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Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants. They are
procarcinogens requiring metabolic activation to elicit their deleterious effects. Aldo-keto
reductases (AKR) catalyze the oxidation of proximate carcinogenic PAH trans-dihydrodiols
to yield electrophilic and redox-active PAH o-quinones. AKRs are also found to be capable
of reducing PAH o-quinones to form PAH catechols.The interconversion of o-quinones and
catechols results in the redox-cycling of PAH o-quinones to give rise to the generation of
reactive oxygen species and subsequent oxidative DNA damage. On the other hand, PAH
catechols can be intercepted through phase II metabolism by which PAH o-quinones could
be detoxified and eliminated. The aim of the present review is to summarize the role of
human AKRs in the metabolic activation/detoxication of PAH and the relevance of phase II
conjugation reactions to human lung carcinogenesis.
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INTRODUCTION
The Aldo-keto reductases (AKRs) are a superfamily of monomeric
NAD(P)(H)-dependent oxidoreductases. They are cytosolic and
have ∼320 amino acids with molecular weights at around 34–
37 kDa (Jez et al., 1997). AKRs catalyze the reduction of aldehydes
and ketones to yield primary and secondary alcohols on a variety
of endogenous substrates and xenobiotics (Hara et al., 1996; Jin
and Penning, 2007), and are formal phase I metabolic enzymes.
AKRs have been implicated in a number of human diseases.
AKR1B1 (aldose reductase) is implicated in the complications
that arise due to diabetes, since it converts high blood glucose
to the hyperosmotic sugar sorbitol (Lee et al., 1995; Suzen and
Buyukbingol, 2003). AKR1B10 (retinal reductase) is involved in
retinoic acid signaling and is implicated in the pathogenesis of
lung cancer (Fukumoto et al., 2005; Penning and Lerman, 2008)
and hepatocellular carcinoma (Liu et al., 2012). By contrast, AKR
1C family members play essential roles in metabolism of male and
female sex hormones and may play roles in the development of
hormone dependent malignancies of the prostate and breast (Pen-
ning and Byrns, 2009); while AKR1D1 (steroid 5β-reductase) is
essential for bile-acid biosynthesis and inherited mutations in the
AKR1D1 gene are associated with bile-acid deficiency (Lemonde
et al., 2003); The present review will focus on roles of AKRs in
metabolism of polycylic aromatic hydrocarbons (PAH).

Polycylic aromatic hydrocarbons are ubiquitous environmental
pollutants. They are suspect lung carcinogens and are products of
tobacco smoke and incomplete fossil fuel combustion (Grimmer
and Bohnke, 1975; Burczynski et al., 1999). PAH are character-
ized by the presence of two or more fused non-hetero aromatic

rings arranged in various configurations (Fetzer, 2007). Based
on the arrangement of their aromatic rings, PAH can be cate-
gorized into non-bay-region (e.g., naphthalene), bay-region (e.g.,
benzo[a]pyrene), and fjord-region (e.g., benzo[g ]chrysene) PAH
(Figure 1). Based on the number of the aromatic rings, the
common PAH can be divided into the naphthalene (two rings),
phenanthrene (three rings), chrysene, and 5-methyl-chrysene
(four rings), benzo[a]pyrene (B[a]P), and benzo[g ]chrysene (five
rings) series, etc. Benzo[a]pyrene is a representative PAH and
widely used to study the mutagenic and carcinogenic effects of
PAH (Conney, 1982; Cavalieri and Rogan, 1995). PAH are not
reactive and require metabolic activation to form electrophiles to
elicit their deleterious effects, thus they are procarcinogens (Gel-
boin, 1980). There are three major pathways for the activation of
B[a]P, which result in the formation of radical cations, diol epox-
ides, and electrophilic and redox-active o-quinones (Figure 2).
In the present review, we will focus on the o-quinone pathway
and discuss the role of human AKRs in the formation of the o-
quinones, the redox-cycling of o-quinones to form catechols, and
the removal of catechols by conjugating enzymes. For details about
the other pathways, readers are referred to previous review papers
(Penning et al., 1999; Penning, 2004; Xue and Warshawsky, 2005).

ACTIVATION OF PAH trans-DIHYDRODIOLS BY AKRs TO
FORM o-QUINONES
In the o-quinone pathway of PAH activation, the proxi-
mate PAH carcinogens, trans-dihydrodiols, e.g., B[a]P-7,8-trans-
dihydrodiol, are oxidized by AKRs to yield ketols which spon-
taneously rearrange to form catechols, e.g., B[a]P-7,8-catechol
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FIGURE 1 | Chemical structures of PAH. The curly arrow denotes the presence of a bay-region; a methylated bay-region or a fjord -region.

