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Abstract

Cell lines are still a tool of choice for many fields of biomedical research, including oncology. Although cancer is a
very complex disease, many discoveries have been made using monocultures of established cell lines. Therefore,
the proper use of in vitro models is crucial to enhance our understanding of cancer. Therapeutics against renal cell
cancer (RCC) are also screened with the use of cell lines. Multiple RCC in vitro cultures are available, allowing in vivo
heterogeneity in the laboratory, but at the same time, these can be a source of errors. In this review, we tried to
sum up the data on the RCC cell lines used currently. An increasing amount of data on RCC shed new light on the
molecular background of the disease; however, it revealed how much still needs to be done. As new types of RCC
are being distinguished, novel cell lines and the re-exploration of old ones seems to be indispensable to create
effective in vitro tools for drug screening and more.
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Background
Cell line-based research had a major impact on the de-
velopment of cancer treatment allowing an innumerable
amount of effective drugs to be introduced into practice
[1]. Cancer cell lines, especially those in NCI-60 panel,
are the first target of preclinical drug screening that en-
ables the quick elimination of ineffective compounds
from further preclinical and clinical testing, requiring la-
boratory animals and patients [2]. Since 1955, the US
National Cancer Institute (NCI) has provided screening
support to cancer researchers worldwide. Until 1985, the
NCI screening program and the selection of compounds
for further preclinical and clinical development under
NCI auspices had relied predominantly on the in vivo
L1210 and P388 murine leukemias and certain other
transplantable tumor models. In June of 1984, the author
presented to the NCI Division of Cancer Treatment’s
Board of Scientific Counselors (BSC) a preliminary con-
cept of a disease-oriented in vitro primary anticancer
drug screen as a potential replacement for the P388 in
vivo primary screen; after the development of the 60 cell
lines panel, it was formally launched in 1990 and is

embodied in the present-day screen [3]. The ultimate
goal of this disease-oriented screen is to facilitate the
discovery of new compounds with potential cell line-
specific and/or subpanel-specific antitumor activity [4].
The 60 cell lines of the National Cancer Institute Anti-
cancer Drug Screen (NCI-60) constitute the most exten-
sively characterized in vitro cancer cell model. They
have been tested for sensitivity to more than 100,000 po-
tential chemotherapy agents and have been profiled ex-
tensively at the DNA, RNA, protein, functional, and
pharmacologic levels. Cell lines as a tool in biomedical
research have both advantages and disadvantages in
comparison with primary cultures and laboratory ani-
mals. First, they provide large numbers of cells available
for testing, while primary cultures typically have a lim-
ited lifespan and require regular access to donors [5].
Importantly, cell lines are a crucial tool in implementing
the 3Rs principle of animal research - Replacement, Re-
duction and Refinement [6] reducing the number of la-
boratory animals used during primary drug screening.
This provides ease and speed of inventions. At the same
time established cell lines represent a simplification of
natural phenomena, as they are deprived of multilateral
relations between different cell populations, microenvir-
onment and responses of the host [7]. This can be
partially overcome by culturing cells in complex three-
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dimensional systems or co-cultures, whaich better
mimics natural surroundings in the host, retaining the
ease of work and controlled conditions [8, 9]. However,
further testing in more relevant biological models is in-
dispensable to proceed to clinical trials but cell line re-
search will still underlaie most of them [10, 11].
Renal cell cancer (RCC) research has greatly benefited

from cell line studies. Cell biology studies enable an un-
derstanding of RCC biology and translational studies
[12–15]. To analyze homogeneous populations of cancer
cells and feasibly identify genetic changes (mutations,
gene expression) cell lines derived from tumor tissues
(nephrectomy and metastasectomy specimens) from pa-
tients with renal cell carcinomas are being established
[16]. The reported efficacy rate in establishing new cell
lines is 75% from fresh and from 35% frozen specimens
[16]. In a large study covering 498 successive attempts
to establish RCC cell lines, 63 were successful (12%)
[17]. The development of new drugs requires an appro-
priate model for testing; therefore the analysis of the ra-
tionale for choosing appropriate cell lines for RCC
research is an objective of this review. We focus on
popular RCC cell lines, their properties, and usefulness
but also note the issues that may be vital for RCC cell
line-based research.

RCC subtypes
Cancer sample (nephrectomy, metastasectomy) de-
rived cell lines are used as in vitro RCC models, and
it is important to remember that cell lines are in fact
genetic models of their parent tumor histology [18].
Different clinical characteristics and treatment suscep-
tibility are apparent between histotypes of RCC. Can-
cer cell lines in vitro preserve the unique genetic
aberrations of parent tumor from which they were
derived, and in long-term culture they acquire add-
itional specific alterations [18]. In culture, cells no
longer have easily identifiable morphological charac-
teristics used in the histological classification of
tumor specimens. As with primary RCC tumors, the
mutation status of cancer including VLH, cMET and
TP53 and a general marker immunohistochemistry
profile may serve to define the histotype of RCC cell
lines (Table 1). Molecular and cell biology researchers
using in vitro cell culture as experimental models
need to recognize that, like primary cancers, the
models used to study diseases genetics, biomarkers,
and drug activity/resistance must also be stratified.
RCC cell line-based studies are often hampered by a
lack of proper annotation of RCC lines. Disease-
specific studies need to incorporate cellular and
clinical contexts [19, 20]. Surprisingly, many basic
pre-clinical RCC studies employing functional re-
search on “renal cancer/renal carcinoma/renal

adenocarcinoma/renal cell cancer” cell lines do not
analyze the background of the investigated model and
analyze different subtypes of RCC together, including
wild-type cell lines and those harboring mutations (i.e.
VHL) and cell lines of different histotypes [21–23]. The
conclusions of such projects may be difficult to interpret,
and the value of potential therapeutic targets is rather
questionable, as is the true relevance to a particular RCC.
Confirming established histotype-specificity markers for
RCC cell lines should become the standard in planning
and executing experiments on renal carcinoma [23, 24].
Major improvements in the pathologic classification of

RCC have been reported over last 30 years. The first,
known only as renal cell carcinoma, was in the 1960s di-
vided into clear cell and granular histotypes. Currently
five traditional and well-defined subtypes of RCC are
known: conventional clear cell RCC, papillary (types 1
and 2) RCC, chromophobe RCC, carcinoma of the col-
lecting ducts of Bellini, and unclassified RCC and these
subtypes represent the majority of RCC cases diagnosed
[25]. Clear cell RCC (ccRCC) is the most common sub-
type of renal cancer and accounts for approximately 70–
75% of cases, so it cannot be assumed that all RCC-
derived cell lines represent ccRCC. Papillary RCC
(pRCC) is the second most common subtype of RCC
and is diagnosed in approximately 10–16% of cases;
pRCC is therefore expected among cell lines already in
research. In the case of cell lines established in the
1970s or 1980s, histology (based on specific mutations
and genetic changes) should be verified before any con-
clusions of the studies using cell lines are drawn. This
particularly applies to new drug developments that are
most often histotype specific [26].
In particular, pRCC was characterized in the 1980s as

tumors containing more than 75% of papillary structures
and not bearing 3p chromosomal loss on the contrary to
ccRCC. Later [27], it was found that two different sub-
types of papillary tumors may be distinguished (referred
as to pRCC Types 1 and 2). Genomic characterization of
types 1 and 2 papillary tumors is still incomplete. Inher-
ited forms of types 1 and 2 tumors are referred as to
hereditary papillary renal cell and hereditary leiomyoma-
tosis and RCC (HLRCC), respectively. Germline met
proto-oncogene (MET) and fumarate hydratase (FH) al-
terations are the hallmark of these cancer syndromes,
but are infrequent in sporadic cases [28, 29]. It also
needs to be underlined that the RCC subtype of clear
cell papillary renal cell carcinoma [30] has mixed charac-
teristics of both clear cell and papillary RCC, but pos-
sibly some of cell lines may represent this phenotype.
Chromophobe RCC (chRCC) is the third most com-

mon RCC subtype, and it was described for the first time
in the mid-1980s. Additionally, rare histologic RCC sub-
types were discovered in the 1990s and 2000s and
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include collecting duct carcinoma, medullary RCC,
translocation RCC, and mucinous tubular and spindle-
cell RCC. Recently, even more new subtypes have been
described- hybrid oncocytic chromophobe tumor, mu-
cinous tubular and spindle cell carcinoma, multilocular
cystic clear cell RCC of low malignant potential, carcin-
oma associated with neuroblastoma, and renal medullary
carcinoma [25, 31, 32]. Nevertheless, one should also
not forget RCC types that were approved in 2013 by the
International Society of Urological Pathology (ISUP)

Vancouver Consensus Statement including five more
epithelial tumor subtypes: the micropthalmia (MiT) fam-
ily translocation RCCs (Xp11 translocation RCC), tubu-
locystic RCC, acquired cystic disease-associated, RCC
clear cell tubulopapillary RCC, and hereditary leiomyo-
matosis–RCC syndrome-associated tumors. Next, three
RCC subtypes were given provisional status- thyroid-like
follicular carcinoma of kidney, succinate dehydrogenase
B deficiency-associated RCC, and anaplastic lymphoma
kinase translocation RCC [31, 32].

Table 1 Differentiation of RCC subtypes

Marker Clear cell RCC Papillary RCC
Type 1

Papillary RCC
Type 2

Chromophobe
RCC

Oncocytoma Xp11.2 translocation RCC

VHL
mutation

+ (~90%) - - - - -

cMET
mutation

- + - - - -

TP53
mutations

- - - + - -

Other
mutations

PBRM1 (~50%), BAP1 (~15%),
SETD2 (~15%)

NRF2, CUL3 FH - Mitochondrial
complex I genes

translocations of Xp11.2 (TFE3)
or 6p21 (TFEB)

CK8 +/- + + +/- + ND

CAIX + +/- + - - +

CAM 5.2 + + + + + -

CD10 + + + +/- +/- +

CD15 + + + - + ND

CK18 + + + + + ND

EMA + + + + + -

GST-alpha + - - - - ND

PAX2 + + +/- - + +/-

PAX8 + + + + - +

RCC Ma + + +/- - - +

VIM + + + - - +

AMACR - + + - - +

CD117 - - - + + ND

CK7 - +/- -/+ +/- - +/-

CK19 - - - - - +/-

CK20 - - - - - -

c-KIT - +/- +/- + + ND

CLDN7/8 - - - + + ND

E-cadherin - + +/- + - +

EpCAM - - -/+ + +/- ND

Ksp-cad - - - - + +

PVALB - - - + +/- ND

TFE3 - - - - - +

SMA - - - - + ND

Legend: AMACR α-methylacyl coenzyme A racemase, CAIX carbonic anhydrase IX, CK7 cytokeratin 7, CLDN7/8 claudin 7/8, EMA epithelial membrane antigen, GST-
alpha glutathione S-transferase alpha, EpCAM epithelial cell adhesion molecule, Ksp-cad kidney-specific cadherin, PVALB parvalbumin, RCC Ma renal cell carcinoma
marker, SMA smooth muscle action, TFE3 Transcription factor E3 - transcription factor binding to IGHM enhancer 3, PAX2/8 paired box gene 2/8, VIM vimentin, ND
no reported data
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To distinguish RCC subtypes, genetic analysis may
be employed. The von Hippel-Lindau (VHL) gene is
known to be most often mutated in renal cell carcin-
oma of clear cell type (ccRCC) in up to 90% of spor-
adic ccRCC cases [33] and multiple surprising and
contradictory reports on the VHL gene status in com-
mon RCC cell lines have been published (Additional
file 1: Table S1). Moreover recently three other tumor
suppressor genes PBRM1 (mutated in ~50%), BAP1
(~15%), and SETD2 (~15%) were defined as specific
for the ccRCC subtype. PBRM1, also known as
BAF180 or Polybromo, is a member of the PBAF
SWI/SNF chromatin remodeling complex. VHL,
PBRM1, BAP1 and SETD2 are allocated on chromo-
some 3p. BAP 1 is a BRCA1- associated protein-1
(ubiquitin carboxy-terminal hydrolase). Mutations in
BAP1 and PBRM1 in ccRCC tend to be mutually
exclusive [34].
This in vivo heterogeneity of RCC should be mimicked

in vitro; a wide panel of cell lines with different charac-
teristics is needed to provide us with a tool for both
basic and applied research.

