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Abstract: Glucose-dependent insulinotropic polypeptide (GIP) is one of the important incretins
and possesses lots of physiological activities such as stimulating insulin secretion and maintaining
glucose homeostasis. The pentacyclic triterpenoid saponins are the major active ingredients in tea
(Camellia sinensis) seeds. This study aimed to investigate the effect of tea seed saponins on the GIP
secretion and related mechanisms. Our data showed that the total tea seed saponins (TSS, 65 mg/kg
BW) and theasaponin E1 (TSE1, 2–4 µM) could increase the GIP mRNA and protein levels in mice
and STC-1 cells. Phlorizin, the inhibitor of Sodium/glucose cotransporter 1 (SGLT1), reversed the
TSE1-induced increase in Ca2+ and GIP mRNA level. In addition, TSE1 upregulated the protein
expression of Takeda G protein-coupled receptor 5 (TGR5), and TGR5 siRNA significantly decreased
GIP expression in TSE1-treated STC-1 cells. Network pharmacology analysis revealed that six proteins
and five signaling pathways were associated with SGLT1, TGR5 and GIP regulated by TSE1. Taken
together, tea seed saponins could stimulate GIP expression via SGLT1 and TGR5, and were promising
natural active ingredients for improving metabolism and related diseases.
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1. Introduction

Incretins are a class of hormone peptides released by gut enteroendocrine cells, and
they possess lots of physiological functions such as regulating appetite, blood glucose,
gastrointestinal motility and lipid metabolism, etc. [1]. Glucose-dependent insulinotropic
polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are two major incretins which
respond to nutrients and control glucose homeostasis. Incretin-based pharmacotherapies
for diabetes and obesity have received enormous attention. The GLP-1 analogues, GLP-
1/GIP dual-agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors that prolong GLP-1
half-life could offer effective treatment for diabetic patients [2,3].

GIP is a 42-amino-acid peptide secreted from K entero-endocrine cells in the duo-
denum, and its receptor (GIPR) expresses in various organs [4]. GIP can inhibit gastric
emptying and motility, control thyroid morphogenesis upon nutrient ingestion, and regu-
late inflammation and adaptive thermogenesis via restraining myeloid-cell-derived S100
calcium-binding protein heterodimer S100A8/A9 [5–7]. In addition, GIP improves energy
utilization, reduces inflammation, and exhibits neuroprotective activity in Parkinson’s and
Alzheimer ’s disease models [8]. It protects Hippocampal HT-22 cells from glutamate-
induced oxidative stress. The underlying molecular mechanisms is that GIP suppresses
ferroptosis through activating the mitogen-activated protein kinase (MAPK) pathway [9].

So far, the molecular mechanisms of incretin secretion and related signaling are not
very clear. Incretins can be induced via stimulating different receptors by small or macro-
molecular substances. For example, the sensor receptors for carbohydrates are sodium-
dependent glucose transporter 1/3 (SGLT1/3), glucose transporter 2 (GLUT2) and type 1
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taste receptor 2/3 (T1R2/T1R3). SGLT1 transfers two Na+ molecules when transporting one
glucose molecule, causing cell depolarization, opening of voltage-dependent calcium chan-
nel (VDCC) and enhancement of intracellular Ca2+ concentration, which in turn promotes
GLP-1 secretion. Cyclic adenosine monophosphate (cAMP) and Ca2+ are considered second
messengers for GLP-1 and GIP [10]. Lipid sensor receptors are mainly free fatty acid recep-
tors (FFAR1-4, namely GPR40, GPR43, GPR41 and GPR120) and G protein-coupled receptor
119 (GPR 119). The known sensor receptors of proteins, polypeptides and amino acids
are calcium-sensitive receptor (CaSR), T1R1/T1R3G, small peptide transporter (PepT1)
and protein-coupled receptor family C group 6 subtype A (GPRC6A) receptor [11]. Cholic
acid can stimulate the secretion of GLP-1 and Peptide YY (PYY) via Takeda G protein-
coupled receptor 5 (TGR5) and Nuclear farnesoid X receptor (FXR), respectively [12,13].
Lipopolysaccharide induces GLP-1 secretion via Toll-like receptor 4 (TLR4) on intestinal
cells, accompanied by an increase in intracellular Ca2+ concentration [14].

