conservation among related viruses, Mpro has
become an appealing target for developing SARS-CoV-2
antiviral drugs.7

SARS-CoV-2 Mpro inhibitors can be divided into covalent
inhibitors (such as N3, GC376) and noncovalent inhibitors
(such as X77, ML188).8 The covalent inhibitors block the
binding site by forming a covalent bond with Mpro, usually
with Cys145 in the catalytic dyad His41-Cys145.7 By contrast,
the noncovalent ones can inhibit Mpro without using any form
of covalent bond.7 However, despite the merits of covalent
inhibitors and their resurgence recently, their safety aspects,

including the potential side-effects from off-targeting and
prolonged effects, have always been a distaste for the revelation
of novel drugs.9,10 Though there are a handful of highly
selective covalent Mpro inhibitors (such as compound 18) that
do not inhibit human cysteine protease (like cathepsin B and
L),11 many potent covalent inhibitors with enzymatic
inhibition and cellular antiviral activity (including GC376,
boceprevir, calpain inhibitors II, and XII) are not as selective as
their noncovalent counterparts (such as 23R and ML188).8

Moreover, in terms of inhibiting Mpro, the potency of
irreversible covalent Mpro inhibitors was less reliable due to
the limitation of conventional IC50 measurements (having
different incubation times will lead to different IC50 values).

7

Hence, noncovalent inhibitors remain the focus of this research
since they can act alone or provide starting points for
developing safer covalent inhibitors.
One of the most fascinating aspects in the search for SARS-

CoV-2 inhibitors is the sheer amount of identified
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phytochemicals with the Mpro inhibiting activity (such as
myricetin with the IC50 value being 3.68 μΜ, dihydromyricetin
with IC50 being 1.14 μΜ, quercetagetin with IC50 being 1.24
μΜ, and baicalein with IC50 being 0.94 μΜ).12 With many
advantages of natural substances in drug discovery and
development,13,14 the identification of natural SARS-CoV-2
Mpro inhibitors may lead to the development of effective
therapeutic agents against the COVID-19 pandemic. More-
over, as a hot target for revealing novel anti-SARS-CoV-2
agents, a plethora of inhibitors targeting Mpro was discovered
in a wide range of research (such as the COVID Moonshot
initiative, HTS studies, and drug repurposing studies).7,12,15−17

As a result, more than 600 3D co-crystal structures of Mpro
with the inhibitors (both covalent and noncovalent) were
revealed. However, utilizing the information offered by those
structures to search for new inhibitors remains finite.
With that in mind, we aimed to explore novel natural

noncovalent inhibitors through structure-based approaches.
Initially, by closely inspecting 223 co-crystal complexes
gathered from studies and the COVID Moonshot initiative
(Supplement data 1),15 the properties of the Mpro binding site
were analyzed to generate a structure-based 3D-pharmaco-
phore model. The model was then applied to identify novel
natural noncovalent inhibitors from our in-house natural
substance database (Supplement data 2). In order to
understand the binding interactions between the hits and
Mpro, induced-fit molecular docking with the employment of
the pharmacophore model was performed by the Dock module
in MOE (version 2022.02). Due to the limitation of the
scoring function in molecular docking,18 by combining the
OnionNet2 interaction fingerprints generated with the deep

learning module in RapidMiner (Educational version
9.10.007),19 a machine-learning-based activity prediction
model was employed to determine the best substances.

2. RESULTS AND DISCUSSION
2.1. 3D-Pharmacophore Development. 2.1.1. 3D-Phar-

macophore Generation. Although a plethora of co-crystal
structures of Mpro in complex with inhibitors have been
revealed recently, utilizing them to develop structure-based
pharmacophore models remains finite. So far, most structure-
based pharmacophore models for Mpro inhibitors have only
been generated based on a handful of complexes,20−24 which
might not fully represent typical Mpro inhibitors. Moreover, in
some cases, pharmacophore models with only noncovalent
features have been built by mixtures of different groups of
inhibitors, despite the differences in their inhibition mecha-
nisms. Hence, in this study, we used a large number of Mpro
structures in complexes with noncovalent inhibitors (223
complexes) to identify the characteristics of typical Mpro
noncovalent inhibitors and applied them to screen for potential
natural inhibitors from our library of compounds isolated from
Vietnamese herbals.
Initially, 223 co-crystal structures of SARS-CoV-2 Mpro

with inhibitors were closely inspected individually using
Discovery Studio Visualizer to explore the interaction proper-
ties (hydrogen bond, ionic bond, and hydrophobic interaction)
of the Mpro binding site when it interacts with noncovalent
inhibitors. By mapping out the patterns of interactions in the
binding site (Supplement data 1), it is clear that S1 and S2 are
the two key interaction sites of the Mpro binding site (Figure
1A).