(Figure 2; Burczynski et al., 1998; Palackal et al., 2001, 2002).
B[a]P-7,8-catechol is not stable and undergoes autoxidation to
yield B[a]P-7,8-dione. PAH o-quinones are electrophilic and
highly reactive to endogenous nucleophiles. PAH o-quinones can
readily form conjugates with cellular thiols to yield l-cysteine,
N-acetyl-l-cysteine (NAC), and GSH conjugates leading to their
elimination (Murty and Penning, 1992a,b). PAH o-quinones can
also react with DNA to form both stable and depurinating
adducts in vitro which may result in mutagenesis (Shou et al.,
1993; McCoull et al., 1999; Balu et al., 2006). PAH o-quinones
are also able to undergo non-enzymatic/enzymatic reduction to
reform catechols at the expense of NADPH and establish futile
redox cycles which amplify the generation of reactive oxygen
species (ROS). ROS can cause DNA damage resulting in the for-
mation of 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dGuo)
lesions, contributing to G-to-T transversions in K-ras and p53
(Kasai et al., 1986; Cheng et al., 1992). PAH o-quinones were
found to be more mutagenic than diol epoxides in an in vitro
p53 mutagenesis assay and a linear correlation was observed
between the mutagenic efficiency and the presence of 8-oxo-
dGuo in the p53 cDNA (Yu et al., 2002; Park et al., 2006; Shen
et al., 2006). More recently, the metabolic activation of B[a]P-7,8-
trans-dihydrodiol to B[a]P-7,8-dione was demonstrated in human
lung adenocarcinoma (A549) cells which shows high constitutive

expression of AKRs. This metabolic activation led to the forma-
tion ROS and 8-oxo-dGuo lesions in cellular DNA (Park et al.,
2008).

Several members of the AKR superfamily are able to oxidize
PAH trans-dihydrodiols to o-quinones (Smithgall et al., 1986,
1988). The substrate specificity of AKRs covers structurally diverse
PAH trans-dihydrodiols which range from the simplest trans-1,2-
dihydroxy-1,2-dihydro-naphthalene, to bay-region dihydrodiols
(e.g., trans-1,2-dihydroxy-1,2-dihydrochrysene), to methylated
bay-region dihydrodiols (e.g., trans-3,4-dihydroxy-3,4-dihydro-
7-methylbenz[a]anthracene), and to fjord-region dihydrodiols
(e.g., trans-11,12-dihydroxy-11,12-dihydrobenzo[g ]chrysene). In
contrast, K-region dihydrodiols, in which the dihydroxy
groups are located on a central benzo-ring, (e.g., trans-9,10-
dihydroxy-9,10-dihydrophenanthrene and trans-4,5-dihydroxy-
4,5-dihydroB[a]P) are not substrates of AKRs (Table 1; Palackal
et al., 2001, 2002; Shultz et al., 2008).

In considering the human enzymes, AKR1A1 was stereose-
lective and will only oxidize (−)-B[a]P-7(R),8(R)-dihydrodiol,
which is the major stereoisomer formed in vivo. Similarly,AKR1A1
oxidized (−)-benz[a]anthracene-3(R),4(R)-dihydrodiol, (+)-7-
methylbenz[a]anthracene-3(S),4(S)-dihydrodiol, and (−)-7,12-
dimethylbenz[a]anthracene-3(R),4(R)-dihydrodiol rather than
both diastereomers (Table 1; Palackal et al., 2001).
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FIGURE 2 |Three Pathways of metabolic activation of PAH and interception by phase II enzymes. (B[a]P is used as the representative PAH).

AKR1B10 is one of the most overexpressed genes in non-
small lung carcinoma and a member of the smoking gene battery
that is up-regulated in response to cigarette smoking and down-
regulated in smokers who quit (Fukumoto et al., 2005; Zhang
et al., 2008). AKR1B10 was found to oxidize a wide range of PAH
trans-dihydrodiol substrates in vitro to yield PAH o-quinones, but
showed improper stereospecificity with B[a]P-7,8-dihydrodiol in
that it only oxidized the minor (+)-B[a]P-7(S),8(S)-dihydrodiol
isomer. The related subfamily member AKR1B1 displayed the
same stereochemical specificity as AKR1B10 on racemic B[a]P-
7,8-trans-dihydrodiols (Quinn et al., 2008). The stereochemical
preference of AKR1B10 appears to be limited only to B[a]P-
7,8-trans-dihydrodiol and benzo[a]anthracene-3,4-diol, since no
stereospecificity for the oxidation of the (−)-R,R and (+)-
S,S stereoisomers of benzo[g ]chrysene-11,12-dihydrodiol and
7,12-dimethylbenz[a]anthracene-3,4-diol was noted.

Four human AKR1C subfamily members (AKR1C1-AKR1C4)
oxidized B[a]P-7,8-trans-dihydrodiol to B[a]P-7,8-dione in the
following rank order: AKR1C2 > AKR1C1∼AKR1C3 > AKR1C4
(Burczynski et al., 1998). AKR1C1-AKR1C4 oxidized both
stereoisomers of racemic trans-dihydrodiols, although AKR1C1
and AKR1C2 displayed a preference for the (+)-B[a]P-7(S),8(S)-
dihydrodiol isomer (Burczynski et al., 1998). AKR1C1-AKR1C4
showed high activity for both stereoisomers of the bay-region
substituted PAH trans-dihydrosiols, where bay-region substituted

PAH are more carcinogenic than B[a]P (Table 1; Palackal et al.,
2002).