RCC cell lines used in research
The number of available RCC cell lines is impressive:
more than 20 cell lines are widely used- deposited in cell
banks- and dozens of others were established and used
for research in selected laboratories (Fig. 1) [16]. The
most popular RCC cell lines are delivered by ATCC and
other certified cell banks (Additional file 1: Table S1).
Most cell lines were established between the mid-1970s
till the late 1980s, when subtypes of RCC including clear
cell, papillary, or chromophobe RCC were not yet distin-
guished; therefore, all the subtypes may be represented
among RCC cell lines. Many researchers currently refer
generally to RCC or renal carcinoma when describing
their laboratory model. Although this is true, it regret-
tably narrows conclusions that can be drawn from their
research, thus limiting the translational potential of in

vitro studies. However, a growing amount of data can
help to categorize cell lines established before 1995 into
correct RCC subtypes as the cell lines genetic profile is
analyzed and cells lines are characterized for markers of
particular RCC subtypes with multiple methods includ-
ing immunohistochemistry (IHC), gene sequencing, and
xenografted tumors histology analysis [35, 36]. The
proper initial molecular characterization of cell lines is
indispensable to provide later in vitro tools to study gen-
etic and cellular events underlying carcinogenesis, dis-
ease progression, and/or drug activity [23, 37–39].
Often, information on original patients- cell line donors-
is fragmentary and more precise characteristics of estab-
lished cell lines come with time, thanks to cell biology
and genetic studies [28, 33]. Most recently, interesting
cell lines representing novel RCC subtypes have been
established, including NCCFH1 for hereditary papillary
renal cell carcinoma type 2 [40] or the S-TFE cell line
for Xp11 translocation renal cell carcinoma [41]. In
Additional file 1: Table S1, we collected various informa-
tion available for over 60 cell lines- including the source
of starting material, basic genomic data, and database
tools that might be useful in designing RCC cell line-
based experiments.

ACHN cell line
The ACHN cell line represents an uncertain RCC histo-
type (Fig. 1). It was established from pleural effusion and
models metastatic disease. In early xenograft studies, tu-
mors were described as poorly differentiated clear cell
[42] however, a more recent genomic comparison sug-
gests papillary characteristics of ACHN [43]. Moreover,
this cell line harbors a c-met polymorphism that is spe-
cific for papillary RCC [44]. Chromosome aberrations in
ACHN cells also resemble those of papillary tumors
[45]. Yet, gene expression analysis revealed similarities
to clear cell tumors, especially when concerning the
MYC pathway [29]. No mutations in VHL and HIF-1α

RCC cell line based research

Clear cell Papillary

Cell bank 
available

Laboratory
based

Primary

786-O (vhl mut)

SNU-333 (vhl wt)

SKRC-45 (vhl mut)SKRC-44

Caki-1 (vhl wt)

UM-RC-2 (vhl mut)

Metastatic Primary Metastatic

Caki-2

UOK-112

UOK-145

ACHN

SKRC-39

Fig. 1 Classical RCC cell lines as models of different RCC subtypes and disease stage
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mRNA in ACHN cell line, could confirm non-clear cell
histology [46].

A-498 cell line
A-498 is a “classical” RCC cell line belonging to the
NCI-60 panel and is therefore widely used in cancer re-
search. Mutated vhl [46, 47] would suggest a clear cell
subtype; however, a study by [48] detected no mutation.
In addition, [49] claimed that A-498 is of papillary ori-
gin, as xenografts exhibited such histology. To some ex-
tent this observation was confirmed by chromosome 8
and MYC analysis [29]. Nonetheless, this issue was not
significantly recognized by scientific community and
most researchers use it as a model of ccRCC [47, 50, 51]
with rare exceptions [52].

786-O cell line
786-O, established as one of the first RCC cell lines, has
many characteristics of ccRCC and is used most com-
monly in RCC-focused research (Fig. 1). The 786-O
RCC line is defective in VHL expression, as it harbors
mutated VHL [53, 54] with altered HIF and VEGF (Vas-
cular endothelial growth factor) pathways [46] and gives
rise to clear cell tumors in nude mice [55, 56]. In this
RCC model the vast majority (122/160) of genes induced
by hypoxia in wt-VHL transfected 786-O (VHL+) cells
are not significantly up-regulated in VHL mutated 786-
O cells, confirming that the loss of VHL is not equiva-
lent to hypoxic exposure and that in RCC, the VHL
tumor suppressor has a distinct role from its activity in
the hypoxia-inducible pathway [57]. Interestingly, side
populations (SPs) of higher tumorigenicity were ob-
served in this cell line, proving its usefulness in cancer
stem cell studies [58, 59]. Surface receptors also confirm
the ccRCC phenotype of 786-O cells, as these cells are
positive for CD10 [60] and vimentin [61]. These cells
produce high levels of VEGF [46] as well, which is char-
acteristic of ccRCC. This cell line can be used to model
bone metastasis in RCC- 786-O cells injected into nude
mice, both directly to the tibia or to the cardiac ven-
tricle, cause bone destruction and vascularization [62,
63]. A subline derived from such metastatic tumors can
be cultured in vitro in 3D systems that retain bone me-
tastasis characteristics [64].

Caki-1 cell line
Caki-1 is a widespread model line of metastatic ccRCC
(Fig. 1). While harboring wild-type vhl, it was shown to
produce tumors of clear cell histology in nude mice,
both by the total population and SP cells [65]. High
VEGF production [66] (especially in hypoxic conditions
[56]) in those cells is also a hallmark of ccRCC. Interest-
ingly, this cell line was also proposed as a model system
of proximal tubule epithelium, as in culture, cells can

form a polarized layer with morphological, physiological
and biochemical characteristics of functional, well-
differentiated kidney tissue [67].

Caki-2 cell line
Caki-2 was established from a primary tumor of the kid-
ney. This cell line was primarily defined as the ccRCC
cell line (Fig. 1) that expresses wild-type pVHL but does
not express HIF-2α. However, a low expression of HIF-
1α is detected in this cell line for unknown reasons [46].
The recent evaluation of tumors formed by Caki-2 in
nude mouse in orthotopic and sub-cutaneous implanta-
tions revealed cystic papillary tumors with microvilli and
microfilaments, few mitochondria, lysosomes or lipid
droplets, and multilamellar bodies [68–70]. Although
the Caki-2 cell line has been treated as a model for pri-
mary ccRCC, a growing amount of data suggests that it
is a cell line of papillary RCC. These cells express high
levels of MET and LRRK2 [71] and harbor chromosome
8 aberrations [29] characteristic ofr papillary RCC. Inter-
estingly, reports on VHL gene status of this cell line are
inconsistent– some researchers detected no mutations
[46], while others [47, 48] reported mutations in α-
domain of VHL, which may imply the clear cell hist-
ology of Caki-2. Such misleading observations have led
to non-uniform use of this cell line–it is now widely
used both in clear cell RCC [66, 72, 73] and papillary
RCC [69–71, 74] research. Finally, it is generally de-
scribed as clear cell RCC by most cell banks, which may
lead to misinterpretation.

769-P cell line
The 769-P cell line, established along with 786-O by
[75], harbors mutated vhl and secretes high levels of
VEGF, suggesting a ccRCC phenotype (Additional file 1:
Table S1 for ref ). These cells contain a SP of higher
tumorigenicity that can create tumors even after serial
passage in nude mice retaining their original histological
characteristics [76]. However, the validity of this cell line
in xenograft studies is limited; injected subcutaneously
[56] or i.v. [55], they failed to form tumors in some
models.

RCC4 cell line
Another interesting cell line is RCC4, a vhl mutant
[77, 78] derived from a primary tumor widely used as
a model for VHL-dependant mechanisms, witha com-
mercially available counterpart cell line with restored
wild-type gene [79]. It is used [80–83] for both in
vitro and in vivo experiments, as RCC4 cells are
tumorigenic in nude mice. Unfortunately, no data on
the original patient can be found; supposedly the cells
were obtained by Prof. C.H.C.M. Buys, Department of
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Medical Genetics, University of Groningen, Groningen,
the Netherlands.

SMKT-R cell lines
SMKT-R1, SMKT-R2, SMKT-R3 and SMKT-R4 are cell
lines established in Sapporo Medical College from pri-
mary lesions of RCC from xenotransplantable tumors at
passage 2 or 1 in nude mice [84]. Vhl is mutated in cell
lines SMKT-R2 and SMKT-R3 [48], and in SMKT-R2
and SMKT-R3 HIF-α proteins are expressed [85].
SMKT-R3 original tumors are characterized as papillary
type and granular cell subtype, and the level of secreted
VEGF is lower than in SMKT-R2 line [86] confirming
the non-ccRCC histology of this cell line. Research on
the SMKT-R cell lines confirms that RCC cell lines can
retain the histology of the original tumor after in vitro
culture and passage in nude mice.

Memorial Sloan Kettering Cancer Centre cell line
collection
The metastatic dissemination of cancer may be par-
tially recapitulated in vitro with analysis of multiple
metastatic loci and metastasis-derived cell lines. This
in vivo heterogeneity of tumors can be mimicked in
vitro with use of a panel of cell lines in the place of
multiple biopsy derived samples [87]. The Memorial
Sloan Kettering Cancer Centre provides an RCC re-
pository with over 30 primary tumor-derived and 15
metastatic tumor-derived cell lines (SK-RC panel) col-
lected between 1972 and 1987 [17]. The MSKCC
panel covers cell lines obtained from tumors that de-
veloped in the most common RCC metastases loci,
including the adrenal glands (SK-RC-45), lymph nodes
(SK-RC-18, SK-RC-26b), lungs (SK-RC-26a SK-RC-31,
SK-RC-38 SK-RC-54), bones (SK-RC-42, SK-RC-46),
soft tissue (SK-RC-17, SK-RC-39), and the brain (SK-
RC-9, SK-RC-13). This collection consists of samples
with different features; however, the molecular
characterization of particular cell lines is still incom-
plete (Additional file 1: Table S1). The SK-RC-45 line
was used to study immune responses in RCC and the
induction of T cell apoptosis [88, 89], while SK-RC-42
was shown to contain cancer stem cells (“CSCs”) [90].
These cell lines express either HIF-2α only (SKRC-21,
SKRC-17) or both HIF-1α and HIF-2α (SKRC-7,
SKRC-10, SKRC-52) [91].

Laboratory specific RCC cell line collections
3Thirty cell lines from primary tumors as well as four
lines from metastatic tissues taken from 31 patients were
established in the National Cancer Institute in Bethesda
(UOK 101–131 cell lines). Sixteen of the cell lines were
derived from tumors composed predominantly of clear
cell RCC, three were granular cell RCCs, and one

papillary type (UOK112). The remaining tumors were of
mixed types including clear and granular cells, clear cell
+ granular and sarcomatoid cells (UOK 105, 117, 119,
123 and 127), or clear cell and papillary (OUK 120). Cell
line phenotypes, including morphology, in vitro growth
characterization, and tumorigenicity in nude mice were
determined for these cell lines [16]. Another seven RCC
cell lines were established in the Korean Cell Line Bank
of Cancer Research Center and Cancer Research Insti-
tute. In particular, five cell lines were derived from clear
cell RCC (SNU-228, -267, -328, -349, and -1272), one
from granular RCC (SNU-482), and one from mixed
clear and granular RCC (SNU-333). The mutational sta-
tus of cell lines was confirmed for von Hippel-Lindau
(VHL), p53, TGF-beta type II receptor (TGF-betaRII),
hMSH2, and hMLH1 genes [92]. More recently, Chinese-
origin cell lines named NRCC from the primary ccRCC
and MRCC from the metastatic ccRCC were established
from the primary tumor of a 49-year-old male ccRCC pa-
tient and the metastatic tumor of a 62-year-old male with
ccRCC. The morphology of cell lines along with the doub-
ling times, colony formation rates, invasion assay,
anchorage-independent growth, cytogenetic characteris-
tics, and expression of CD105, CD133, CD44, CD24,
CD56, CD99, and CD74 markers as well as N-cadherin, E-
cadherin, and vimentin were described and have shown
that NRCC cells displayed more epithelial characteristics,
while MRCC cells are mesenchymal-like [93].