Tea (Camellia sinensis L. (O) Kuntze) is famous worldwide as a popular beverage.
In addition to the buds and leaves, tea seeds have received increasing attention due to
their abundant active ingredients, including saponins, fatty acids, flavonoid glycosides
and polysaccharides. Tea seed saponins are oleanane-type triterpene saponins, and have
beenfound to possess various bioactivities, including regulation of gastrointestinal system,
weight reduction, anti-microorganism, anti-inflammation, neuroprotection, anti-allergy
properties, etc. [15]. Although tea seed saponins have been found to regulate gastric
emptying and gastrointestinal transit, their effects on incretins are still not clear. In this
study, the effects of total saponins from tea seeds (TSS) and one of the major saponin com-
pound namely theasaponin E1 (TSE1) on GIP secretion were evaluated in vitro and in vivo.
Moreover, the underlying mechanisms and signaling networks were also investigated.

2. Materials and Methods
2.1. Chemicals and Regents

TSS and TSE1 (98% purity) were prepared as previously reported [16]. Briefly, hulled
tea seeds were ground into powder and extracted with 70% methanol solution at 70 ◦C.
Then, the crude extract was extracted sequentially with petroleum ether, ethyl acetate
(EtOAc) and 1-butanol (n-BuOH), and the n-BuOH fraction was eluted with 30–70% ethanol
on D101 macroporous resin to give TSS. TSE1 was isolated from TSS by a reversed-phase
preparative HPLC system (GE ÄKTA purifier100, Uppsala, Sweden), and identified by
UPLC-PDA-MS/MS, 13C- and 1H-NMR spectroscopy. Phlorizin (purity ≥ 98%) was ob-
tained from Shanghai GE Biological Technology Co., Ltd. (Shanghai, China). Penicillin,
streptomycin and Dulbecco’s Modified Eagle’s Medium (DMEM) were provided by Shang-
hai Guan & Dao Biological Engineering Co., Ltd. (Shanghai, China). Fetal bovine serum
(FBS) was purchased from GBICO (Grand Island, NY, USA). The primary antibodies against
TGR5 and β-actin and the HRP-linked secondary antibody (anti-mouse IgG) were obtained
from Cell Signaling Technology, Inc. (Danvers, MA, USA).

2.2. Animal Experiment

Twenty-seven 4-week-old male ICR mice were provided by the Experimental animal
center of Zhejiang University. The mice were housed under standard conditions (20–25 ◦C,
60–70% relative humidity, 12-h light/dark cycle) with free access to water and food. After
a 2-week acclimation period, animals were randomly divided into 9 groups (3 mice per
cage). Eight groups were administrated with TSS by gavage at a dose of 65 mg/kg BW,
and sacrificed after 0.5, 1, 2, 3, 4, 6, 12 and 24 h. The control group received water only, and
were sacrificed immediately after gavage. Small intestines were rinsed with 0.9% saline,
frozen in liquid nitrogen and stored at −80 ◦C. All animal experiments were approved by
the Experimental Animals Ethics Committee of Zhejiang University (protocol code 12531).
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2.3. Cell Culture

The mouse intestinal endocrine STC-1 cells were provided by Shanghai Guan & Dao
Biological Engineering Co., Ltd. (Shanghai, China). Cells were cultured in DMEM medium
supplemented with 10% FBS at 37 ◦C, and maintained in a thermostatic cell incubator with
5% CO2.

2.4. Cell Viability Assay

Cell growth was determined using a MTT cell proliferation and cytotoxicity detection
kit (KeyGEN BioTECH, Jiangsu, China). Briefly, cells were seeded into 96-well plates,
incubated overnight, and treated with TSE1 (0–10 µM) or phlorizin (0–30 µM) for 24 h.
Subsequently, 50 µL of MTT solution (1×) was added and incubated for additional 4 h at
37 ◦C. Then, the supernatant in each well was removed, and 150 uL DMSO was added to
dissolve the MTT-formazan crystals. The absorbance at 490 nm was determined with a
microplate reader (BioTek, Shanghai, China).

2.5. Ca2+ Measurement

The intracellular calcium level was determined using a BBcellProbe F03 Assay Kit
(BestBio, Shanghai, China). Cells were incubated with calcium-indicating dye for 40 min at
37 ◦C, and monitored with excitation at 488–495 nm and emission at 516 nm by a microplate
reader (BioTek, Shanghai, China).