REDUCTION OF PAH o-QUINONES BY AKRs
The metabolic activation of B[a]P-7,8-trans-dihydrodiol to
B[a]P-7,8-dione was demonstrated in human lung adenocarci-
noma A549 cells which show high constitutive expression of AKRs
(Park et al., 2008). This metabolic activation led to the formation of
ROS and 8-oxo-dGuo lesions in cellular DNA. Importantly, oxida-
tive stress was exacerbated in the presence of a catechol-O-methyl
transferase (COMT) inhibitor (Park et al., 2008). This observa-
tion indicated that the redox-cycling between B[a]P-7,8-dione
and B[a]P-7,8-catechol occurred with a concomitant generation
of ROS which in turn resulted in DNA damage. COMT was able
to intercept the catechol and thus protect against the insult from
redox-cycling. When B[a]P-7,8-dione was given to human bron-
choalveolar H358 cells, similar exacerbation of cellular oxidative
DNA damage was observed in the presence of a COMT inhibitor
(Mangal et al., 2009). Both COMT cell-based studies clearly sug-
gest that two electron reduction of the PAH o-quinone to the PAH
catechol not only results in oxidative stress and DNA damage, but
also leads to O-methylation and detoxication of PAH o-quinones
at the level of PAH catechols (Figure 2).

The enzymatic two electron reduction of quinones to hydro-
quinones is thought to be able to protect against quinone-induced
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Table 1 | Oxidation of PAH trans-dihydrodiols by human AKRs.

PAH trans-dihydrodiols ARK1A1 ARK1B1 ARK1B10 ARK1C1 ARK1C2 ARK1C3 ARK1C4 AKR7A2 AKR7A3

kcat/K m (mM−1 min−1)

Naphthalene-1,2-diol 10.4a NA NA 151b 100b 6.4b 32.7b NA NA

NON-K -REGION DIHYDRODIOLS

Phenanthrene-1,2-diol 17.9a NA NA NDb NA NA

Chrysene-1,2-diol 15.5a NA NA NDb 7.03b 4.26b 10b NA NA

Benz[a]anthracene-3,4-diol (−) 68.1a NA (+) 12.8d 9.5b 17.6b 18.0b 32.2b NA NA

Benzo[a]pyrene-7,8-diol (−) 29.6a (+) 10.3d (+) 2.36d 22.6b 53.3b 24.7b 16.7b NDc NDc

METHYLATED DERIVATIVES

7-Methylbenz[a]anthracene-3,4-diol (+) 85.8a NA NA 4.8b 49.5 b 30.1b 46.9b NA NA

12-Methylbenz[a]-anthracene-3,4-diol NDa NA NA ND NA NA

7,12-Dimethylbenz[a]anthracene-3,4-diol (−) 97.1a NA 2.7d 7.4b 46.8b 19.7b 185b NA NA

5-Methylchrysene-7,8-diol 130a NA NA 12.4b 28.8b 9.0b 35.2b NA NA

K -REGION DIHYDRODIOLS

Phenanthrene-9,10-diol NDa NA NA NDb NA NA

Benzo[a]pyrene-4,5-diol NDa NA NA NDb NA NA

FJORD-REGION DIHYDRODIOLS

Benzo[c]phenanthrene-3,4-diol 11.8a NA 1.5d NDb 4.3b 6.6b 8.2b NA NA

Benzo[g]chrysene-11,12-diol 11.3a NA 9.55d 4.5b 4.9b 23b 165b NA NA

aPalackal et al., 2001, b2002, cShultz et al., 2011, dQuinn et al., 2008; ND: not detected; + or – in parenthesis, stereospecificity of AKR to the PAH trans-dihydrodiols

where no parenthesis exist the AKR isoform oxidizes both isomers of the racemic mixture.

cellular oxidative stress, because the hydroquinone would be avail-
able for phase II conjugation reactions. However, if the rates of
conjugation reactions are overwhelmed by the rate of the ensuing
redox-cycling, the reduction process may be deleterious (Figure 2).
It is not well understood which enzymes account for the process
of two electron reduction of PAH o-quinones to PAH catechols
and contribute to redox-cycling. Candidate enzymes that may cat-
alyze this reduction include NAD(P)(H):quinone oxidoreductase
(NQO1), carbonyl reductases (CBR1 and CBR3), and AKRs. In
order to identify the enzymes responsible for the reduction of
the PAH o-quinones, the ability of homogeneous recombinant
NQO1, CBRs, and AKRs to reduce PAH o-quinones were com-
pared (Shultz et al., 2011). Except for discrete o-quinones, the
rank order of activity was: NQO1 > AKR7A2 > CBRs.