Figure 1. Illustration of the SARS-CoV-2 Mpro binding site and the main interaction subsites using Discovery Studio Visualizer (PDB ID: 7S3K):
(A) 3D model of Mpro binding pocket with the subpockets location being labeled such as S1, S2, S3, S4, S5, and subunit S1′. (B) Key residues in
S1 (yellow dashed line) and S2 (green dashed line). (C) 2D illustration of the interactions between Mpro and a noncovalent inhibitor
(Z1530718726, purple, IC50 = 1.8 μM) (PDB ID: 7S3K) with the S1 and S2 being circled in yellow and green, subsequently. (D) Z1530718726
(purple) in the binding site with the key residues and its hydrogen bonds shown as green lines. The subsites S1 and S2 are circled in yellow and
green, respectively.
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From our analysis, S1 can be characterized as a shallow
hydrophilic pocket with the key residues being Leu141,
Asn142, Cys145 (the catalyst dyad), His163, and Glu166
(Figure 1B). No ionic bond between Mpro and inhibitor was
recorded in 223 complexes. Additionally, as binding with
His163 through a hydrogen bond is crucial, baicalein is the
only case that can indirectly form a hydrogen bond with
His163 through a water molecule.25 However, as the direct
bond with His163 occurs in all other cases, it is the go-to
characteristic of potential Mpro inhibitors. From our
observation, there was also a nonclassical hydrogen bond
formation between Cys145 and noncovalent inhibitors, in
which the thiol group of Cys145 acted as a hydrogen bond
acceptor (Figure 1D). Despite this, the bond was considered
more coincident than crucial since the bond lengths in most
cases were too high (3.30−4.00 Å) compared to a typical
hydrogen bond (2.70−3.30 Å).26 Curiously, most of the
noncovalent inhibitors (217 compounds) were also favored in
forming a hydrophobic interaction (π-amid) with the amid
bridge connecting Leu141 with Asn142 by using an arene
subunit, which is in agreement with the structure−activity
relationship result released by the Moonshot initiative�an
increase in potency due to picking up additional hydrophobic
interaction with Asn142.15

On the other hand, the S2 pocket seems to have a much
more hydrophobic nature, with the dominant interactions
being π−π stacking formed by the sidechain of His41 (the
catalyst dyad) and alkyl interactions with the sidechain of
Met49 and Met165 with the arene subunit of inhibitors
(Figure 1C,D).
In conclusion, a typical Mpro noncovalent inhibitor should

have four main features, (i) having a hydrophobic arene
subunit in the S2 site; (ii) and (iii) forming hydrogen bonds
with the sidechain of His163 (usually through an acceptor)
and Glu166 (through an acceptor); and (iv) having an arene
group in the S1 pocket. These results concurred with many
previous reports on the structural basis of potential inhibitors
targeting SARS-CoV-2 Mpro and the experimental data
released by the COVID Moonshot initiative.15,27 From the
four key features, the 3D-pharmacophore model (A)
representing the typical Mpro noncovalent inhibitors was

generated using the Pharmacophore Query Editor of MOE
(Figure 2). As a result, the pharmacophore hypothesis
supported by experimental data provided the information to
discover and design new Mpro inhibitors.
The purple query is hydrogen acceptor or hydrogen donor

(Acc/Don) (forming a hydrogen bond with His163 sidechain),
the green query is arene subunit (Aro) (π−π stacking
interaction with His41 and an arene subunit in S1), and the
cyan one is hydrogen acceptor (Acc) (forming a hydrogen
bond with Glu166 backbone).
2.1.2. 3D-Pharmacophore Validation and Refinement. In

order to assess the ability to identify and distinguish active
compounds from inactive ones, the pharmacophore model A
was validated by screening a test set. The model validation
result is illustrated in Table 1.
Despite the high sensitivity in identifying active compounds

(Se = 94.74%), the model is inadequate for the inactive one
(Sp = 80.54%). As a result, the accuracy and the GH score of

Figure 2. Pharmacophore model (model A) of Mpro noncovalent inhibitors represents the required interactions for inhibiting Mpro in the binding
site.