RCC cancer stem cell cultures
Specific subpopulations of cancer cells are available for
culture. In particular cancer stem cells referred to as
tumor-initiating cells are currently becoming available.
In particular, donor specific kidney cancer cells derived
from primary tumors cultured in stem cell-promoting
media are enriched in CSCs (Promab cat. No. CF100107,
Celprogen cat. No. 36117-44). The role of CSCs in RCC
has been reviewed elsewhere [94], as they are potential
treatment targets [95]. They are putatively tumor-
initiating cells that promote disease development and
progression and may be distinguished using different ap-
proaches. CSCs can be discriminated based on their
unique features; in different cancers, in comparison to
other tumor cells, they have elevated aldehyde dehydro-
genase (ALDH) activity, increased glycolysis and glycine/
serine metabolism or low concentrations of reactive oxy-
gen species and ATP, the ability to form spheres, and a
reduced level of proliferation. Such functional character-
istics can be used to selectively isolate subpopulations of
cancer cells [96–99]. Moreover, due to the increased ac-
tion of ABC transporters, CSCs are more resistant to
drug treatment, which enables the separation of CSCs
from other tumor cells based on the increased efflux of
ABC-dependent dyes (Rhodamine123 or Hoechst33342)
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as a dye-negative side population (SP) [98, 100]. In RCC,
CD105 and CD133 surface markers are also suspected
to identify cells with stem properties [101, 102]. CSCs
express genes typical for multi/pluri-potent cells; Oct4,
Sox-2, Nanog, and Bmi-1 [98, 103] and are shown to
have increased tumorigenicity and clonogenicity. In
stable cell cultures of RCC cells, cancer stem cells have
been identified, which primarily reflects the unexpected
heterogeneity of cell culture in vitro. In 769-P, ACHN,
Caki-1, SMKT-R2, and SMKT-R3 cell lines, the SP of
Hoechst33342 negative cells was shown to express CSC
properties [76, 104]. The ACHN line CSC subpopulation
is Hoechst33342-negative and ALDH-positive [98], while
Caki-2 CSCs are also ALDH-positive and form spheres
[99]. The 786-O cell line is also shown to bear the CSC
subpopulation, as confirmed by Rh123 fluorescent inten-
sity based isolation [105]. At the same time, SK-RC-42
cells cultured in spheres have features of CSCs [90].
However, methods in CSCs research are not yet uniform,
and some contradictory data complicate the explanation
of their role in RCC. In particular, [105] showed that
Rh123low cells show stronger CSC properties than the
Rh123high population that could be suspected to group
stem cells.

Normal renal proximal tubule cells
Primary cultures of normal human epithelial cells of
proximal origin derived from the renal cortex have been
shown to present very homogeneous morphology in
vitro [106]. If normal tissue originating from the same
donor is not available, RPTEC cells are used as the con-
trol cell line for the comparative analysis of cancer and
normal renal cells [57]. RPTEC cells are human renal
proximal tubule epithelial cells that are derived from
normal or diseased (e. g. diabetic) donors [107]. As pri-
mary cells, they have a limited lifespan, but usually can
reach at least eight passages maintaining typical epithe-
lial, cobblestone morphology and the expression of epi-
thelial and renal markers like E-Cadherin, CK, or ZO-1
[108, 109]. These cells are also available as immortalized
lines: HK-2 and RPTEC/hTERT. The former was trans-
duced with human papilloma virus (HPV 16) E6/E7
genes [110] while the latter ectopically expresses the
catalytic subunit of telomerase (TERT) [111]. These
modifications enable the cells to be cultured continu-
ously constituting a convenient control for RCC cell
lines. Many studies show that the cells are genomically
stable and most functional characteristics remain typical
for RPTEC [111]. RPTECs are used to model basic kid-
ney functions and renal diseases. Nephotoxicity [112],
the efflux of drugs [113], responses to environmental
toxicants [114] or renin-angiotensin system (RAS) sig-
naling [115] can be studied with the use of these cells. In
RPTECs, the steady-state amount of VHL protein is

strictly regulated by the cell density, and the cellular
VHL content is more than 100-fold higher in dense cul-
tures than in sparse cultures [116].
Total kidney isolates are also available (e. g. Applied

StemCell, cat. no. ASE-5186); after the dissociation of a
healthy renal sample, all cells are frozen which allows
various cell types to be cultured without direct access to
donors.
Another widely used non-cancer renal cell line is

the HEK293 cell line. Generated in 1977 by the viral
transformation of human embryonal kidney cells,
[117] HEK293 cell line is a widely used expression
tool [118]. Although studies show that these cells have
many features of neuronal cells [119, 120], they are still
used as a model for kidney physiology [121, 122]. There-
fore, they may be used as convenient controls in RCC
in vitro research as well, but caution is needed for
interpretation [73, 123].

RCC cell lines specific for bone metastasis-oriented
research
RCC cell lines have also been developed as tools to
study specific phenomena in RCC. In particular, a
model to study the biology of the bone metastasis of
renal cell carcinoma has been established. This cell
line induced osteolytic lesions in nude mice after
injecting into the tibia. RBM1 cell line cells expressed
high levels of cytokines involved in osteoclast activa-
tion and bone resorption- parathyroid hormone-
related peptide, interleukin-6, and macrophage
colony-stimulating factor. Moreover, cells were con-
firmed to express EGFR and c-MET [124]. SK-RC-42
and SK-RC-46 also represent bone metastasis-derived
cell lines [17], as well as the CRBM-1990 cell line
[125], while ACHN and 786-O cells transplanted into
the left ventricle establish bone metastases [126, 127].
If studied after injection, bone metastasis-derived 786-
O cells (Bo-786-O) compared to parental 786-O cells
or cells that localized in the liver or lymph nodes had
significantly overexpressed cadherin-11, but not
CXCR4, HIF-1α, VEGF, angiopoeitin-1, Tie2, c-MET,
PTHrP, IL-6 or RANKL [128]. Sunitinib prevents the
growth of ACHN cells in a bone metastatic model.
The number of osteoclasts in sunitinib-treated
ACHN-bearing mice is significantly lower than that in
non-treated mice [126].

Other RCC cell lines
RCC subtypes less frequent than clear cell and papillary
are even more difficult to study in vitro as specimens are
obtained rarely. Recently, several cell lines were devel-
oped to model HLRCC; a rare genetic disorder that
manifests by cutaneous and uterine leiomyomas and kid-
ney tumors. Metastatic NCCFH1, UOK262, and primary
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UOK268 cell lines are FH deficient and can serve as
models for hereditary papillary type 2 RCC [40, 129,
130]. An in vitro model for Xp11.2 translocation carcin-
oma has recently been established as well. S-TFE cell
line is tumorigenic in nude mice and has fused TFE3
and ASPL genes [41].

Large scale molecular data and RCC cell lines
Some RCC cell lines, mostly present in NCI-60, were
used in whole genome analyses. Mutational, copy
variant, and expression analyses available for cells
lines are provided as links to databases in Additional
file 1: Table S1. The Cancer Genome Atlas (“TGCA”)
provided much valuable information on RCC charac-
teristics that can now be used in cell line-based re-
search. TGCA analyses identified vhl, pbrm1, bap1,
setd2, kdm5c, pten and mtor as the most frequently
mutated genes in ccRCC [131]. vhl mutant cell lines
are easily accessible; 786-O, 769-P, RCC4 (with rein-
troduced vhl control cell line available), are the most
widely studied models for VHL role in RCC. Apart
from gene mutation, vhl promoter region methylation
often occurs in ccRCC samples which effects in no
protein expression. Such a phenomenon was reported
for SK-RC-54, 769-P, and A-704 [132].
Classical cell lines were recently verified for PBRM1

expression status and confirmed ACHN- positive, 786-
O– positive, and A-704– negative. The ACHN cell line
expresses the protein, but harbors a heterozygous non-
sense mutation, while 786-O, 769-P, Caki-1, and A-498
express wild-type PBRM1 [133, 134]. The PBRM1 muta-
tion is also reported in Caki-2 and A-704 lines; loss-of-
function gene mutations in A-704 and the deletion in
exon 17 of the PBRM1 gene in Caki-2 [135] results in
no protein expression [133, 134, 136]. Mutations have
also been detected in OS-RC-2 and RCC-ER (see Add-
itional file 1: Table S1 for ref ) cell lines; however, the
former was reported to express PBRM1 protein [133].
The strong and moderate expression of PBRM1 was also
confirmed in the next 16 cell lines, including normal hu-
man embryonic renal cell lines (HEK 293 and 293T) and
human renal proximal tubular epithelial cells (HK2) as
well as cancer cell lines- 769-P, A-498, KC12, Caki-1,
SW156, and SLR21-26 [133]. The knockdown of PBRM1
in cells with wild-type gene increased the proliferation,
migration and colony formation abilities [137], support-
ing this gene’s important role in RCC progression, as the
loss of PBRM1 was correlated with a worse disease out-
come in patients [133].
BAP1 mutants are available as UM-RC-6, 769-P, and

SN12C cell lines [138]; however, 769-P cells still produce
the protein [139]. The reintroduction of the wild-type
gene reduced cell proliferation and sensitized cells to
treatment, and it was proposed that BAP1 is a tumor

suppressor, as gene loss is associated with patients with
higher-grade RCC [139]. SETD2 mutations have also
been detected in A-498, A-704, Caki-1, and RCC-ER
[140–142], PTEN mutations in 786-O, and OS-RC-2,
while no mutated RCC cell lines could be found for
KDM5C. An mTOR mutation was found for SNU349
and RCC-ER cell lines only (see Additional file 1: Table
S1 for ref ). Studies on SETD2-defective RCC cells
proved that the mutation of this gene affects DNA repair
and may correlate with in vivo disease progression [143].
Chromosome alterations are also common in ccRCC

with the loss of the 3p chromosome (containing vhl,
pbrm1, bap1, and setd2), 14q loss (hif1a), or 5q gain be-
ing the most frequent [131]. However, the chromosome
analysis of RCC cell lines is not readily available; a 5q
gain was observed in most RCC cell lines tested by [144]
apart from A-498. Chromosome 3p loss was reported in
several UOK RCC cell lines: UOK108, 121, 125, and 127
[145]. Simultaneous losses in 3p and 14q were observed
in 769-P, 786-O, A-704, and Caki-1 [146, 147].
In the case of pRCC, TCGA indicated met, setd2, nf2,

kdm6a, smarcb1 and fat1, bap1, pbrm1, stag2, nfe2l2,
tp53 genes being the most frequently mutated among
patient samples [148]. The UOK112 cell line derived
from pRCC patient [16] was studied in the context of
HGF/MET signaling; however, no data on met status
could be found [149]. Interestingly, Caki-1 harbors a
mutation in met (COSMIC database). As mentioned
above, ACHN cells have a MET polymorphism (by some
also referred to as a mutation [150]), but protein was de-
tected and can be phosphorylated [151]. This cell line
was also shown to contain an NF2 mutation, together
with SN12C, while Caki-1, A-704, 769-P, TK10, 786-O,
A-498, and OS-RC-2 were confirmed to be wild-type for
NF2 [142]. A KDM6A mutation was reported for the
SN12C cell line only (COSMIC database), but no alter-
ations in the methylation of gene promoter was observed
in 5 other cell lines (786-O, 769-P, A-498, ACHN, and
Caki-1) by [152]. A FAT1 mutation was found in Caki-1,
OS-RC-2, SN12C, RCC-FG2, and TK10 (COSMIC data-
base) but no functional analysis of this gene in in vitro
RCC was reported.
Chromosome aberrations present in pRCC include

chromosomes 7 and 17 gains and 9p loss [148]. In the
case of cell lines, Caki-2 and ACHN cells show a gain in
genes located on chromosomes 7 and 17 and 9p loss,
which may be an additional clue confirming the papillary
origin of these cells [146, 153].
TP53 tumor-suppressor mutations, present in 50% of

tumor cases in general, are less frequent in RCC (around
20% cases [154]), but confirmed in 786-O, A-498 (COS-
MIC and CCLE databases),,SN12C, TK10 [155] and re-
ported as wild-type in ACHN, Caki-1, and Caki-2 [156].
Varied expression of the protein is visible in cell lines,
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which corresponds with in vivo data, as p53 over-
expression occurs in later stages of the disease [157] and
to some extent correlates with poor prognosis [158]. A
relatively high expression of p53 was observed in ACHN,
Caki-2, UOK121, and UM-RC-6 and low in A-498 (al-
though mutated) [159, 160]. Other genes, established by
TCGA studies to be often mutated in RCC, have been
less frequently studied with the use of RCC cell lines,
and no detailed information on gene status could be
found.