NQO1 is a flavoenzyme that catalyzes two electron reduction
of quinones to hydroquinones by using NAD(P)H as an electron
donor (Jaiswal et al., 1988). Despite its high o-quinone reduc-
tase activity, NQO1 did not appear to be the dominant enzyme
that catalyzes o-quinone reduction in human lung A549 cells
since treatment with NQO1 inhibitor, dicumarol did not eliminate
the deleterious ROS generated by PAH o-quinone redox-cycling
(Shultz et al., 2011) suggesting that AKRs and CBRs could be the
culprit enzymes.

CBRs are cytosolic, monomeric oxidoreductases that catalyze
the reduction of a large number of carbonyl compounds (Wer-
muth, 1981). Human placental CBR1 (15-hydroxyprostaglandin
dehydrogenase/prostaglandin 9-ketoreductase) catalyzed the
reduction of the non-K -region o-quinone such as B[a]P-7,8-dione
(Jarabak, 1991, 1992). However, studies using purified human
recombinant CBR1 showed that the substrate specificity of CBR

was quite narrow and it reduced K -region o-quinones but not
the non-K -region o-quinones which are products of PAH trans-
dihydrodiol oxidation catalyzed by AKRs (Shultz et al., 2011). This
suggests that CBR would not play a critical role in the two electron
reduction of PAH o-quinones.

AKR1C9 (rat liver 3α-hydroxysteroid/dihydrodiol dehydroge-
nase) was first found to catalyze the reduction of B[a]P-7,8-dione
at an unexpectedly staggering rate of 4750 nmol/min/mg which
was three orders of magnitude greater than the rate of conver-
sion of B[a]P-7,8-trans-dihydrodiol to B[a]P-7,8-dione catalyzed
by the same enzyme (Smithgall et al., 1986; Flowers-Geary et al.,
1992). In further studies, a panel of purified human AKRs (AKR
1A1, 1B1, 1B10, 1C1-1C4, 7A2, and 7A3) were shown to catalyze
the reduction of B[a]P-7,8-dione and other PAH o-quinones with
the specific activities that were 100–1000 times greater than their
respective activities to oxidize the cognate PAH trans-dihydrodiol
(Shultz et al., 2011). Of all AKRs studied, AKR7A2 is the most
efficient enzyme for the reduction of B[a]P-7,8-dione (Table 2).

The AKRs exhibited different reductase activities on series of
PAH o-quinones which included phenanthrene, chrysene, pyrene,
and anthracene series (Shultz et al., 2011). By comparing the
ability of AKRs to reduce B[a]P-7,8-dione and their ability to
oxidize B[a]P-7,8-trans-dihydrodiol, it was noted that the AKR
with the highest quinone reductase activity on a particular PAH
o-quinone was not always identical to the AKR isoform with the
highest dihydrodiol dehydrogenase activity for the respective PAH-
trans-dihydrodiol. For example, AKR7A2 and AKR7A3 exhibited
the highest specific activities for B[a]P-7,8-dione reduction, but
failed to catalyze the oxidation of PAH-trans-dihydrodiols (Shultz
et al., 2011; Tables 1 and 2). The two electron reduction of PAH
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Table 2 | Reduction of B[a]P-7,8-dione by human AKRs.

AKR B[a]P-7,8-dione reduction (nmol/min/mg)

AKR1A1 350

AKR1B1 250

AKR1B10 250

AKR1C1 64

AKR1C2 350

AKR1C3 130

AKR1C4 130

AKR1D1 ND

AKR7A2 1270

AKR7A3 1170

Data from: Shultz et al., 2011.

o-quinones catalyzed by AKRs was demonstrated to lead to futile
redox cycles. In each instance, 10 µM PAH o-quinone consumed
180 µM NADPH, and the consumption of cofactor was accompa-
nied by a concomitant consumption of molecular oxygen and the
production of superoxide anion and hydrogen peroxide (Shultz
et al., 2011).

The contribution of individual AKRs to the redox-cycling, if
PAH o-quinones are in lung, will depend on their levels of expres-
sion and catalytic efficiency for each PAH o-quinone substrate.
Although AKR1A1 catalyzes the most effective oxidation of the
major enantiomer of B[a]P -trans-dihydrodiol in vivo, (−)-B[a]P-
7(R),8(R)-dihydrodiol (Palackal et al., 2001), it has the lowest
quinone reductase activity among all AKRs for most PAH o-
quinones (Shultz et al., 2011). Also, the expression level of AKR1A1
in normal human bronchoalveolar cells is very low (Jiang et al.,
2006; Quinn and Penning, 2008), which implies that AKR1A1
is not critical in the enzymatic reduction of PAH o-quinones in
the lung.

AKR1B10 has a wide substrate specificity for PAH o-quinones
and exhibits high catalytic efficiency for PAH o-quinones partic-
ularly for the chrysene series (Shultz et al., 2011). As it is up-
regulated in response to tobacco smoke exposure (Fukumoto et al.,
2005; Gumus et al., 2008; Zhang et al., 2008), AKR1B10 may play
an important role in ROS generation from PAH o-quinone redox
cycling in lung cells. However, AKR1B1 and AKR1B10 only oxi-
dize the minor isomer (+)-B[a]P-7(S),8(S)-dihydrodiol formed
in vivo with low catalytic efficiency (Quinn et al., 2008), suggest-
ing that AKR1Bs are not as important in the oxidation of B[a]P
trans-dihydrodiols as other AKRs.