Table 1. Validation Result of Pharmacophore Models (A
and B)

model A model B

number of active compounds (A) 190
number of inactive compounds (I) 1264
hits (Ht) 426 296
active hits (Ha) 180 175
sensitivity (Se) 94.74% 92.11%
specificity (Sp) 80.54% 90.42%b

accuracy (Acc) 82.39% 90.65%
goodness-of-hit (GH) scorea 0.45 0.61

a = ×× +
× ×( ) ( )GH 1Ha Ha(3A Ht)

4 Ht A
Ht

I
.28 Generally, if the GH score

is between 0.16 (score of a typical bad model) and 0.50 (score of a
typical good model), the model is considered an average one.28 In the
case of a good pharmacophore model, its GH score should be 0.50 or
higher.28 bThe boldface values illustrate the improvement of the
pharmacophore model after refinement (comparing the refined model
B with the original model A). There is an increase of 9.88% (roughly
10%) in the specificity, 8.26% in the total accuracy, and from 0.45 to
0.61 in the GH score.
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model A are 82.39% and 0.45, which indicate the insufficient
screening ability to search for potential Mpro inhibitors as an
average model. In order to have a more competent
pharmacophore model, model refinement was conducted. In
order to keep the high sensitivity while increasing the ability to
remove inactive substances from the screening result, the
exclusion volume was employed to put the shape of the
binding site into consideration by using the volume feature in
the Query Editor of MOE. Since the binding site of Mpro is a
flexible site,15 each region exclusion volume tolerance was
manually fine-tuned based on the information from the
COVID Moonshot initiative,15 which in turn led to the
development of the refined pharmacophore model (B) (Figure
3).

Model B consists of four main features of typical Mpro
noncovalent inhibitors (i) having a hydrophobic arene subunit
in the S2 site; (ii) and (iii) forming hydrogen bonds with the
sidechain of His163 and Glu166; and (iv) having an arene
group in the S1 pocket and exclusion volumes. The orange
exclusion volumes represent the S1′ site (the tolerance being
1.80 Å), the purple exclusion volumes represent the S1, S3, S4,
and S5 sites (the tolerance being 1.50 Å), while the remaining
(S2) was represented by blue exclusion volumes (the tolerance
being 1.10 Å).
Model B was validated by the same process as model A. The

validation result and the comparison between model A and
model B are illustrated in Table 1. As the main primary
objective of the pharmacophore model in this study is to
search for potentially suitable candidates to inhibit Mpro,
prioritizing specificity over sensitivity is reasonable. Hence, the
benefit of removing more inactive substances (Sp increased to
90.42%) outweighed the slight drop in sensitivity (Se
decreased to 92.11%). Moreover, due to the rise in the
model GH score (from 0.45 to 0.61), the refined model
(model B) is considered a good model. Therefore, model B
was selected to screen for potential Mpro noncovalent
inhibitors.
2.1.3. Pharmacophore-Based Virtual Screening. Using the

Pharmacophore Search module in MOE, a pharmacophore-

based virtual screening process was performed to identify
potential Mpro noncovalent inhibitors in our in-house
database, consisting of 273 phytochemicals extracted from
Vietnamese herbals. As a result, we obtained 18 substances, 5
of which had been assayed in vitro (Table 2). Interestingly,

most of the compounds retrieved were flavonoids and lignans,
which were in agreement with the report of many SARS-CoV-2
Mpro natural inhibitors being flavonoids, such as myricetin
(IC50 = 0.63 μM), dihydromyricetin (IC50 = 1.14 μM),
baicalein (IC50 = 0.94 μM), etc.12