RCC cell lines in xenograft studies
The clinical translability of cell line experiments relies
on valid animal models. They provide complex platforms
for studying oncogenesis and the effectiveness of thera-
peutic approaches and, enable the verification of cell
lines’ tumorigenicity. While tumorigenic cells can be im-
planted into the same species (allografts) or another spe-
cies (xenografts), we will focus on immunocompromised
experimental animals that are injected with human cell
lines. The wide application of this approach in oncology
studies followed the discovery of two groups of immuno-
deficient animals: “nude” mice [161] and later severe
combined immunodeficient (severe combined immuno-
deficiency; SCID) mice [162].
Athymic nude mice are hairless, an effect of the

Foxn1nu (Forkhead box protein N1) mutation, but more
importantly they lack a thymus and are T-cell deficient
but produce functional B-cells [163]. This is not the case
with SCID mice that have a single nucleotide poly-
morphism (Prkdcscid) within the DNA-dependent pro-
tein kinase of the catalytic polypeptide Prkdc gene. This
mutation affects both T and B lymphocytes [162]. SCID
rodents display less pronounced immunoreactivity than
athymic nude mice to implanted cancer cells that results
in greater receptivity to tumor xenotransplantation
[164]. Recently, several promising transgenic models
have become available, including humanized NSG mice
[165]. Still, most of the available data on xenografted
RCC cell lines comes from the athymic nude mice
model.
The nature of the outcome of animal experiments

strictly relies on the place and route of cell inocula-
tion. Ectopic tumor xenograft models employ sub-
cutaneous (s.c), intraperitenoeal (i.p.), intravenous
(i.v.) or intramuscular (i.m.) implantation of tumor
cells. While advantages are the approach’s simplicity
and reproducibility, an obvious disadvantage of this
approach is the non-physiologic growth location. An
alternative approach, the orthotopic xenograft model,
involves the implantation of a tumor into the origin-
ating tissue site of the cancer in rodents. In the case
of RCC, the widely accepted implantation site is the
renal subcapsule [166, 167]. It is believed that

orthotopic tumor implantation more closely simulates
the microenvironment of the original tumor [168].
However, orthotopic xenograft models have some
additional disadvantages that could be crucial in RCC
research: they are more technically challenging and
may have highly variable tumor take rates and growth
rates; they could also result in significant animal mor-
bidity due to the surgical implantation of tumor cells
[168]. Importantly, the monitoring of tumor growth is
also more challenging in orthotopic models. All these
difficulties have led to subcutaneous ectopic implant-
ation being the most widely used approach in RCC
cell lines animal research.
Ectopic xenograft models of athymic nude mice with

various genetic backgrounds have been extensively used
for studying established RCC lines, including 769-P, 786-
O, Caki-1, SK-RC-38, SK-RC-42, SK-RC-44, SK-RC-45,
SK-RC-46, and others [17, 55, 169–173]. As summarized
in Additional file 1: Table S1, most of the cell lines de-
scribed in this article were proven to be tumorigenic in
nude mice. The implanted tumors normally become
palpable within 5 days and reach a volume of 100 mm3

in 2 weeks [169–171]. Implanted established cell lines
xenografted into nude mice preserve essentially the same
histology as the primary tumors [174]. In addition,
orthotopic xenotransplantation of Caki-2 into nude
mouse produces tumors that closely resemble histology
of human RCC.
Generally, xenografted tumors are considered as not

producing metastasis in most cases. Sharkey and Fogh
[175] studied 106 malignant human tumor lines and ob-
served metastasis in only approximately 1%. Such factors
as tumor size and growth rate and age and sex of the
host mouse appear unrelated to metastasis [167]. How-
ever, the incidence of metastasis is increased in SCID ro-
dents [176]. Moreover, the route of injection into nude
mice affects the metastasis incidence. Naito et al. [167]
indicated that even in highly metastatic cells, i.v. injec-
tion did not yield significant metastasis, but the injection
of cells orthotopically into the renal subcapsule resulted
in extensive metastasis to the lungs and in all peritoneal
organs. However, Strube et al. [127] were successful in
generating remarkable metastasis to the bone by inocu-
lating human 786-O cells into the left cardiac ventricle
of athymic nude mice. Caki-1, A-498, and 786-O
injected intravenously produced metastasis very rarely in
nude mice as well as in NOD SCID [177].
Finally, some cell lines fail to be tumorigenic in nude

mouse; 769-P, SK-RC-7, TK 10, TK 164 UM-RC-6, or
UOK108 [17, 145, 172, 178, 179]. Tumorigenicity in ani-
mal models depends on the intrinsic capability of the
tumor line employed. However, these results should be
interpreted with some caution, as potential failure could
also rely on the specific strain or age of animals [180].
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Still, precisely designed and controlled xenograft experi-
ments remain a powerful and useful tool in RCC
research.

Future of RCC cell line based research
Despite the undisputed profits that translational medi-
cine has gained from research conducted on cell lines,
several concerns have arisen regarding the extent to
which cell line results can be trusted [181–183]. Despite
its limitations, as a cell line does not strictly resemble an
in vivo tumor [184], the proper description of widely
used cell lines is indispensable. Currently, new RCC cell
lines are still being established. The isolation of cells
from normal and tumor samples can be performed with
various protocols [107, 185]. These can be used either
for primary cultures [186] or to establish new cell lines
[125]. Unfortunately, newly established cell lines rarely
receive recognition in the RCC community. Most stick
to widely known cell lines, such as: 786-O, 769-P, Caki-
1, or ACHN. At the same time, the interpretation of re-
search on some of these cell lines seems to be challen-
ging and may require re-interpretation. As described
above, data on particular cell lines, like most scientific
information [187], grows cumulatively, and at times we
need to redefine primary assumptions (e. g., cancer type)
and consequently interpreted phenomena. For instance,
if the Caki-2 cell line is indeed a model of papillary
RCC, reviewing past studies may shed new light on the
molecular background of this particular cancer subtype.
As papillary RCC research is rather underrepresented
[188], this would be of value for scientists and patients.
Cancer is a complex disease shaped by changes in cell

functions, but also intrinsic signaling inside the tumor
and extrinsic interactions with other cells of the host as
well as various components of the local microenviron-
ment. Such a multiplex disorder is very difficult to inter-
pret, and cell line research does not always reflect
cancer diversity. The limitations of the validity of cell
line cultures apply also to RCC. To increase the useful-
ness of cell lines for RCC discovery, complex in vitro
models have been designed. It was shown that samples
from RCC patients cultured as 3D organoids create
structures that closely mimic in vivo tumor, serving as a
useful model for personalized drug screening [186]. 3D
cultures for cancer studies is a hot topic that has been
reviewed recently in different aspects [189, 190]. Such
structures can also be created by cell lines; 3D cultures
have been shown to be a better model of in vivo mecha-
nisms in cancer than standard 2D techniques [191]. The
use of established cell lines would allow high throughput
platforms to be created that are useful for effective drug
screening [190, 192]. Such methods are of need in RCC
research; however, to create a valid in vitro screening
tool properly characterized cell lines are indispensable.

Conclusions
When conducting research using established cell lines,
one should carefully study the data on their establish-
ment and subsequently available characteristics. Thor-
ough data on original patients has not been was
provided consistently in prior research; however, mod-
ern molecular analysis helps to characterize cell line
features. Certain RCC specimens are underrepre-
sented, such as: papillary and chromophobe RCC,
metastatic ccRCC (especially tissues that are most
often affected in vivo; lungs, bones), and early stage
tumors. When establishing new cell lines, it is essen-
tial to follow the best available guidelines, e. g.
reviewed elsewhere [193]. Thorough data on original
patients’ tissue in terms of histological and molecular
characteristics should be collected, and subsequent
cell line stability should be monitored. A panel of
well-characterized RCC cell lines that reflect in vivo
heterogeneity in terms of different subtypes, grades,
and drug resistance would arm us with a screening
tool to test new therapy strategies and understand the
molecular background of RCC subtypes.

Take-home message

� Molecular profiling of RCC cell lines is not always
available, which may limit the clinical translation of
in vitro research; back checking of model cell lines
for typical RCC features is needed

� research on numerous cell lines with relation to
healthy tissues can increase the clinical value of
RCC cell line research; familiarity with their features
is indispensable to draw accurate conclusions

� Additional RCC cell lines and culture models are
needed to mirror in vivo heterogeneity

� When establishing new RCC cell lines thorough
characterization of OP data and subsequent culture
are indispensable to create a useful in vitro tool

Additional file

Additional file 1: Characteristics of renal cell cancer cell lines including
their origin, histology, culture conditions, and molecular characteristics.
(DOCX 355 kb)

Abbreviations
ALDH: Aldehyde dehydrogenase; ccRCC: Clear cell renal cell carcinoma;
FH: Fumarate hydratase; Foxn1: Forkhead box protein N1; MET: Met proto-
oncogene; PDGFR: Platelet-derived growth factor receptors; pRCC: Papillary
renal cell carcinoma; RAS: Renin-angiotensin system; RCC: Renal cell
carcinoma; RPTEC: Renal proximal tubule cells; SCID: Severe combined
immunodeficiency; TERT: Telomerase; VEGF: Vascular endothelial growth
factor; VHL: Von Hippel-Lindau

Acknowledgements
Not applicable.

Brodaczewska et al. Molecular Cancer  (2016) 15:83 Page 10 of 15

dx.doi.org/10.1186/s12943-016-0565-8


Funding
AMC and KKB have been supported by the National Centre for Research and
Development (NCBR, Poland) LIDER grant no. Lider/031/625/L-4/NCBR/2013.
CS, MF and AMC have been supported by the National Science Centre (NCN,
Poland) OPUS grant no. UMO-2014/13/B/NZ1/04010.

Availability of data and materials
Not applicable.

Authors’ contributions
Conceptualizing and refining problem - AMC, CS; Creating review design
and best-evidence synthesis - AMC; Collection of literature data - KKB, AMC,
MF; Data evaluation and selection - KKB, AMC, MF; Interpreting analyses -
KKB, AMC, MF, CP; Drafting manuscript KKB, AMC, MF; Editing manuscript
AMC, KKB. All authors read and approved the final manuscript.

Competing interests
The authors of this manuscript have no competing interests that influence
the results and discussion of this paper, that is no significant competing
financial, professional or personal interests that might have influenced the
performance or presentation of the work described in this manuscript.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Department of Oncology with Laboratory of Molecular Oncology, Military
Institute of Medicine, Szaserow 128, 04-141 Warsaw, Poland. 2Department of
Experimental Pharmacology, Polish Academy of Science Medical Research
Centre, Warsaw, Poland. 3Department of Medical Oncology, IRCCS San
Matteo University Hospital Foundation, Pavia, Italy.

Received: 9 July 2016 Accepted: 30 November 2016

References
1. Sharma SV, Haber DA, Settleman J. Cell line-based platforms to evaluate the

therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer. 2010;
10(4):241–53.

2. Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen.
Nat Rev Cancer. 2006;6(10):813–23.

3. Stinson SF, Alley MC, Kopp WC, Fiebig HH, Mullendore LA, Pittman AF,
Kenney S, Keller J, Boyd MR. Morphological and immunocytochemical
characteristics of human tumor cell lines for use in a disease-oriented
anticancer drug screen. Anticancer Res. 1992;12(4):1035–53.

4. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C,
Langley J, Cronise P, Vaigro-Wolff A, et al. Feasibility of a high-flux
anticancer drug screen using a diverse panel of cultured human tumor cell
lines. J Natl Cancer Inst. 1991;83(11):757–66.

5. Zieba J, Ksiazkiewcz M, Janik K, Banaszczyk M, Peciak J, Piaskowski S, Lipinski
M, Olczak M, Stoczynska-Fidelus E, Rieske P. Sensitivity of neoplastic cells to
senescence unveiled under standard cell culture conditions. Anticancer Res.
2015;35(5):2759–68.

6. Russell Wms BK. The principles of humane experimental technique. London:
UFAW; 1992. Available from: http://altweb.jhsph.edu/.-Available from: http://
altweb.jhsph.edu/.

7. Arul M, Roslani AC, Ng CL, Cheah SH. Culture of low passage colorectal
cancer cells and demonstration of variation in selected tumour marker
expression. Cytotechnology. 2014;66(3):481–91.

8. Benien P, Swami A. 3D tumor models: history, advances and future
perspectives. Future Oncol. 2014;10(7):1311–27.

9. Berg EL, Hsu YC, Lee JA. Consideration of the cellular microenvironment:
physiologically relevant co-culture systems in drug discovery. Adv Drug
Deliv Rev. 2014;69–70:190–204.