Among all AKRs, AKR1C1-1C3 are generally the most effi-
cient isoforms to catalyze the oxidation of PAH trans-dihydrodiols
(Palackal et al., 2002). They are able to convert both isomers of
racemic PAH trans-dihydrodiols formed in vivo to o-quinones
(Palackal et al., 2001). AKR1C1-1C3 also display medium to high
specific activities for the reduction of most PAH o-quinones tested
excluding the anthracene series and dibenzo[a,c]-phenanthrene-
3,4-dione (Shultz et al., 2011). It was found that the expression
levels of AKR1C1-1C3 in A549 cells, though lower than that of
AKR1B10, were significant higher than AKR1A1 and AKR7A2,
suggesting AKR1C isoforms may also be important in catalyzing

redox-cycling of PAH o-quinones in the lung (Quinn et al.,
2008).

Although the expression of AKR7A2 is low in A549 cells,
its superior catalytic efficiency for most of PAH o-quinones as
well as its capability of reducing dimethylbenz[a]anthracene-3,4-
dione and benz[a]anthracene-3,4-dione which are non-substrates
of other AKRs may make it play a role in the reduction of
these PAH o-quinones in lung (Quinn et al., 2008; Shultz et al.,
2011).

DETOXICATION OF PAH o-QUINONES BY HUMAN COMT
The observation that ROS generation from PAH o-quinone in
A549 cells was exacerbated by a COMT inhibitor infers that
metastable PAH catechols are formed in lung cells and that these
catechols can be intercepted by COMT (Park et al., 2008). COMT
is a classical phase II enzyme and catalyzes the transfer of a methyl
group from S-adenosyl-l-methionine (SAM) to the hydroxyl
group of a variety of catechols including catecholamine neuro-
transmitters and the catechol estrogens (Axelrod and Tomchick,
1958; Axelrod, 1966; Ball et al., 1972). There are two major COMT
isoforms in human, the soluble cytosolic form (S-COMT), and
the membrane-bound endoplasmic reticulum form (MB-COMT),
encoded by a single gene at 22q11.2 (Grossman et al., 1992; Ten-
hunen et al., 1994). The two isoforms share identical amino acid
sequences except that the MB-COMT contains an NH2 terminal
extension of 50 amino acids to serve as a hydrophobic anchor to the
membrane (Ulmanen and Lundstrom, 1991). COMT is widely dis-
tributed among various organs in the body including lung where
high COMT activity was found (Mannisto and Kaakkola, 1999).
Except in brain, S-COMT is the predominant form in most tis-
sues (Jeffery and Roth, 1984; Grossman et al., 1985; Tenhunen and
Ulmanen, 1993).

Polycylic aromatic hydrocarbons o-quinones are structurally
related to the estrogen o-quinones, which demonstrate similar
genotoxic modes of action (Penning et al., 1999; Bolton et al.,
2000; Bolton and Thatcher, 2008). The formation and detoxi-
cation of estrogen o-quinones are well studied and can be used
as parallel for the studies of PAH o-quinone detoxication. The
biotransformation of estrogens such as 17β-estradiol and estrone
is primarily catalyzed via P450 pathways to yield the 2-hydroxy
and 4-hydroxyl catechol estrogens (Aoyama et al., 1990; Kerlan
et al., 1992; Martucci and Fishman, 1993; Shou et al., 1997).
Both catechol estrogens can be further oxidized to an estro-
gen o-quinone which could form stable and depurinating DNA
adducts (Liehr et al., 1986; Stack et al., 1996; Cavalieri et al.,
1997). The detoxication of catechol estrogens can occur by O-
methylation catalyzed by COMT (Schneider et al., 1984; Dawling
et al., 2001).

The detoxication of PAH o-quinines by COMT was investi-
gated recently (Zhang et al., 2011). B[a]P-7,8-dione was reduced
to the catechol by dithiothreitol anaerobically in the presence of
S-adenosyl-l-methionine and further O-methylated by human
recombinant COMT (Zhang et al., 2011; Figure 3). COMT showed
quite a wide substrate specificity and O-methylated a series of
structurally diverse PAH catechols such as bay-region, methylated
bay-region and fjord-region PAH catechols. PAH catechols often
formed two isomeric products. For B[a]P-7,8-catechols, the two
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FIGURE 3 | In vitro COMT and SULT assay to measure O-methylation and O-sulfation of PAH o-quinones.

products were formed at a ratio of 9:1 with the major metabolite
being O-8-monomethyl-B[a]P-7,8-catechol (Zhang et al., 2011).

Catalytic efficiencies (kcat/K m) of O-methylation of PAH cate-
chols by COMT varied greatly among the classes of PAH catechols
studied (Table 3). PAH catechols containing a methylated bay-
region or a fjord-region, which have bent structures due to steric
clashing of bay-region hydrogen atoms, have high efficiency of
O-methylation. However, pronounced substrate inhibition was
also observed with these PAH catechols. Since substrate inhibition
occurs at low micromolar concentrations, these PAH catechols
may not be efficiently detoxified by COMT and thus are more
likely to undergo redox-cycling to cause ROS generation (Zhang
et al., 2011).