2.2. Molecular Docking and Activity Prediction.
2.2.1. Induced-Fit Molecular Docking. Since 5 of 18 hits
were explored in vitro, the remaining 13 compounds were
examined by molecular docking to investigate the ability to
bind to Mpro. The extracted protein structures of Mpro in
monomeric (PDB ID: 7L11) and dimeric forms (PDB ID:
7D3I) were downloaded from the protein databank. Due to
the flexibility of the binding site,15 induced-fit molecular
docking was selected to put that into consideration, using the
Dock module in MOE (version 2022.02). As the pharmaco-
phore model development highlights four key residues
interacting with Mpro noncovalent inhibitors, His41, Leu141,
His163, and Glu166, interacting with them are the main
criteria in the analysis of the docking results. As Mpro exists in
dimeric and monomeric forms, we also compared their
differences regarding how the hits interacted with them.
Despite having all the required features, the docking results in
monomeric and dimeric Mpro showed that isoxanthohumol
could not follow the pharmacophore orientation when bound
to the Mpro binding site, while the other 12 neatly could.
Besides interactions, the binding affinities, mostly under −6.00
kcal/mol, indicated that most hits could fit quite well with the
binding site.
There were no significant differences between the

conformations of most hits when they bound with monomeric
and dimeric Mpro (RMSD < 2.0 Å) (Table 3). On top of this,
most of them also had similar binding affinities (Table 3) and
interactions (Tables S1 and S2) when bound to Mpro in both
forms with the p-value > 0.5. Hence, the changes in the Mpro
structure due to the dimerization occurring in domains II and
III (residues 201−306) of each Mpro monomer unit only had
minor effects on how the catalytic site, located in
chymotrypsin-like domains I (residues 8−101) and II
(residues 102−184), interacted with the hits. Noticeably all
other 12 natural substances can form proper interactions with
the four key residues (Tables S1 and S2). Regarding the one
unique case, calycosin-7-O-β-glucopyranoside, which had two
different conformations when bound with monomeric and
dimeric Mpro, the differences came from how its β-
glucopyranose subunit interacted with the binding site. When

Figure 3. Refined pharmacophore model (model B).

Table 2. Phytochemicals and/or Their Derivatives That
Were In Vitro Assayed

compound
IC50
(μM) derivative

IC50
(μM) reference

catechin (+)-catechin-3-O-gallate 2.98 29
(+)-catechin inactive
epicatechin inactive (−)-epicatechin-3-O-

gallate
5.21 29

ampelopsin 1.716 30
quercetin 192 8-(p-tolylselenyl)

quercetin
8 31
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bound to dimeric Mpro, calycosin-7-O-β-glucopyranoside
inserted its β-glucopyranose subunit deep into the S2
subpocket instead of expanding its interactions to the S4
subsite (Figure S1). However, due to the S2 hydrophobic
nature, the interactions between calycosin-7-O-β-glucopyrano-
side and dimeric Mpro required further study to be confirmed.
2.2.2. Machine-Learning Activity Prediction Modeling. In

order to overcome the limitation of the docking scoring
function and rank the hits efficiently, activity prediction models
based on interaction fingerprints were developed using 223 co-
crystal complexes of Mpro with noncovalent inhibitors by
OnionNet2 and RapidMiner (Educational version 9.10.007).19

The 3D structures were converted into interaction fingerprints
by OnionNet2. Applying the Stratified sampling method in
RapidMiner, the data set was split into the training set and test
set in two different ratios, 70:30 and 80:20. Table 4 illustrates

the effect of changing the ratio between the training set and the
test set on the model performances. With the finite data, the
larger the training set size, the better the model performance.
From the results, model ML2 was selected to rank potential
Mpro noncovalent natural inhibitors.
From the activity prediction results using ML2 (Table 5),

calycosin-7-O-β-glucopyranoside and nigracin were the ones
that have the predicted IC50 being nanomolar concentration
level. This result was reasonable as both potent hits have many
similarities with highly potent Mpro inhibitors (ensiltrelvir) in
terms of interacting with Mpro (Figure S2). Intriguingly, in the
case of calycosin-7-O-β-glucopyranoside (glycoside form),
compared to calycosin (aglycon form), calycosin-7-O-β-
glucopyranoside was more competent in both the ability to
bind to the binding site (having the best binding affinity) and
the ability to inhibit Mpro predicted by ML2 (predicted IC50 =
0.549 μM). This improvement could be explained by
expanding calycosin-7-O-β-glucopyranoside interaction sites