10. Hutchinson L, Kirk R. High drug attrition rates–where are we going wrong?
Nat Rev Clin Oncol. 2011;8(4):189–90.

11. Tuveson D, Hanahan D. Translational medicine: Cancer lessons from mice to
humans. Nature. 2011;471(7338):316–7.

12. Siemeister G, Weindel K, Mohrs K, Barleon B, Martiny-Baron G, Marmé D.
Reversion of deregulated expression of vascular endothelial growth factor
in human renal carcinoma cells by von Hippel-Lindau tumor suppressor
protein. Cancer Res. 1996;56(10):2299–301.

13. Wilhelm S, Chien D-S. BAY 43-9006: preclinical data. Curr Pharm Des. 2002;
8(25):2255–7.

14. Kane RC, Farrell AT, Saber H, Tang S, Williams G, Jee JM, Liang C, Booth B,
Chidambaram N, Morse D, et al. Sorafenib for the treatment of advanced
renal cell carcinoma. Clin Cancer Res. 2006;12(24):7271–8.

15. Amundson SA, Do KT, Vinikoor LC, Lee RA, Koch-Paiz CA, Ahn J, Reimers M,
Chen Y, Scudiero DA, Weinstein JN, et al. Integrating global gene expression
and radiation survival parameters across the 60 cell lines of the National
Cancer Institute Anticancer Drug Screen. Cancer Res. 2008;68(2):415–24.

16. Anglard P, Trahan E, Liu S, Latif F, Merino MJ, Lerman MI, Zbar B, Linehan
WM. Molecular and cellular characterization of human renal cell carcinoma
cell lines. Cancer Res. 1992;52(2):348–56.

17. Ebert T, Bander NH, Finstad CL, Ramsawak RD, Old LJ. Establishment and
characterization of human renal cancer and normal kidney cell lines. Cancer
Res. 1990;50(17):5531–6.

18. Greshock J, Nathanson K, Martin AM, Zhang L, Coukos G, Weber BL,
Zaks TZ. Cancer cell lines as genetic models of their parent histology:
analyses based on array comparative genomic hybridization. Cancer Res.
2007;67(8):3594–600.

19. Czarnecka AM, Kornakiewicz A, Kukwa W, Szczylik C. Frontiers in clinical and
molecular diagnostics and staging of metastatic clear cell renal cell
carcinoma. Future Oncol. 2014;10(6):1095–111.

20. Czarnecka AM, Kukwa W, Kornakiewicz A, Lian F, Szczylik C. Clinical and
molecular prognostic and predictive biomarkers in clear cell renal cell
cancer. Future Oncol. 2014;10(15):2493–508.

21. Mizumoto A, Yamamoto K, Nakayama Y, Takara K, Nakagawa T, Hirano T,
Hirai M. Induction of epithelial-mesenchymal transition via activation of
epidermal growth factor receptor contributes to sunitinib resistance in
human renal cell carcinoma cell lines. J Pharmacol Exp Ther. 2015;355(2):
152–8.

22. Hutson TE, Al-Shukri S, Stus VP, Lipatov ON, Shparyk Y, Bair AH, Rosbrook B,
Andrews GI, Vogelzang NJ. Axitinib Versus Sorafenib in First-Line Metastatic
Renal Cell Carcinoma: Overall Survival From a Randomized Phase III Trial. Clin
Genitourin Cancer 2016. doi:10.1016/j.clgc.2016.05.008. [Epub ahead of print]

23. Anglesio MS, Wiegand KC, Melnyk N, Chow C, Salamanca C, Prentice
LM, Senz J, Yang W, Spillman MA, Cochrane DR, et al. Type-specific cell
line models for type-specific ovarian cancer research. PLoS One. 2013;
8(9):e72162.

24. Tani T, Laitinen L, Kangas L, Lehto VP, Virtanen I. Expression of E- and N-
cadherin in renal cell carcinomas, in renal cell carcinoma cell lines in vitro
and in their xenografts. Int J Cancer. 1995;64(6):407–14.

25. Crumley SM, Divatia M, Truong L, Shen S, Ayala AG, Ro JY. Renal cell carcinoma:
Evolving and emerging subtypes. World J Clin Cases. 2013;1(9):262–75.

26. Escudier B, Porta C, Schmidinger M, Algaba F, Patard JJ, Khoo V, Eisen T,
Horwich A. Renal cell carcinoma: ESMO Clinical Practice Guidelines for
diagnosis, treatment and follow-up. Ann Oncol. 2014;25 Suppl 3:iii49–56.

27. Delahunt B, Eble JN. Papillary renal cell carcinoma: a clinicopathologic and
immunohistochemical study of 105 tumors. Mod Pathol. 1997;10(6):537–44.

28. Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P, Scherer SW,
Zhuang Z, Lubensky I, Dean M, et al. Germline and somatic mutations in
the tyrosine kinase domain of the MET proto-oncogene in papillary renal
carcinomas. Nat Genet. 1997;16(1):68–73.

29. Furge KA, Dykema K, Petillo D, Westphal M, Zhang Z, Kort EJ, Teh BT.
Combining differential expression, chromosomal and pathway analyses for
the molecular characterization of renal cell carcinoma. Can Urol Assoc J.
2007;1(2 Suppl):S21–7.

30. Liddell H, Mare A, Heywood S, Bennett G, Chan HF. Clear cell papillary renal
cell carcinoma: a potential mimic of conventional clear cell renal carcinoma
on core biopsy. Case Rep Urol. 2015;2015:423908.

31. Srigley JR, Delahunt B, Eble JN, Egevad L, Epstein JI, Grignon D, Hes O,
Moch H, Montironi R, Tickoo SK, et al. The International Society of Urological
Pathology (ISUP) Vancouver Classification of Renal Neoplasia. Am J Surg
Pathol. 2013;37(10):1469–89.

32. Shuch B, Amin A, Armstrong AJ, Eble JN, Ficarra V, Lopez-Beltran A,
Martignoni G, Rini BI, Kutikov A. Understanding pathologic variants of renal
cell carcinoma: distilling therapeutic opportunities from biologic complexity.
Eur Urol. 2015;67(1):85–97.

Brodaczewska et al. Molecular Cancer  (2016) 15:83 Page 11 of 15

http://altweb.jhsph.edu/
http://altweb.jhsph.edu/
http://altweb.jhsph.edu/
http://dx.doi.org/10.1016/j.clgc.2016.05.008


33. Nickerson ML, Jaeger E, Shi Y, Durocher JA, Mahurkar S, Zaridze D, Matveev
V, Janout V, Kollarova H, Bencko V, et al. Improved identification of von
Hippel-Lindau gene alterations in clear cell renal tumors. Clin Cancer Res.
2008;14(15):4726–34.

34. Brugarolas J. PBRM1 and BAP1 as novel targets for renal cell carcinoma.
Cancer J. 2013;19(4):324–32.

35. Van Bergen NJ, Wood JP, Chidlow G, Trounce IA, Casson RJ, Ju WK, Weinreb
RN, Crowston JG. Recharacterization of the RGC-5 retinal ganglion cell line.
Invest Ophthalmol Vis Sci. 2009;50(9):4267–72.

36. Boonstra JJ, van der Velden AW, Beerens EC, van Marion R, Morita-Fujimura
Y, Matsui Y, Nishihira T, Tselepis C, Hainaut P, Lowe AW, et al. Mistaken
identity of widely used esophageal adenocarcinoma cell line TE-7. Cancer
Res. 2007;67(17):7996–8001.

37. Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as
tumour models by comparison of genomic profiles. Nat Commun. 2013;4:2126.

38. van Staveren WC, Solis DY, Hebrant A, Detours V, Dumont JE, Maenhaut C.
Human cancer cell lines: Experimental models for cancer cells in situ? For
cancer stem cells? Biochim Biophys Acta. 2009;1795(2):92–103.

39. Lauvrak SU, Munthe E, Kresse SH, Stratford EW, Namlos HM, Meza-Zepeda
LA, Myklebost O. Functional characterisation of osteosarcoma cell lines and
identification of mRNAs and miRNAs associated with aggressive cancer
phenotypes. Br J Cancer. 2013;109(8):2228–36.

40. Perrier-Trudova V, Huimin BW, Kongpetch S, Huang D, Ong P, Le Formal A,
Poon SL, Siew EY, Myint SS, Gad S, et al. Fumarate Hydratase-deficient Cell
Line NCCFH1 as a New In Vitro Model of Hereditary Papillary Renal Cell
Carcinoma Type 2. Anticancer Res. 2015;35(12):6639–53.

41. Hirobe M, Masumori N, Tanaka T, Kitamura H, Tsukamoto T. Establishment of
an ASPL-TFE3 renal cell carcinoma cell line (S-TFE). Cancer Biol Ther. 2013;
14(6):502–10.

42. Korhonen M, Sariola H, Gould VE, Kangas L, Virtanen I. Integrins and
laminins in human renal carcinoma cells and tumors grown in nude mice.
Cancer Res. 1994;54(16):4532–8.

43. Hakimi AA, Chevinsky M, Hsieh JJ, Sander C, Sinha R. Mp23-11 Genomic
Comparison of Renal Cell Carcinoma Cell Lines to Human Tumors. J Urol.
2014;191(4):e247.

44. Schmidt L, Junker K, Nakaigawa N, Kinjerski T, Weirich G, Miller M,
Lubensky I, Neumann HP, Brauch H, Decker J, et al. Novel mutations of
the MET proto-oncogene in papillary renal carcinomas. Oncogene. 1999;
18(14):2343–50.

45. Kovacs G, Fuzesi L, Emanual A, Kung HF. Cytogenetics of papillary renal cell
tumors. Genes Chromosomes Cancer. 1991;3(4):249–55.

46. Shinojima T, Oya M, Takayanagi A, Mizuno R, Shimizu N, Murai M. Renal
cancer cells lacking hypoxia inducible factor (HIF)-1alpha expression
maintain vascular endothelial growth factor expression through HIF-2alpha.
Carcinogenesis. 2007;28(3):529–36.

47. Kucejova B, Pena-Llopis S, Yamasaki T, Sivanand S, Tran TA, Alexander S,
Wolff NC, Lotan Y, Xie XJ, Kabbani W, et al. Interplay between pVHL and
mTORC1 pathways in clear-cell renal cell carcinoma. Mol Cancer Res. 2011;
9(9):1255–65.

48. Ashida S, Nishimori I, Tanimura M, Onishi S, Shuin T. Effects of von Hippel-
Lindau gene mutation and methylation status on expression of
transmembrane carbonic anhydrases in renal cell carcinoma. J Cancer Res
Clin Oncol. 2002;128(10):561–8.

49. Lovell M, Lott ST, Wong P, El-Naggar A, Tucker S, Killary AM. The genetic
locus NRC-1 within chromosome 3p12 mediates tumor suppression in renal
cell carcinoma independently of histological type, tumor microenvironment,
and VHL mutation. Cancer Res. 1999;59(9):2182–9.

50. Robb VA, Karbowniczek M, Klein-Szanto AJ, Henske EP. Activation of the
mTOR signaling pathway in renal clear cell carcinoma. J Urol. 2007;
177(1):346–52.

51. Campbell L, Al-Jayyoussi G, Gutteridge R, Gumbleton N, Griffiths R,
Gumbleton S, Smith MW, Griffiths DF, Gumbleton M. Caveolin-1 in renal cell
carcinoma promotes tumour cell invasion, and in co-operation with pERK
predicts metastases in patients with clinically confined disease. J Transl Med.
2013;11:255.

52. Hsu RJ, Ho JY, Cha TL, Yu DS, Wu CL, Huang WP, Chu P, Chen YH, Chen JT,
Yu CP. WNT10A plays an oncogenic role in renal cell carcinoma by
activating WNT/beta-catenin pathway. PLoS One. 2012;7(10):e47649.

53. Ding XF, Zhou J, Hu QY, Liu SC, Chen G. The tumor suppressor pVHL down-
regulates never-in-mitosis A-related kinase 8 via hypoxia-inducible factors to
maintain cilia in human renal cancer cells. J Biol Chem. 2015;290(3):1389–94.

54. Iliopoulos O, Kibel A, Gray S, Kaelin WG. Tumour suppression by the human
von Hippel-Lindau gene product. Nat Med. 1995;1(8):822–6.

55. Kozlowski JM, Fidler IJ, Campbell D, Xu ZL, Kaighn ME, Hart IR. Metastatic
behavior of human tumor cell lines grown in the nude mouse. Cancer Res.
1984;44(8):3522–9.

56. Miyake M, Goodison S, Lawton A, Zhang G, Gomes-Giacoia E, Rosser CJ.
Erythropoietin is a JAK2 and ERK1/2 effector that can promote renal tumor
cell proliferation under hypoxic conditions. J Hematol Oncol. 2013;6:65.