The human COMT gene has a common G to A polymorphism
that results in valine to methionine substitution at residue 108
for S-COMT or residue 158 for MB-COMT. Compared with the
wild type, the Met/Met homozygous COMT activity in red blood
cells was reduced by half, and the Met/Val heterozygous COMT
showed intermediate activity for 3,4-dihydroxybenzoic acid (Syva-
nen et al., 1997). The low activity of the COMT mutant is related to
its poor thermostability at physiological temperature, and not due
to different kinetic properties. This SNP in the COMT gene has
been associated with an increased risk of lung cancer (Zienolddiny
et al., 2008; Cote et al., 2009). As COMT can act as a detoxication
enzyme for PAH catechols, it is possible that these polymorphic
variants may increase susceptibility to lung cancer caused by PAH.

DETOXICATION OF PAH o-QUINONES BY HUMAN
SULFOTRANSFERASES AND URIDINE DIPHOSPHATE
GLUCURONOSYLTRANSFERASES
While methylation of estrogen catechols has been found as an
important pathway for detoxication of estrogen o-quinones, both
sulfate and glucuronide conjugates of estrogen catechols catalyzed
by the human sulfotransferases (SULTs) and uridine diphosphate
glucuronosyltransferases (UGTs), respectively, has been observed
(Brueggemeier et al., 1984; Adjei and Weinshilboum, 2002; Task-
inen et al., 2003; Hui et al., 2008). Since PAH o-quinones are
structurally related to the estrogen o-quinones, it is very likely that
sulfation and glucuronidation of PAH catechols represent other
pathways of detoxication of PAH o-quinones. SULTs are a group of
cytosolic enzymes responsible for the transfer of a sulfonate group
from 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to either a
hydroxyl moiety or an amine group (Negishi et al., 2001). SULTs
catalyze the sulfate conjugation of steroid hormones, neurotrans-
mitters, drugs, and xenobiotic compounds (Coughtrie et al., 1998).
On the basis of amino acid sequence identity, human SULTs are
divided into two main families SULT1 and SULT2, which are also
termed the phenol sulfotransferase and the hydroxysteroid sulfo-
transferase family, respectively. SULT enzymes have a broad tissue
distribution including liver, lung, brain, skin, etc. (Cappiello et al.,
1989).

In a recent study, it was revealed that SULT1A1, 1A3, and 1E1,
were expressed in human lung adenocarcinoma A549 cells, human
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Table 3 | O-methylation of PAH catechols by COMT.

Quinone k cat/K m Substrate inhibition M1a M2b

(min−1 µM−1) (%) (%)

Naphthalene-1,2-dione 4.9 − 100 0

Chrysene-1,2-dione 1.7 + 62 38

Chrysene-3,4-dione 0.02 − 83 16

5-Methyl-chrysene-7,8-dione 10.1 + 55 45

Benz[a]anthracene-3,4-dione 4.0 + 59 41

7-Methylbenz[a]anthracene-3,4-dione 1.6 + 53 47

12-Methylbenz[a]anthracene-3,4-dione 9.0 + 62 38

7,12-Dimethylbenz[a]anthracene-3,4-dione 6.8 + 32 68

Benzo[c]phenanthrene-3,4-dione 3.5 − 67 34

B[a]P-7,8-dione 0.7 − 90 10

Benzo[g]chrsyene-11,12-dione 8.0 + 36 64

Pyrocatechol 0.2 − NA NA

a%, Product as isomer 1; b%, Product as isomer 2.

+, Where substrate inhibition is observed; −, substrate inhibition is not observed.

Data from: Zhang et al., 2011.

bronchoalveolar H358 cells, immortalized human bronchial
epithelial cells (HBEC-KT), and normal human bronchial epithe-
lial cells (BEAS-2B; Zhang et al., 2012). When B[a]P-7,8-dione
was reduced anaerobically to the catechol, it was found to be a
substrate for these three human recombinant SULTs, and pro-
duced two O-sulfated products (Zhang et al., 2012). In these
assays, the metastable PAH catechol was generated anaerobically
and further sulfated by SULTs using PAPS as the sulfate donor
(Figure 3). Two isomeric mono-O-sulfated-B[a]P-7,8-catechols
were generated and their identities were confirmed by LC-MS-MS
and 2D[1H]NMR. The major metabolite formed by SULT1A3 was
found to be 8-hydroxy-B[a]P-7-O-sulfate with the minor metabo-
lite being 7-hydroxy-B[a]P-8-O-sulfate. SULT1A1 only generated
the 8-hydroxy-B[a]P-7-O-sulfate metabolite. SULT1E1 generated
similar amounts of both isomers. SULTs displayed K m values in
the low micromolar or sub-micromolar range which were com-
patible or even lower than those for estrogen catechols (Zhang
et al., 2012). The studies indicate that sulfation of PAH catechols
by SULTs could be an important phase II pathway for the detox-
ication of PAH o-quinones, and that the major enzyme involved
was SULT1A1.