on Mpro to the subpocket S4 using the glucose subunit
(Figure 4).
2.3. Toxicity, Physicochemical Property, Drug-Like-

ness, and Pharmacokinetic Predictions. About calycosin-
7-O-β-glucopyranoside, there were some in vitro and in vivo
studies on its toxicity and pharmacokinetics. Regarding
toxicity, calycosin-7-O-β-glucopyranoside is also considered
low toxicity, with the CC0 and CC50 values to Vero cells being
125 and 143 mg/mL.32 In terms of oral and intestinal
absorptions, the calculated bioavailability of oral calycosin-7-O-
β-glucoside was only 0.304% due to the presence of glucoside
hydrolase in the intestine.33 However, the drug time curve of
intraperitoneally injected calycosin-7-O-β-glucoside and its
metabolites was entirely different from that of oral calycosin-7-
O-β-glucoside.33 Moreover, the metabolism product of
calycosin-7-O-β-glucoside with the presence of glucoside
hydrolase is calycosin, which was also predicted as a
noncovalent Mpro inhibitor in this study (predicted IC50 =
1.919 μM). Hence, calycosin-7-O-β-glucopyranoside is still
considered a drugable substance in terms of injection.
As there were only a handful of studies on the toxicity,

physicochemical properties, drug-likeness, and pharmacoki-
netics of nigracin, ProTox-II and SwissADME web servers
were used to predict that information (Table 6).34,35 First and
foremost, nigracin does not violate Lipinski’s rule of five (MW
≤ 500, NHBAs ≤ 10, NHBDs ≤ 5, Log Po/w ≤ 4.15),
indicating its drug-likeness nature. Despite not violating
Lipinski’s rule of five, due to the high TPSA and water
solubility, the predicted gastro-intestine absorption of both hits
was considered low. This result can be explained by the
presence of a sugar subunit in nigracin’s structure, which is
common in many natural substances. Although oral admin-
istration seemed unfeasible for nigracin, other forms of
administration were still possible for nigracin. In terms of
toxicity, from the results (Table 6), nigracin was predicted as a
low-toxicity substance, with a high predicted LD50 (2190 mg/
kg) and not acting as any form of hepatotoxicity,
carcinogenicity, or immunotoxicity. On top of this, the
metabolism prediction also showed that nigracin did not act
as a drug transporter of P-glycoprotein substrate nor interact
with a wide range of hepatic enzymes. Thus, nigracin was
considered a low-safety risk compound with a neglectable
chance of causing drug−drug interactions.
Overall, starting with 223 complexes of Mpro with

noncovalent inhibitors, we have successfully employed a
combination of in silico methods, including pharmacophore
modeling, induced-fit molecular docking, and machine learning

Table 3. Comparison of the Hits’ Conformations When
They Bind to Monomeric and Dimeric Mpro

compound

binding affinity with
monomeric Mpro

(kcal/mol)

binding affinity
with dimeric

Mpro (kcal/mol)
RMSD
(Å)

12a-hydroxyelliptone −6.36 −6.37 0.8784
calycosin −5.91 −5.73 0.2563
calycosin-7-O-β-
glucopyranoside

−8.33 −6.93 4.9780

dihydrorhamnocitrin −5.35 −5.39 0.6175
eudesmin −7.91 −8.05 0.5807
huazhongilexin −7.81 −7.29 0.5030
loureirin −6.18 −5.88 0.7557
niranthin −8.29 −8.63 0.8482
p-coumaroyltyramin −6.23 −5.55 0.9534
phyllanthin −8.06 −8.40 0.6975
nigracin −6.95 −6.67 1.3828
syringaresinol −7.85 −7.15 0.4135

Table 4. Validation of Activity Prediction Models for
Noncovalent SARS-CoV-2 Mpro Inhibitors on the Test Set

model training set:test set ratio RMSEa R R2

ML1 70:30 0.662 0.64 0.41
ML2 80:20 0.532 0.81 0.65

aRMSE: root-mean-square deviation.