2.6. Quantitative Real-Time PCR (qRT-PCR) Analysis

The total RNA of tissues and cells was extracted using an Eastep® Super Total RNA
Extraction Kit (Promega, Wisconsin, WI, USA). Subsequently, the RNA was reversely
transcribed to cDNA by a PrimeScript™ RT Reagent Kit with gDNA Eraser (TaKaRa,
Kyoto, Japan) according to the operation manual. qRT-PCR was performed on a StepOne-
Plus™ Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) with a TB
Green® Premix Ex Taq™ (Tli RNaseH Plus) Kit (TaKaRa, Kyoto, Japan), and the com-
parative Ct method (∆∆Ct) was used for analyzing the relative mRNA expression. The
primer pairs for GIP and GAPDH were as follows: 5′-GTGGCTTTGAAGACCTGCTC-3′

and 5′-TTGTTGTCGGATCTTGTCCA-3′ (GIP); 5′-GAAGGTGAAGGTCGGAGTC-3′ and
5′-GAAGATGGTGATGGGATTC-3′ (GAPDH).

2.7. Enzyme Linked Immunosorbent Assay (ELISA)

The GIP protein concentrations in the small intestine tissues and STC-1 cell culture
supernatant were determined by a Mouse GIP (Gastric Inhibitory Polypeptide) ELISA Kit
(Elabscience, Wuhan, China) following the operation manual. The plates were read by a
microplate reader (BioTek, Shanghai, China) at 450 nm wavelength.

2.8. Western Blot Analysis

Cells were lysed with RIPA lysis buffer (Biosharp, Anhui, China) containing a protease
inhibitor mixture (Biosharp, Anhui, China). The protein content was analyzed using
a BCA Protein Assay Kit (Meilunbio, Dalian, China). Cell lysates were separated by
sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and transferred
to polyvinylidene difluoride (PVDF) membrane by a Mini-Protean 3 System (BioRad).
Afterwards, the membrane was blocked with 5% defatted milk for 1 h, incubated with the
primary antibody at 4 ◦C overnight, and then incubated with the secondary antibody for
2 h at the room temperature. Protein bands were visualized by a LAS-3000 Image Reader
(Fujifilm, Tokyo, Japan) with a BeyoECL Plus kit (Beyotime Biotech Inc, Shanghai, China),
and analyzed by the ImageJ 1.52v software (NIH, Bethesda, MD, USA).

2.9. Transfection with Small Interfering RNA (siRNA)

STC-1 cells were cultured in 6-well plates for 24 h, and transfected with control siRNA
or TGR5 siRNA (Santa Cruz Biotechnology, Inc. TX, USA) using the HighGene transfection
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reagent (Abclonal, Wuhan, China). After a 6 h transfection period, cells were treated with
TSE1 for 24 h and used for Western blot analysis.

2.10. Protein–Protein Interaction (PPI) Network Construction

The interaction between target proteins was illustrated by the STRING database and
GeneMANIA database. The settings in the String system are as follows: Organism, Homo
sapiens; Network type, full STRING network; Meaning of network edges, evidence; Active
interaction sources, all selected; Minimum required interaction score, high confidence
(0.700); Max number of interactors to show, select “no more than 10 interactors” in the
first shell and “none” in the second shell. In the GeneMANIA system, all default settings
were used.

2.11. Statistical Analysis

Data from three independent biological replicates were expressed as means ± stan-
dard deviation (SD). Mean comparison between two groups and multiple comparisons
were assessed by Student’s t-test and one-way analysis of variance (ANOVA) followed
with Student–Newman–Keuls (SNK), respectively. p < 0.05 and p < 0.01 were considered
statistically significant and statistically highly significant, respectively. All statistical analy-
ses were performed using SPSS Statistics 26.0 (SPSS Inc., Chicago, IL, USA). Power analysis
was performed by PASS 2021 (NCSS, LLC, Kaysville, UT, USA). One-Way Analysis of
Variance Assuming Equal Variances (F-Tests) was used to assess the sample size.

3. Results
3.1. Effect of TSS on GIP Expression in the Small Intestine of Mice

Mice were administered with TSS by single gavage at the dose of 65mg/kg BW. As
shown in Figure 1, the mRNA and protein levels of GIP in the small intestine of mice both
significantly increased during the first several hours and then decreased (p < 0.05). The
highest expression of GIP mRNA and protein occurred at 1 and 3 h, which were 6.8-fold
and 2.7-fold higher than that of the control group, respectively. Numerous studies have
demonstrated asynchrony in mRNA and protein expression, possibly due to differences in
the timing and location of eukaryotic gene transcription and translation.
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3.2. Effect of TSE1 on GIP Secretion in STC-1 Cells