SULT1A1 polymorphism has been associated with increased
lung cancer risk (Wang et al., 2002). The common SULT1A1
allozymes consist of ∗1 (wild type), ∗2 variant (Arg213His), and
∗3 variant (Met223Val; Carlini et al., 2001). The allelic frequen-
cies for SULT1A1∗1,∗2,∗3 in Caucasian were 0.656, 0.332, 0.012,
respectively. Despite the low frequency of SULT1A1∗3 in Cau-
casians, it has an allelic frequency of 0.229 in African-Americans
(Carlini et al., 2001). It has been reported that SULT1A1 recom-
binant allozymes have variable thermal stability and specific
activity toward p-nitrophenol, catechol estrogens, and dietary
flavonoids (Raftogianis et al., 1999; Adjei and Weinshilboum,
2002; Nagar et al., 2006). The SULT1A1∗2 variant was associ-
ated with low enzyme activity and thermal stability (Raftogianis
et al., 1999; Wang et al., 2002; Nagar et al., 2006). Although
SULT1A1∗3 had compatible thermal stability of the wild type,

its specific activities for SULT1A1 substrates were lower than
that of the wild type in many cases (Nagar et al., 2006). Our
study showed that the catalytic efficiency of SULT1A1∗3 with
B[a]P-7,8-catechol was about 50% of the wild type SULT1A1.
Therefore, polymorphic variants of SULT1A1 may have reduced
efficiency to detoxify PAH o-quinones. Unlike the high allelic fre-
quencies of SULT1A1 variants, SULT1A3, and SULT1E1 variants
were found to be very rare which suggests that genetic polymor-
phism of these two enzymes may have minimal effect on PAH
o-quinone detoxication (Glatt and Meinl, 2004; Hildebrandt et al.,
2004).

Uridine diphosphate glucuronosyltransferases are superfamily
of microsomal enzymes catalyzing the glucuronidation of a vari-
ety of endogenous compounds and xenobiotics (King et al., 2000).
Based on sequence identities, UGTs are divided into two main sub-
families, UGT1 and UGT2 (Tukey and Strassburg, 2000). UGTs are
widely distributed in a variety of tissues, including liver, intestine
brain, kidney, lung, etc. (Guillemette, 2003). Several UGTs were
found to catalyze the glucuronidation of PAH mono-phenols and
dihydrodiols (Zheng et al., 2001; Olson et al., 2011). The major
enzyme isoforms that glucuronidate PAH catechols remain to be
identified.

DETOXICATION OF PAH O-QUINONES IN HUMAN LUNG
CELLS
The existence of Phase II detoxication of PAH o-quinones was
confirmed in human lung cells (A549, H358, and HBEC-KT cells;
Huang et al., 2012b). Consistent with the studies that used human
recombinant enzymes, both mono-8-O-methylated B[a]P-7,8-
catechol and mono-8-hydroxy-B[a]P-7-O-sulfate were formed
in three human lung cells. The detection of these metabolites
in human lung cells suggests that O-methylation and sulfation
of PAH catechols are critical pathways in detoxication of PAH
o-quinones in human lung. Evidence for the formation PAH cat-
echol glucuronides was also found, although absolute chemical
structures of them require elucidation.
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In addition to the formation of O-methylated, O-sulfate, and
O-glucuronide conjugates of B[a]P-7,8-catechol, the glutathione
(GSH) conjugate, NAC conjugate, and a B[a]P-7,8-dione ade-
nine adduct were also detected in human lung cells (Figure 4;
Huang et al., 2012a,b). PAH o-quinones were reported to readily
form thioether conjugates with l-cysteine and GSH conjugates
in vitro (Smithgall et al., 1986; Murty and Penning, 1992a,b).
Thio-conjugation occurred at C10 of B[a]P-7,8-dione (Murty and
Penning, 1992a). The GSH and NAC conjugates of B[a]P-7,8-
dione formed in the human lung cells were found to be identical
to those obtained from non-enzymatic synthesis (Huang et al.,
2012b). However, glutathione S-transferase (GSTs) may also be
involved. To form the NAC conjugate of B[a]P-7,8-dione, the
GSH conjugate would be converted into a Cys-Gly conjugate by

γ-glutamyltranspeptidase, and then further metabolized into a Cys
conjugate by the action of a dipeptidase, and ultimately the NAC
conjugate would be formed by N -acetyl transferase (Blair, 2006,
2010). Future studies will be required to identify the GST isoforms
involved in the thio-conjugation of PAH o-quinones. Although
thio-conjugation of o-quinones could enhance the polarity and
solubility of PAH o-quinones to facilitate the disposition of PAH,
the ability of these o-quinone thioether conjugates to redox-cycling
remains (Monks and Lau, 1997). It was shown that GSH conjugates
of benzoquinone undergo redox-cycling to produce renal toxicity.
In this respect, thioether conjugates are not completely innocuous.
1,4-Michael addition of PAH o-quinones with DNA could also give
rise to depurinating and stable DNA adducts. Treatment of lung
cells (A549, H358, and HBEC-KT) with 2 µM B[a]P-7,8-dione