Table 5. Activity Prediction Result for the Examined Hits

compounds predicted IC50 (μM)

nigracin 0.475
calycosin-7-O-β-glucopyranoside 0.549
12a-hydroxyelliptone 1.313
calycosin 1.919
loureirin 2.455
p-coumaroyltyramin 2.524
syringaresinol 2.673
dihydrorhamnocitrin 3.096
huazhongilexin 3.102
niranthin 3.219
eudesmin 4.420
phyllanthin 17.508
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to screen for potential hits. The novelty of our study mostly
came from our library of compounds isolated from Vietnamese
herbals.

3. CONCLUSIONS
In this work, we employed a combination of structure-based
strategies to utilize the vastly available co-crystal structures of
Mpro with noncovalent inhibitors published recently to get
insight into the Mpro inhibition and explore the potential
leads. By closely inspecting 223 structures of Mpro with
noncovalent inhibitors, four key residues were revealed, His41,

Leu141, His163, and Glu166, which in turn led to the
generation of the four-feature structure-based 3D-pharmaco-
phore model (two arenes, one hydrogen bond acceptor, and
one hydrogen bond donor or acceptor). Afterward, the model
was validated by experimental data and refined to have decent
validation scores (sensitivity = 92.11%, specificity = 90.42%,
accuracy = 90.65%, and goodness-of-hit score = 0.61) before
being applied in the in silico screening. The hits were then
investigated by induced-fit molecular docking before being
ranked by a machine-learning interaction-fingerprints-based
activity predicting model. As a result, two potent natural
inhibitors were suggested, calycosin-7-O-β-glucopyranoside
(predicted IC50 = 0.549 μM) and nigracin (predicted IC50 =
0.475 μM). However, as this was an in silico study, further
experimental assays would be required to confirm the anti-
Mpro activities of the obtained hits. In conclusion, besides the
virtual screening hits, this research provided additional insight
into the inhibition of Mpro by noncovalent inhibitors,
complementing the work of experimental research and opening
the opportunity for developing new SARS-CoV-2 antivirals.

4. MATERIALS AND METHODS
4.1. Material. In this study, 223 co-crystal structures of

Mpro with noncovalent inhibitors from the COVID Moonshot
initiate and publications (PDB ID: 5RGX, 5RH3, 5RHD,
6M2N, 6W63, 7KX5, 7L0D, 7L10, 7L11, 7L12, 7L13, 7L14,
7LMD, 7LME, 7LMF, 7LTJ, 7P2G, 7P51, 7S3K, 7S3S, 7S4B,
7VTH, and 7VU6) were downloaded and analyzed (Supple-
ment data 1). A database of 8702 substances with Mpro
percentage inhibit ion at 20 μM (ChEMBL ID:
CHEMBL4495564) was utilized.17 The database used for
screening was the in-house database that contains 273
Vietnamese natural compounds (Supplement data 2).
4.2. Methods. Overall, the study followed the workflow

described in Figure 5, from the pharmacophore modeling to
the hit ranking by a machine-learning activity prediction
model.
4.2.1. 3D-Pharmacophore Development and Application.

Initially, 223 complexes of Mpro with inhibitors were
examined individually using Discovery Studio Visualizer

Figure 4. (A) 2D illustration of interactions between calycosin-7-O-β-glucopyranoside and Mpro with the expansion interaction subsite (S4)
circled in blue. (B) Calycosin-7-O-β-glucopyranoside in the binding site of Mpro with the expansion interaction subsite (S4) circled in blue.