57. Jiang Y, Zhang W, Kondo K, Klco JM, St Martin TB, Dufault MR, Madden SL,
Kaelin Jr WG, Nacht M. Gene expression profiling in a renal cell carcinoma
cell line: dissecting VHL and hypoxia-dependent pathways. Mol Cancer Res.
2003;1(6):453–62.

58. Lin Y, Yang Z, Xu A, Dong P, Huang Y, Liu H, Li F, Wang H, Xu Q, Wang Y,
et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and
stem-like phenotype of renal cancer cells through the AKT/GSK3beta/
CTNNB1 signaling pathway. Sci Rep. 2015;5:8997.

59. Zhang L, Jiao M, Wu K, Li L, Zhu G, Wang X, He D, Wu D. TNF-alpha
induced epithelial mesenchymal transition increases stemness properties in
renal cell carcinoma cells. Int J Clin Exp Med. 2014;7(12):4951–8.

60. Boysen G, Bausch-Fluck D, Thoma CR, Nowicka AM, Stiehl DP, Cima I, Luu
VD, von Teichman A, Hermanns T, Sulser T, et al. Identification and
functional characterization of pVHL-dependent cell surface proteins in renal
cell carcinoma. Neoplasia. 2012;14(6):535–46.

61. Ho MY, Tang SJ, Chuang MJ, Cha TL, Li JY, Sun GH, Sun KH. TNF-alpha
induces epithelial-mesenchymal transition of renal cell carcinoma cells via a
GSK3beta-dependent mechanism. Mol Cancer Res. 2012;10(8):1109–19.

62. Strube A, Stepina E, Mumberg D, Scholz A, Hauff P, Käkönen S-M.
Characterization of a new renal cell carcinoma bone metastasis mouse
model. Clin Exp Metastasis. 2010;27(5):319–30.

63. Xie C, Schwarz EM, Sampson ER, Dhillon RS, Li D, O’Keefe RJ, Tyler W.
Unique angiogenic and vasculogenic properties of renal cell carcinoma in a
xenograft model of bone metastasis are associated with high levels of vegf-
a and decreased ang-1 expression. J Orthop Res. 2012;30(2):325–33.

64. Pan T, Fong ELS, Martinez M, Harrington DA, Lin S-H, Farach-Carson MC,
Satcher RL. Three-dimensional (3D) culture of bone-derived human 786-O
renal cell carcinoma retains relevant clinical characteristics of bone
metastases. Cancer Lett. 2015;365(1):89–95.

65. Lichner Z, Saleh C, Subramaniam V, Seivwright A, Prud'homme GJ, Yousef
GM. miR-17 inhibition enhances the formation of kidney cancer spheres
with stem cell/tumor initiating cell properties. Oncotarget 2015;6(8):5567–
81.

66. Liu YH, Lin CY, Lin WC, Tang SW, Lai MK, Lin JY. Up-Regulation of Vascular
Endothelial Growth Factor-D Expression in Clear Cell Renal Cell Carcinoma
by CD74: A Critical Role in Cancer Cell Tumorigenesis. J Immunol. 2008;
181(9):6584–94.

67. Glube N, Giessl A, Wolfrum U, Langguth P. Caki-1 cells represent an in vitro
model system for studying the human proximal tubule epithelium.
Nephron Exp Nephrol. 2007;107(2):e47–56.

68. Pulkkanen KJ, Parkkinen JJ, Kettunen MI, Kauppinen RA, Lappalainen M, Ala-
Opas MY, Yla-Herttuala S. Characterization of a new animal model for
human renal cell carcinoma. In Vivo. 2000;14(3):393–400.

69. Pulkkanen KJ, Parkkinen JJ, Laukkanen JM, Kettunen MI, Tyynela K,
Kauppinen RA, Ala-Opas MY, Yla-Herttuala S. HSV-tk gene therapy for
human renal cell carcinoma in nude mice. Cancer Gene Ther.
2001;8(7):529–36.

70. Furge KA, Chen J, Koeman J, Swiatek P, Dykema K, Lucin K, Kahnoski R,
Yang XJ, Teh BT. Detection of DNA copy number changes and oncogenic
signaling abnormalities from gene expression data reveals MYC activation in
high-grade papillary renal cell carcinoma. Cancer Res. 2007;67(7):3171–6.

71. Looyenga BD, Furge KA, Dykema KJ, Koeman J, Swiatek PJ, Giordano TJ,
West AB, Resau JH, Teh BT, MacKeigan JP. Chromosomal amplification of
leucine-rich repeat kinase-2 (LRRK2) is required for oncogenic MET signaling
in papillary renal and thyroid carcinomas. Proc Natl Acad Sci U S A. 2011;
108(4):1439–44.

72. Blondeau JJ, Deng M, Syring I, Schrodter S, Schmidt D, Perner S, Muller SC,
Ellinger J. Identification of novel long non-coding RNAs in clear cell renal
cell carcinoma. Clin Epigenetics. 2015;7(1):10.

73. Zaravinos A, Pieri M, Mourmouras N, Anastasiadou N, Zouvani I, Delakas D,
Deltas C. Altered metabolic pathways in clear cell renal cell carcinoma: A
meta-analysis and validation study focused on the deregulated genes and
their associated networks. Oncoscience. 2014;1(2):117–31.

Brodaczewska et al. Molecular Cancer  (2016) 15:83 Page 12 of 15



74. Roos FC, Evans AJ, Brenner W, Wondergem B, Klomp J, Heir P, Roche
O, Thomas C, Schimmel H, Furge KA, et al. Deregulation of E2-EPF
ubiquitin carrier protein in papillary renal cell carcinoma. Am J Pathol.
2011;178(2):853–60.

75. Williams RD, Elliott AY, Stein N, Fraley EE. In vitro cultivation of human renal
cell cancer. I. Establishment of cells in culture. In Vitro. 1976;12(9):623–7.

76. Huang B, Huang YJ, Yao ZJ, Chen X, Guo SJ, Mao XP, Wang DH, Chen JX,
Qiu SP. Cancer stem cell-like side population cells in clear cell renal cell
carcinoma cell line 769P. PLoS One. 2013;8(7):e68293.

77. Harten SK, Esteban MA, Shukla D, Ashcroft M, Maxwell PH. Inactivation of
the von Hippel-Lindau tumour suppressor gene induces Neuromedin U
expression in renal cancer cells. Mol Cancer. 2011;10:89.

78. Razorenova OV, Finger EC, Colavitti R, Chernikova SB, Boiko AD, Chan CK,
Krieg A, Bedogni B, LaGory E, Weissman IL, et al. VHL loss in renal cell
carcinoma leads to up-regulation of CUB domain-containing protein 1 to
stimulate PKC{delta}-driven migration. Proc Natl Acad Sci U S A. 2011;108(5):
1931–6.

79. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME,
Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ. The tumour suppressor protein
VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis.
Nature. 1999;399(6733):271–5.

80. Harada H, Itasaka S, Zhu Y, Zeng L, Xie X, Morinibu A, Shinomiya K, Hiraoka
M. Treatment regimen determines whether an HIF-1 inhibitor enhances or
inhibits the effect of radiation therapy. Br J Cancer. 2009;100(5):747–57.

81. Esteban MA, Tran MG, Harten SK, Hill P, Castellanos MC, Chandra A, Raval R,
O’Brien TS, Maxwell PH. Regulation of E-cadherin expression by VHL and
hypoxia-inducible factor. Cancer Res. 2006;66(7):3567–75.

82. Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL, Pugh CW,
Maxwell PH, Harris AL, Ratcliffe PJ. Contrasting properties of hypoxia-
inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal
cell carcinoma. Mol Cell Biol. 2005;25(13):5675–86.

83. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV,
Semenza GL. HIF-1 inhibits mitochondrial biogenesis and cellular respiration
in VHL-deficient renal cell carcinoma by repression of C-MYC activity.
Cancer Cell. 2007;11(5):407–20.

84. Miyao N, Tsukamoto T, Kumamoto Y. Establishment of three human renal
cell carcinoma cell lines (SMKT-R- SMKT-R-2, and SMKT-R-3) and their
characters. Urol Res. 1989;17:317–24. 1 SRC - GoogleScholar.

85. Tanaka T, Torigoe T, Hirohashi Y, Sato E, Honma I, Kitamura H, Masumori N,
Tsukamoto T, Sato N. Hypoxia-inducible factor (HIF)-independent expression
mechanism and novel function of HIF prolyl hydroxylase-3 in renal cell
carcinoma. J Cancer Res Clin Oncol. 2014;140(3):503–13.

86. Tochizawa S, Masumori N, Yanai Y, Ohmoto Y, Yabuuchi Y, Tsukamoto T.
Antitumor effects of a combination of interferon-alpha and sorafenib on
human renal carcinoma cell lines. Biomed Res. 2008;29(6):271–8.

87. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E,
Martinez P, Matthews N, Stewart A, Tarpey P, et al. Intratumor heterogeneity
and branched evolution revealed by multiregion sequencing. N Engl J Med.
2012;366(10):883–92.

88. Kudo D, Rayman P, Horton C, Cathcart MK, Bukowski RM, Thornton M,
Tannenbaum C, Finke JH. Gangliosides expressed by the renal cell
carcinoma cell line SK-RC-45 are involved in tumor-induced apoptosis of T
cells. Cancer Res 2003;63(7):1676–83.

89. Das T, Sa G, Paszkiewicz-Kozik E, Hilston C, Molto L, Rayman P, Kudo D,
Biswas K, Bukowski RM, Finke JH, et al. Renal cell carcinoma tumors induce
T cell apoptosis through receptor-dependent and receptor-independent
pathways. J Immunol. 2008;180(7):4687–96.

90. Zhong Y, Guan K, Guo S, Zhou C, Wang D, Ma W, Zhang Y, Li C, Zhang S.
Spheres derived from the human SK-RC-42 renal cell carcinoma cell line are
enriched in cancer stem cells. Cancer Lett. 2010;299(2):150–60.

91. Sjolund J, Johansson M, Manna S, Norin C, Pietras A, Beckman S, Nilsson E,
Ljungberg B, Axelson H. Suppression of renal cell carcinoma growth by
inhibition of Notch signaling in vitro and in vivo. J Clin Invest. 2008;118(1):
217–28.

92. Shin KH, Ku JL, Kim WH, Lee SE, Lee C, Kim SW, Park JG. Establishment and
characterization of seven human renal cell carcinoma cell lines. BJU Int.
2000;85(1):130–8.

93. Tan X, He S, Han Y, Yu Y, Xiao J, Xu D, Wang G, Du Y, Chang W, Yin J, et al.
Establishment and characterization of clear cell renal cell carcinoma cell
lines with different metastatic potential from Chinese patients. Cancer Cell
Int. 2013;13(1):20.

94. Myszczyszyn A, Czarnecka AM, Matak D, Szymanski L, Lian F, Kornakiewicz A,
Bartnik E, Kukwa W, Kieda C, Szczylik C. The Role of Hypoxia and Cancer
Stem Cells in Renal Cell Carcinoma Pathogenesis. Stem Cell Rev. 2015;11(6):
919–43.

95. Czarnecka M, Cezary Szczylik A. Renal Cell Carcinoma Cancer Stem Cells as
Therapeutic Targets. Curr Signal Transduction Ther. 2013;8(3):203–9.

96. Hasmim M, Bruno S, Azzi S, Gallerne C, Michel JG, Chiabotto G, Lecoz V,
Romei C, Spaggiari GM, Pezzolo A, et al. Isolation and characterization of
renal cancer stem cells from patient-derived xenografts. Oncotarget. 2016;
7(13):15507–24.

97. Lucarelli G, Galleggiante V, Rutigliano M, Vavallo A, Ditonno P, Battaglia M.
Isolation and characterization of cancer stem cells in renal cell carcinoma.
Urologia. 2015;82(1):46–53.

98. Ueda K, Ogasawara S, Akiba J, Nakayama M, Todoroki K, Sanada S, Suekane
S, Noguchi M, Matsuoka K, Yano H. Aldehyde dehydrogenase 1 identifies
cells with cancer stem cell-like properties in a human renal cell carcinoma
cell line. PLoS One. 2013;8(10):e75463.

99. Wang L, Park P, La Marca F, Than KD, Lin CY. BMP-2 inhibits tumor-initiating
ability in human renal cancer stem cells and induces bone formation.
J Cancer Res Clin Oncol. 2015;141(6):1013–24.