FIGURE 4 | Metabolic pathways of B[a]P-7,8-dione in human lung cells. Metabolites of B[a]P-7,8-dione detected from human lung cells are underlined
(Huang et al., 2012b). Ade, adenosine.
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consistently generated a B[a]P-7,8-dione adenine adduct (Huang
et al., 2012a). Sources of this adduct other than DNA exist, since
adenine is a key component of NAD(P)(H) and ATP, and the acid
conditions used in its isolation could lead to glycosidic and ester
bond cleavage. Thus it is not possible to conclude that this adduct
came from DNA.

Our data support the concept that AKRs not only activate PAH
trans-dihydrodiols by forming redox-active PAH o-quinones, but
also facilitate the redox-cycling of the PAH o-quinones to cat-
echols. The catechols are available for conjugation by a wide
range of Phase II enzymes (Figure 2). Phase II conjugation of
PAH catechols will significantly alter the detrimental properties
of PAH o-quinone on lung cells. First, it terminates the futile
redox-cycling of PAH o-quinones that leads to ROS generation
and subsequent oxidative DNA damage. Second, it eliminates the
electrophilicity of PAH o-quinone and prevents the formation of
covalent adducts with protein and DNA. Finally, glucuronida-
tion and sulfation usually result in more polar metabolites with
enhanced renal or biliary excretion of xenobiotics or drugs, thus
conjugation of PAH catechols may also facilitate elimination of
PAH o-quinones from the body. Since AKRs are involved in acti-
vation and deactivation of PAH, it is important to study the
expression of AKRs in human lung cells so as to understand
the contribution of each AKR isoform in toxification and detox-
ication of PAH in lung. Except liver-specific AKR1C4, AKR1C1,
1C2, 1C3 were found to be highly expressed in human lung tis-
sue (Penning et al., 2000) were overexpressed in non-small-cell
lung carcinoma (Fukumoto et al., 2005; Woenckhaus et al., 2006),
and can be induced by PAH (Burczynski et al., 1999; Courter
et al., 2007; Misaki et al., 2007; Machala et al., 2008). Transcript
levels of AKR1A1, AKR1C, AKR1B, and AKR7A2 isoforms were
compared in A549 cells (Quinn et al., 2008). AKR1B1 and partic-
ularly AKR1B10 were the most abundant AKR isoforms followed
by AKR1C isoforms, while the expression of AKR1A1 and 7A2
were much lower than AKR1B and 1C isoform expression. A549
cells were also found to have significantly greater AKR1B10 tran-
script levels than found in HBEC-KT cells which are more similar
to normal lung epithelium cells. As human lung adenocarcinoma
cells, A549 cells may not accurately reflect enzyme levels of normal
human lung, further studies are required to investigate expression
of the AKRs in cell models that better represent normal human
lung cells.

Animal models such as rats and mice are often used to study
PAH carcinogenesis raising the possibility that more could be
learned by the use of AKR knockout or AKR transgenic mice.
However, caution should be exercised when rodent models are
used to draw conclusions as to the role of human AKRs in PAH
carcinogenesis. The most important enzymes to study would
be the murine AKR1C enzymes. However, it has been shown
that there are no functional orthologs of the AKR1C enzymes
in mice (Velica et al., 2009). Among the studies that have been
successful, it was found that AKR1B3 (murine aldose reduc-
tase) knockout mice exhibited reduced metabolism of advanced
glycation end products (AGEs) resulting in AGEs accumula-
tion and atherosclerotic lesion formation (Baba et al., 2009);
in addition AKR1B3 knockout mice prevented azoxymethane-
induced formation of colonic preneoplastic aberrant crypt foci
by a mechanism that may involve reduction of glutathionyl-4-
hydroxynonenal to glutathionyl-1,4-dihydroxynonene (Tammali
et al., 2009). In another study, AKR1C18 knockout mice which
have 20α-hydroxysteroid dehydrogenase were found to have a
parturition defect due to the inability to metabolize progesterone
(Piekorz et al., 2005).

CONCLUSION
Aldo-keto reductases catalyze the metabolic activation of struc-
tural diverse PAH trans-dihydrodiol proximate carcinogens to
yield redox-active and electrophilic PAH o-quinones. AKRs also
catalyze the two electron reduction of PAH o-quinones back to the
corresponding cognate PAH catechols, establishing a futile redox
cycle which results in ROS formation and subsequent oxidative
DNA damage in human lung cells. However, the PAH catechols
can be intercepted by COMT, SULTs, and UGTs to form conjugated
PAH metabolites, which will terminate the redox-cycling. The tox-
icological outcome of the o-quinone pathway of PAH activation
will depend on the balance of the activities of the AKR isoforms
and the battery of phase II enzymes implicated in the conjuga-
tion process. This balance will be affected by gene expression and
polymorphic variants of the enzymes identified.
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