Table 6. Toxicity, Physicochemical Property, and
Pharmacokinetic Prediction Results

properties value properties value

molecular weight (MW) 406.38 g/mol CYP1A2
inhibitor

no

NHBAsa 9 CYP2C19
inhibitor

no

NHBDsa 5 CYP2C9
inhibitor

no

consensus Log Po/w 0.33 CYP2D6
inhibitor

no

solubilityb soluble CYP3A4
inhibitor

no

TPSAa 145.91 Å2 hepatotoxicity inactive
GI absorptiona low carcinogenicity inactive
blood−brain barrier
permeant

no immunotoxicity inactive

predicted LD50 2190 mg/kg mutagenicity inactive
toxicity classc V cytotoxicity inactive
P-glycoprotein substrate no
aNHBAs: number of hydrogen bond acceptors; NHBDs: number of
hydrogen bond donors; TPSA: topological polar surface area; and GI
absorption: gastro-intestine absorption. bBased on predicted Log S,
the solubility of a substance is classified into six classes: insoluble <
−10 < poorly soluble < −6 < moderately soluble < −4 < soluble < −2
< very soluble <0 < highly soluble.34 cFrom the toxicity doses (LD50),
there are six toxicity classes indicating how poisonous a compound
can be.35 The indications are fatal if swallowed (I and II), toxic if
swallowed (III), harmful if swallowed (IV), may be harmful if
swallowed (V), and nontoxic (VI).35
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2021. The key ligand−receptor interactions were identified
and confirmed from the analyzed result, which led to the
generation of the 3D-pharmacophore model using the Query
Editor module in MOE (version 2022.02).
In order to test the ability to distinguish active compounds

from others, the generated pharmacophore model was
validated by screening a test set using the Pharmacophore
Search module in MOE (version 2022.02). The test set
consists of 190 Mpro noncovalent potent inhibitors, with the
IC50 being 20 μM or lower and 1264 confirmed noninhibitors.
The active compounds in the test set were extracted from the
co-crystal complexes. The inactive ones were extracted from
8702 compounds with Mpro percentage inhibition at 20 μM
(inhibiting Mpro 2% or lower at 20 μM).17 The compounds in
the test set were conformation generated in MOE (Con-
formation Import) before being applied in the validation step.
In the Conformation Import tool, Conformations was set to
10,000, Refinement Conformation Limit was 300, Stochastic
Search Failure Limit was 1000, Stochastic Search Iteration
Limit was 1000, Energy Minimization Iteration Limit was
1000, and Energy Minimization Gradient Test was 0.0001.
Regarding the pharmacophore model’s predicting accuracy,

the model’s quality was validated by a test set consisting of in
vitro-confirmed active (190 substances) and inactive com-
pounds (1264 substances). The criteria used were sensitivity
(Se), specificity (Sp), accuracy (Acc), and goodness-of-hit
score (GH score). Se (percentage of true positives in the
positive hits), Sp (percentage of true negatives in the negative
hits), and Acc (percentage of accurate predictions in the total
prediction) scored the correct prediction percentage when
applying the model to a test set. In order to minimize the effect
of the database size on the scoring results, the GH score and its
interpretations were also used.28 The GH score can be
calculated by using this formula:28
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× ×
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Generally, if the GH score is between 0.16 (score of a typical
bad model) and 0.50 (score of a typical good model), the

model is considered average.28 In the case of a good
pharmacophore model, its GH score should be 0.50 or
higher.28

In order to refine the pharmacophore model, the exclusion
volumes representing the binding site were added using the
volume feature in the Query Editor module and revalidated the
refined model. Once the refined pharmacophore model
satisfied the criteria of being good (GH score > 0.5), it
would be considered the final model.
Afterward, the obtained final model was used as a blueprint

to explore potential Mpro natural noncovalent inhibitors using
the Pharmacophore Search module in MOE (version
2022.02). The database used in the virtual screening was the
in-house database, which contains 273 Vietnamese natural
substances (Supplement data 2).
4.2.2. Induced-Fit Molecular Docking. Due to the flexibility

of the binding site of Mpro,15 induced-fit molecular docking
was selected to put that into consideration, using the Dock
module in MOE (version 2022.02). The extracted protein
structures of Mpro in monomeric (PDB ID: 7L11) and
dimeric forms (PDB ID: 7D3I) were downloaded from the
protein databank. Using the MOE program (version 2022.02),
the protein structures of Mpro were then prepared by
removing water, ligand, and ions before protonating the
system. In the protonate 3D module, the setting was set at the
pH being 7.4 and the default setting for the others. Using the
Site Finder tool and the experimental data of the binding site
location from co-crystal complexes, the binding site of Mpro,
which contains the catalyst dyads, was defined as dummy
atoms in MOE. The ligands were protonated and energy
minimized by the energy minimized module in MOE, with the
setting of gradient being 0.0001, while the other settings were
default.
In the docking setting, the receptor was set as MOE, all

atoms; site as dummy atoms; pharmacophore as PH4 file;
ligand as MDB file; placement as pharmacophore with the
timeout (second) being 3600 and no. of return poses being
20,000; refinement as induced fit with the sidechain being free;
The score as default (London dG and GBVI/WSA dG) with