100. Khan MI, Czarnecka AM, Helbrecht I, Bartnik E, Lian F, Szczylik C. Current
approaches in identification and isolation of human renal cell carcinoma
cancer stem cells. Stem Cell Res Ther. 2015;6:178.

101. Bussolati B, Bruno S, Grange C, Ferrando U, Camussi G. Identification of a
tumor-initiating stem cell population in human renal carcinomas. FASEB J.
2008;22(10):3696–705.

102. Kim K, Park BH, Ihm H, Kim KM, Jeong J, Chang JW, Cho YM.
Expression of stem cell marker CD133 in fetal and adult human kidneys
and pauci-immune crescentic glomerulonephritis. Histol Histopathol.
2011;26(2):223–32.

103. Wang D, Lu P, Zhang H, Luo M, Zhang X, Wei X, Gao J, Zhao Z, Liu C. Oct-4
and Nanog promote the epithelial-mesenchymal transition of breast cancer
stem cells and are associated with poor prognosis in breast cancer patients.
Oncotarget. 2014;5(21):10803–15.

104. Nishizawa S, Hirohashi Y, Torigoe T, Takahashi A, Tamura Y, Mori T,
Kanaseki T, Kamiguchi K, Asanuma H, Morita R, et al. HSP DNAJB8
controls tumor-initiating ability in renal cancer stem-like cells. Cancer
Res. 2012;72(11):2844–54.

105. Lu J, Cui Y, Zhu J, He J, Zhou G, Yue Z. Biological characteristics of Rh123
stem-like cells in a side population of 786-O renal carcinoma cells. Oncol
Lett. 2013;5(6):1903–8.

106. Detrisac CJ, Sens MA, Garvin AJ, Spicer SS, Sens DA. Tissue culture of
human kidney epithelial cells of proximal tubule origin. Kidney Int.
1984;25(2):383–90.

107. Valente MJ, Henrique R, Costa VL, Jeronimo C, Carvalho F, Bastos ML, de
Pinho PG, Carvalho M. A rapid and simple procedure for the establishment
of human normal and cancer renal primary cell cultures from surgical
specimens. PLoS One. 2011;6(5):e19337.

108. Giron-Michel J, Azzi S, Khawam K, Mortier E, Caignard A, Devocelle A, Ferrini
S, Croce M, Francois H, Lecru L, et al. Interleukin-15 plays a central role in
human kidney physiology and cancer through the gammac signaling
pathway. PLoS One. 2012;7(2):e31624.

109. Baer PC, Bereiter-Hahn J, Schubert R, Geiger H. Differentiation status of
human renal proximal and distal tubular epithelial cells in vitro: Differential
expression of characteristic markers. Cells Tissues Organs. 2006;184(1):16–22.

110. Ryan MJ, Johnson G, Kirk J, Fuerstenberg SM, Zager RA, Torok-Storb B. HK-
an immortalized proximal tubule epithelial cell line from normal adult
human kidney. Kidney Int. 1994;45:48–57. 2 SRC - GoogleScholar.

111. Wieser M, Stadler G, Jennings P, Streubel B, Pfaller W, Ambros P, Riedl C,
Katinger H, Grillari J, Grillari-Voglauer R. hTERT alone immortalizes epithelial
cells of renal proximal tubules without changing their functional
characteristics. Am J Physiol Renal Physiol. 2008;295(5):F1365–75.

112. Jenkinson SE, Chung GW, van Loon E, Bakar NS, Dalzell AM, Brown CD. The
limitations of renal epithelial cell line HK-2 as a model of drug transporter
expression and function in the proximal tubule. Pflugers Arch - Eur J
Physiol. 2012;464(6):601–11.

113. Tramonti G, Romiti N, Norpoth M, Chieli E. P-glycoprotein in HK-2 proximal
tubule cell line. Ren Fail. 2001;23:331–7. SRC - GoogleScholar.

114. Simon BR, Wilson MJ, Wickliffe JK. The RPTEC/TERT1 cell line models key
renal cell responses to the environmental toxicants, benzo[a]pyrene and
cadmium. Toxicol Rep. 2014;1:231–42.

Brodaczewska et al. Molecular Cancer  (2016) 15:83 Page 13 of 15



115. Handa RK. Characterization and Signaling of the AT4 Receptor in Human
Proximal Tubule Epithelial (HK-2) Cells. J Am Soc Nephrol. 2001;12(3):440–9.

116. Baba M, Hirai S, Kawakami S, Kishida T, Sakai N, Kaneko S, Yao M, Shuin T,
Kubota Y, Hosaka M, et al. Tumor suppressor protein VHL is induced at high
cell density and mediates contact inhibition of cell growth. Oncogene. 2001;
20(22):2727–36.

117. Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line
transformed by DNA from human adenovirus type 5. J Gen Virol. 1977;36(1):59–74.

118. Thomas P, Smart TG. HEK293 cell line: a vehicle for the expression of
recombinant proteins. J Pharmacol Toxicol Methods. 2005;51(3):187–200.

119. Madhusudana SN, Sundaramoorthy S, Ullas PT. Utility of human embryonic
kidney cell line HEK-293 for rapid isolation of fixed and street rabies viruses:
comparison with Neuro-2a and BHK-21 cell lines. Int J Infect Dis. 2010;
14(12):e1067–71.

120. Shaw G, Morse S, Ararat M, Graham FL. Preferential transformation of
human neuronal cells by human adenoviruses and the origin of HEK 293
cells. FASEB J. 2002;16(8):869–71.

121. Ashokkumar B, Vaziri ND, Said HM. Thiamin uptake by the human-derived
renal epithelial (HEK-293) cells: cellular and molecular mechanisms. Am J
Physiol Renal Physiol. 2006;291(4):F796–805.

122. Waly MI, Al Moundhri MS, Ali BH. Effect of Curcumin on Cisplatin-and
Oxaliplatin-Induced Oxidative Stress in Human Embryonic Kidney (HEK) 293
Cells. Ren Fail 2011;33(5):518–23.

123. De Araujo Junior RF, Leitao Oliveira AL, de Melo Silveira RF, de Oliveira
Rocha HA, de Franca Cavalcanti P, de Araujo AA. Telmisartan induces
apoptosis and regulates Bcl-2 in human renal cancer cells. Exp Biol Med
(Maywood). 2015;240(1):34–44.

124. Weber KL, Pathak S, Multani AS, Price JE. Characterization of a renal cell
carcinoma cell line derived from a human bone metastasis and
establishment of an experimental nude mouse model. J Urol. 2002;
168(2):774–9.

125. Avnet S, Cenni E, Granchi D, Perut F, Amato I, Battistelli L, Brandi ML, Giunti
A, Baldini N. Isolation and characterization of a new cell line from a renal
carcinoma bone metastasis. Anticancer Res. 2004;24(3a):1705–11.

126. Maita S, Yuasa T, Tsuchiya N, Mitobe Y, Narita S, Horikawa Y, Hatake K, Fukui
I, Kimura S, Maekawa T, et al. Antitumor effect of sunitinib against skeletal
metastatic renal cell carcinoma through inhibition of osteoclast function. Int
J Cancer. 2012;130(3):677–84.

127. Weber KL1, Pathak S, Multani AS, Price JE. Characterization of a renal cell
carcinoma cell line derived from a human bone metastasis and establishment
of an experimental nude mouse model. J Urol 2002;168(2):774-9.

128. Satcher RL, Pan T, Cheng CJ, Lee YC, Lin SC, Yu G, Li X, Hoang AG, Tamboli
P, Jonasch E, et al. Cadherin-11 in renal cell carcinoma bone metastasis.
PLoS One. 2014;9(2):e89880.

129. Yang Y, Valera V, Sourbier C, Vocke CD, Wei M, Pike L, Huang Y, Merino MA,
Bratslavsky G, Wu M, et al. A novel fumarate hydratase-deficient HLRCC
kidney cancer cell line, UOK268: a model of the Warburg effect in cancer.
Cancer Genet. 2012;205(7-8):377–90.

130. Yang Y, Valera VA, Padilla-Nash HM, Sourbier C, Vocke CD, Vira MA, Abu-
Asab MS, Bratslavsky G, Tsokos M, Merino MJ, et al. UOK 262: Fumarate
Hydratase (-/-) Hereditary Leiomyomatosis Renal Cell Carcinoma: In Vitro
and In Vivo Model of an Aberrant Energy Metabolic Pathway in Human
Cancer. Cancer Genet Cytogenet. 2010;196(1):45–55.

131. TCGAR Network. Comprehensive molecular characterization of clear cell
renal cell carcinoma. Nature. 2013;499:43–9.

132. Ricketts CJ, Morris MR, Gentle D, Shuib S, Brown M, Clarke N, Wei W, Nathan
P, Latif F, Maher ER. Methylation profiling and evaluation of demethylating
therapy in renal cell carcinoma. Clin Epigenetics. 2013;5:16.

133. Pawlowski R, Muhl SM, Sulser T, Krek W, Moch H, Schraml P. Loss of PBRM1
expression is associated with renal cell carcinoma progression. Int J Cancer.
2013;132(2):E11–7.

134. Brugarolas J. PBRM1 and BAP1 as novel targets for renal cell carcinoma.
Cancer J 2013;19(4):324–32.

135. Chowdhury B, Porter EG, Stewart JC, Ferreira CR, Schipma MJ,
Dykhuizen EC. PBRM1 Regulates the Expression of Genes Involved in
Metabolism and Cell Adhesion in Renal Clear Cell Carcinoma. PLoS One.
2016;11(4):e0153718.

136. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R,
Leung K, Menzies A, et al. COSMIC: mining complete cancer genomes in
the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2011;39:
D945–50.

137. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, Davies H, Jones D,
Lin ML, Teague J, et al. Exome sequencing identifies frequent mutation of
the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;
469(7331):539–42.

138. Peña-Llopis S, Vega-Rubín-de-Celis S, Liao A, Leng N, Pavía-Jiménez A, Wang
S, Yamasaki T, Zhrebker L, Sivanand S, Spence P, et al. BAP1 loss defines a
new class of renal cell carcinoma. Nat Genet. 2012;44:751–9.

139. Piva F, Santoni M, Matrana MR, Satti S, Giulietti M, Occhipinti G, Massari F,
Cheng L, Lopez-Beltran A, Scarpelli M, Principato G, Cascinu S, Montironi R.
BAP1, PBRM1 and SETD2 in clear-cell renal cell carcinoma: molecular
diagnostics and possible targets for personalized therapies. Expert Rev Mol
Diagn 2015;15(9):1201–10.

140. Feng C, Sun Y, Ding G, Wu Z, Jiang H, Wang L, Ding Q, Wen H. PI3Kβ
Inhibitor TGX221 Selectively Inhibits Renal Cell Carcinoma Cells with Both
VHL and SETD2 mutations and Links Multiple Pathways. Scientific Reports,
Published online: 8 April 2015; | doi: 10.1038/srep09465 2015.

141. Duns G, van den Berg E, van Duivenbode I, Osinga J, Hollema H, Hofstra
RMW, Kok K. Histone Methyltransferase Gene SETD2 Is a Novel Tumor
Suppressor Gene in Clear Cell Renal Cell Carcinoma. Cancer Res. 2010;70:
4287–91.

142. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, Davies H,
Edkins S, Hardy C, Latimer C, et al. Systematic sequencing of renal
carcinoma reveals inactivation of histone modifying genes. Nature. 2010;
463(7279):360–3.

143. Kanu N, Grönroos E, Martinez P, Burrell RA, Goh XY, Bartkova J, Maya-
Mendoza A, Mistrík M, Rowan AJ, Patel H, et al. SETD2 loss-of-function
promotes renal cancer branched evolution through replication stress and
impaired DNA repair. Oncogene. 2015;34(46):5699–708.

144. Li L, Shen C, Nakamura E, Ando K, Signoretti S, Beroukhim R, Cowley GS,
Lizotte P, Liberzon E, Bair S, et al. SQSTM1 is a Pathogenic Target of 5q
Copy Number Gains in Kidney Cancer. Cancer Cell. 2013;24(6):738–50.

145. Reiter RE, Anglard P, Liu S, Gnarra JR, Linehan WM. Chromosome 17p
deletions and p53 mutations in renal cell carcinoma. Cancer Res. 1993;
53(13):3092–7.

146. Strefford JC, Stasevich I, Lane TM, Lu YJ, Oliver T, Young BD. A combination
of molecular cytogenetic analyses reveals complex genetic alterations in
conventional renal cell carcinoma. Cancer Genet Cytogenet. 2005;159(1):1–9.