Figure 5. Overall workflow for the screening procedure.
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the output poses being 100 (for London dG) and 10 (for
GBVI/WSA dG). The results were validated individually based
on how they interacted with Mpro using the information
described by the pharmacophore model. Docking results were
validated based on the binding interactions forming by Mpro
and ligands. These binding interactions were analyzed
regarding the chemical features taken from the generated
pharmacophore above. The differences between the ligands
when they interacted with monomeric and dimeric Mpro were
also validated by the RMSD values. The RMSD values between
the hits when they bound to two forms of Mpro were
calculated by using Biovia Discovery Studio Visualizer.
4.2.3. Machine-Learning Interaction-Fingerprint-Based

Activity Predicting Modeling. Although molecular docking
has a crucial role in structure-based drug discovery and design,
there are still some flaws,36 one of which is the false positives
from ranking ligands due to the prioritization of the rapid
screening speed over accurate binding affinity prediction of the
method.18,36 Thus, activity prediction models based on
interaction fingerprints were developed to rank the hits
efficiently by OnionNet2 and RapidMiner (Educational
version 9.10.007) using 223 co-crystal complexes of Mpro
with noncovalent inhibitors.19

Initially, 223 complexes of Mpro with inhibitors were
protonated by MOE (version 2022.02) with the pH = 7.4 and
the default setting for the others. Afterward, the interaction
fingerprints of 223 complexes (input database) were generated
by the OnionNet2 software.19 The input database was split
into two sets (training and test) by the split data module with
two different ratios (70 training: 30 test and 80 training: 20
test), with the sampling method being stratified sampling
(building random subsets and ensuring that the class
distribution in the subsets is the same as in the whole input
set). The training sets were then used to generate the machine-
learning model, while their test counterparts were used to
validate the models’ accuracy. The models’ forecasting abilities
were scored based on three criteria RMSE (error between
predicted results and experimental data), R, and R2

(correlation between predicted results and experimental
data). The model was considered predictable for virtual
screening when its R2 > 0.5.
The activity prediction models were developed by the deep

learning expansion of RapidMiner (Educational version
9.10.007). The deep learning module was comprised of two
hidden layers (32 neurons for the first layer and 16 neurons for
the second one) being fully connected layers. The activator of
each layer was set as ReLU (rectified linear unit). The machine
learning process was set to 1000 epoch, 0.01 learning rate,
while the other settings were set as default. After the model
was generated, it was stored and applied to predict the test set
for validation using Apply Model. Using the test set predicting
results and the performance module in RapidMiner. The best
model (with the lowest RMSE and highest R and R2) was
deployed using Apply Model to predict the hits.
4.2.4. Toxicity, Physicochemical Property, Drug-Likeness,

and Pharmacokinetic Predictions. Besides the ability to
inhibit the target, toxicity and drug-like properties have also
been critical factors in the success of drug development.37 As
unmanageable toxicity and poor drug-like properties contribute
to 30 and 10−15% of clinical failures of drug development,37 it
is necessary to study the toxicity, physicochemical property,
drug-likeness, and pharmacokinetics of potent substances. In
order to study the toxicity of the hits (including LD50, toxicity

class, hepatotoxicity, carcinogenicity, immunotoxicity, muta-
genicity, and cytotoxicity), the ProTox-II web server was
used.35 In terms of physicochemical properties (number of
hydrogen bond acceptors, number of hydrogen bond donors,
Log Po/w, water solubility, and topological polar surface area),
drug-likeness (Lipinski’s rule of five), and pharmacokinetics of
the hits (gastro-intestine absorption, blood−brain barrier
permeant, and hepatic enzyme inhibitions), they were
predicted by the SwissADME web server.34
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