147. Alimov A, Kost-Alimova M, Liu J, Li C, Bergerheim U, Imreh S, Klein G,
Zabarovsky ER. Combined LOH/CGH analysis proves the existence of
interstitial 3p deletions in renal cell carcinoma. Oncogene. 2000;19(11):
1392–9.

148. Network TCGAR: Comprehensive Molecular Characterization of Papillary
Renal-Cell Carcinoma. http://dxdoiorg/101056/NEJMoa1505917 2016.

149. Lee YH, Morrison BL, Bottaro DP. Synergistic Signaling of Tumor Cell
Invasiveness by Hepatocyte Growth Factor and Hypoxia*. J Biol Chem.
2014;289:20448–61.

150. Lee YH, Apolo AB, Agarwal PK, Bottaro DP. Characterization of HGF/Met
Signaling in Cell Lines Derived From Urothelial Carcinoma of the Bladder.
Cancers. 2014;6(4):2313–29.

151. Gibney GT, Aziz SA, Camp RL, Conrad P, Schwartz BE, Chen CR, Kelly WK,
Kluger HM. c-Met is a prognostic marker and potential therapeutic target in
clear cell renal cell carcinoma. Ann Oncol. 2013;24(2):343–9.

152. Ibragimova I, Maradeo ME, Dulaimi E, Cairns P. Aberrant promoter
hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-
modifying genes is absent or rare in clear cell RCC. Epigenetics. 2013;8:
486–93.

153. Shen C, Beroukhim R, Schumacher SE, Zhou J, Chang M, Signoretti S, Kaelin
WG. Genetic and Functional Studies Implicate HIF1α as a 14q Kidney Cancer
Suppressor Gene. Cancer Discov. 2011;1(3):222–35.

154. Girgin C, Tarhan H, Hekimgil M, Sezer A, Gurel G. P53 mutations and other
prognostic factors of renal cell carcinoma. Urol Int. 2001;66(2):78–83.

155. Abaan OD, Polley EC, Davis SR, Zhu YJ, Bilke S, Walker RL, Pineda M, Gindin
Y, Jiang Y, Reinhold WC, et al. The Exomes of the NCI-60 Panel: a Genomic
Resource for Cancer Biology and Systems Pharmacology. Cancer Res. 2013;
73(14):4372–82.

156. Tomita Y, Bilim V, Kawasaki T, Takahashi K, Okan I, Magnusson KP, Wiman
KG. Frequent expression of Bcl-2 in renal-cell carcinomas carrying wild-type
p53. Int J Cancer. 1996;66(3):322–5.

157. Noon AP, Vlatković N, Polański R, Maguire M, Shawki H, Parsons K, Boyd MT.
p53 and MDM2 in Renal Cell Carcinoma: Biomarkers for Disease Progression
and Future Therapeutic Targets? Cancer. 2010;116(4):780–90.

Brodaczewska et al. Molecular Cancer  (2016) 15:83 Page 14 of 15

http://dx.doi.org/10.1038/srep09465


158. Zigeuner R, Ratschek M, Rehak P, Schips L, Langner C. Value of p53 as a
prognostic marker in histologic subtypes of renal cell carcinoma: a systematic
analysis of primary and metastatic tumor tissue. Urology. 2004;63(4):651–5.

159. Warburton HE, Brady M, Vlatković N, Linehan WM, Parsons K, Boyd MT.
p53 Regulation and Function in Renal Cell Carcinoma. Cancer Res. 2005;
65:6498–503.

160. Galbán S, Martindale JL, Mazan-Mamczarz K, de Silanes López I, Fan J, Wang
W, Decker J, Gorospe M. Influence of the RNA-Binding Protein HuR in pVHL-
Regulated p53 Expression in Renal Carcinoma Cells. Mol Cell Biol. 2003;23:
7083–95.

161. Flanagan SP. ‘Nude’, a new hairless gene with pleiotropic effects in the
mouse. Genet Res. 1966;8(3):295–309.

162. Bosma MJ, Carroll AM. The SCID mouse mutant: definition, characterization,
and potential uses. Annu Rev Immunol. 1991;9:323–50.

163. Morton CL, Houghton PJ. Establishment of human tumor xenografts in
immunodeficient mice. Nat Protoc. 2007;2(2):247–50.

164. Taghian A, Budach W, Zietman A, Freeman J, Gioioso D, Ruka W, Suit HD.
Quantitative comparison between the transplantability of human and
murine tumors into the subcutaneous tissue of NCr/Sed-nu/nu nude and
severe combined immunodeficient mice. Cancer Res. 1993;53(20):5012–7.

165. Budhu S, Wolchok J, Merghoub T. The importance of animal models in
tumor immunity and immunotherapy. Curr Opin Genet Dev. 2014;24:46–51.

166. An Z, Jiang P, Wang X, Moossa AR, Hoffman RM. Development of a high
metastatic orthotopic model of human renal cell carcinoma in nude mice:
benefits of fragment implantation compared to cell-suspension injection.
Clin Exp Metastasis. 1999;17(3):265–70.

167. Naito S, von Eschenbach AC, Giavazzi R, Fidler IJ. Growth and metastasis of
tumor cells isolated from a human renal cell carcinoma implanted into
different organs of nude mice. Cancer Res. 1986;46(8):4109–15.

168. Ruggeri BA, Camp F, Miknyoczki S. Animal models of disease: pre-clinical
animal models of cancer and their applications and utility in drug discovery.
Biochem Pharmacol. 2014;87(1):150–61.

169. Chapman DW, Jans HS, Ma I, Mercer JR, Wiebe LI, Wuest M, Moore RB.
Detecting functional changes with [(18)F]FAZA in a renal cell carcinoma
mouse model following sunitinib therapy. EJNMMI Res. 2014;4(1):27–0027.

170. Dos Santos C, Tijeras-Raballand A, Serova M, Sebbagh S, Slimane K, Faivre S,
de Gramont A, Raymond E. Effects of preset sequential administrations of
sunitinib and everolimus on tumour differentiation in Caki-1 renal cell
carcinoma. Br J Cancer. 2015;112(1):86–94.

171. Joshi S, Singh AR, Durden DL. Pan-PI-3 kinase inhibitor SF1126 shows
antitumor and antiangiogenic activity in renal cell carcinoma. Cancer
Chemother Pharmacol. 2015;75(3):595–608.

172. Wu P, Zhang N, Wang X, Zhang C, Li T, Ning X, Gong K. The erythropoietin/
erythropoietin receptor signaling pathway promotes growth and invasion
abilities in human renal carcinoma cells. PLoS One. 2012;7(9):e45122. doi:10.
1371/journal.pone.0045122.

173. Valta MP1, Zhao H, Ingels A, Thong AE, Nolley R, Saar M, Peehl DM.
Development of a realistic in vivo bone metastasis model of human renal
cell carcinoma. Clin Exp Metastasis 2014;31(5):573-84. doi:10.1007/s10585-
014-9651-8.

174. Beniers AJ, Peelen WP, Schaafsma HE, Beck JL, Ramaekers FC, Debruyne FM,
Schalken JA. Establishment and characterization of five new human renal
tumor xenografts. Am J Pathol. 1992;140(2):483–95.

175. Sharkey FE, Fogh J. Metastasis of human tumors in athymic nude mice. Int J
Cancer. 1979;24(6):733–8.

176. Garofalo A, Chirivi RG, Scanziani E, Mayo JG, Vecchi A, Giavazzi R.
Comparative study on the metastatic behavior of human tumors in nude,
beige/nude/xid and severe combined immunodeficient mice. Invasion
Metastasis. 1993;13(2):82–91.

177. Kobayashi M, Morita T, Chun NA, Matsui A, Takahashi M, Murakami T. Effect
of host immunity on metastatic potential in renal cell carcinoma: the
assessment of optimal in vivo models to study metastatic behavior of renal
cancer cells. Tumour Biol. 2012;33(2):551–9.

178. Bear A, Clayman RV, Elbers J, Limas C, Wang N, Stone K, Gebhard R, Prigge
W, Palmer J. Characterization of two human cell lines (TK-10, TK-164) of
renal cell cancer. Cancer Res. 1987;47(14):3856–62.

179. Grossman HB, Wedemeyer G, Ren LQ. Human renal carcinoma:
characterization of five new cell lines. J Surg Oncol. 1985;28(3):237–44.

180. van Moorselaar RJA, Schalken JA, Oosterhof GON, Debruyne FMJ. Use of
animal models in diagnosis and treatment of renal cell carcinoma. World J
Urol. 1991;9(4):192–7.

181. Pan C, Kumar C, Bohl S, Klingmueller U, Mann M. Comparative proteomic
phenotyping of cell lines and primary cells to assess preservation of cell
type-specific functions. Mol Cell Proteomics. 2009;8(3):443–50.

182. Burdall SE, Hanby AM, Lansdown MR, Speirs V. Breast cancer cell lines: friend
or foe? Breast Cancer Res. 2003;5(2):89–95.

183. Hughes P, Marshall D, Reid Y, Parkes H, Gelber C. The costs of using
unauthenticated, over-passaged cell lines: how much more data do we
need? BioTechniques. 2007;43(5):575. 577-578, 581-572 passim.

184. Ertel A, Verghese A, Byers SW, Ochs M, Tozeren A. Pathway-specific
differences between tumor cell lines and normal and tumor tissue cells. Mol
Cancer. 2006;5(1):55.

185. Park JG, Ku JL, Park SY. Isolation and culture of renal cancer cell lines.
Methods Mol Med. 2004;88:111–9.

186. Batchelder CA, Martinez ML, Duru N, Meyers FJ, Tarantal AF. Three
Dimensional Culture of Human Renal Cell Carcinoma Organoids. PLoS One.
2015;10(8):e0136758.

187. Mesoudi A. Variable cultural acquisition costs constrain cumulative cultural
evolution. PLoS One. 2011;6(3):e18239.

188. Steffens S, Janssen M, Roos FC, Becker F, Schumacher S, Seidel C, Wegener
G, Thuroff JW, Hofmann R, Stockle M, et al. Incidence and long-term
prognosis of papillary compared to clear cell renal cell carcinoma–a
multicentre study. Eur J Cancer. 2012;48(15):2347–52.

189. Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W. 3D cell culture
systems modeling tumor growth determinants in cancer target discovery.
Adv Drug Deliv Rev. 2014;69–70:29–41.

190. Bielecka ZF, Maliszewska-Olejniczak K, Safir IJ, Szczylik C, Czarnecka AM.
Three-dimensional cell culture model utilization in cancer stem cell
research. Biol Rev Camb Philos Soc. 2016. doi: 10.1111/brv.12293

191. Pickl M, Ries CH. Comparison of 3D and 2D tumor models reveals enhanced
HER2 activation in 3D associated with an increased response to
trastuzumab. Oncogene. 2009;28(3):461–8.

192. Krausz E, de Hoogt R, Gustin E, Cornelissen F, Grand-Perret T, Janssen L,
Vloemans N, Wuyts D, Frans S, Axel A, et al. Translation of a tumor
microenvironment mimicking 3D tumor growth co-culture assay platform
to high-content screening. J Biomol Screen. 2013;18(1):54–66.

193. Geraghty RJ, Capes-Davis A, Davis JM, Downward J, Freshney RI, Knezevic I,
Lovell-Badge R, Masters JR, Meredith J, Stacey GN, et al. Guidelines for the
use of cell lines in biomedical research. Br J Cancer. 2014;111(6):1021–46.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Brodaczewska et al. Molecular Cancer  (2016) 15:83 Page 15 of 15

http://dx.doi.org/10.1371/journal.pone.0045122
http://dx.doi.org/10.1371/journal.pone.0045122
http://dx.doi.org/10.1007/s10585-014-9651-8
http://dx.doi.org/10.1007/s10585-014-9651-8
http://dx.doi.org/10.1111/brv.12293

	Abstract
	Background
	RCC subtypes
	RCC cell lines used in research
	ACHN cell line
	A-498 cell line
	786-O cell line
	Caki-1 cell line
	Caki-2 cell line
	769-P cell line
	RCC4 cell line
	SMKT-R cell lines
	Memorial Sloan Kettering Cancer Centre cell line collection
	Laboratory specific RCC cell line collections
	RCC cancer stem cell cultures
	Normal renal proximal tubule cells
	RCC cell lines specific for bone metastasis-oriented research
	Other RCC cell lines
	Large scale molecular data and RCC cell lines
	RCC cell lines in xenograft studies
	Future of RCC cell line based research

	Conclusions
	Take-home message

	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