To further evaluate the effect of tea seed saponins on intestinal GIP secretion, enteroen-
docrine STC-1 cells were treated with the individual saponin compound TSE1 for 24 h.
Figure 2A shows that TSE1 at the concentrations of 0–10 µM did not inhibit the STC-1
cell proliferation (p > 0.05), indicating that TSE1was not toxic to cells within this dose
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range. The mRNA expression of GIP increased to 3.5 and 6.6 times that of the control at
2 and 4 µM of TSE1 (p < 0.05), and the protein level in the cell culture media was 1.3-fold
higher than control at 4 µM (p <0.05) (Figure 2B,C). These data suggest that TSE1 could
enhance the GIP expression at relatively low concentrations.
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3.3. Role of SGLT 1 in TSE1-Induced GIP Expression

Phlorizin, a dihydrochalcone from the bark of pears, apples, cherries and other fruits,
is a known inhibitor of SGLT1 [17]. In this work, phlorizin was used to clarify the effect
of SGLT1 on TSE1-induced GIP secretion. Figure 3A shows that the cell viability did
not change obviously at 10 and 25 µM of phlorizin, and slightly decreased by 17% at
50 µM (p > 0.05). Therefore, 25 µM of phlorizin was used in subsequent experiments. As
shown in Figure 3B,C, phlorizin could significantly reverse the increase in intracellular Ca2+

concentration (p < 0.05) and GIP mRNA level (p < 0.01) induced by TSE1 at 2 and 4 µM,
indicating that SGLT1 played a key role in TSE1-induced GIP expression.
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3.4. Effect of TSE1 on TGR5 Expression in STC-1 Cells

Considering that TGR5 is a target of oleanolic acid, and contributes to the GLP-1 and -2
production [18,19], the effect of TSE1 on TGR5 expression was tested. Figure 4 shows that
the protein level of TGR5 was significantly enhanced by TSE1 at 2 and 4 µM in a dose-
dependent manner (p < 0.05), suggesting that TGR5 might be a target of tea seed saponins.
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3.5. Role of TGR5 in TSE1-Induced GIP Expression

In order to clarify whether TGR5 is involved in the regulation of GIP by TSE1, TGR5
was knocked down in STC-1 cells by siRNA approach. As shown in Figure 5A,B, TGR5
siRNA effectively reduced the protein expression of TGR5 compared with the controls,
meanwhile, it significantly suppressed TSE1-induced upregulation of TGR5 (p < 0.05).
Figure 5C shows that TSE1 did not enhance GIP mRNA expression after treatment with
TGR5 siRNA, indicating that TSE1-induced GIP upregulation through activating TGR5 in
the STC-1 cells.
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Figure 5. Role of TGR5 in TSE1-induced GIP expression in STC−1cells. (A) Effect of TGR5 siRNA
on the TGR5 protein expression determined by Western blot. (B) Quantification of protein bands
analyzed by the ImageJ software. (C) Effect of TGR5 siRNA on the GIP mRNA expression determined
by RT-PCR. Different letters indicate significant difference among groups (p < 0.05).

3.6. PPI Network and KEGG Analysis

In order to further explore the regulatory network of TSE1-induced GIP expression,
the three proteins, TGR5 (also called G-protein-coupled bile acid receptor 1, GPBAR1),
SGLT1 (also called Solute carrier family 5 member 1, SLC5A1) and GIP, were uploaded
to the STRING database and GeneMANIA database to construct a PPI network. As
shown in Figure 6A,B, six common proteins, including insulin gene enhancer binding
protein-1(ISL1), gastric inhibitory polypeptide receptor (GIPR), glucagon (GCG), G protein-
coupled receptor 119 (GPR119), free fatty acid receptor 1 (FFAR1) and neuroendocrine
convertase 1 (PCSK1), occurred in both databases. Figure 6A shows that GCG was a key
node connecting GPBAR1 and SLC5A1 with GIP. Figure 6B shows that GIPR, GPR119
and FFAR1 were related with GPBAR1 and GIP, PCSK1 was associated with SLC5A1 and
GIP, and GCG was connected with GPBAR1, SLC5A1 and GIP. These data provided a
possible network of protein interactions that involved in the GIP regulation by TSE1. KEGG
analysis demonstrated that the six common proteins genes together with GPBAR1 and
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SLC5A1 were significantly enriched in five pathways including insulin secretion, cAMP
signaling pathway, neuroactive ligand–receptor interaction, carbohydrate digestion and
absorption, and mineral absorption (p < 0.05) (Figure 6C, Table S1), indicating that these
signaling pathways are involved in TSE1-mediated upregulation of GIP expression and
related biological functions.
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4. Discussion

The intestine is not only the main site of digestion, but also the largest endocrine organ
of human body. The incretin hormones have received increasing attention over the past
few decades due to their modulatory effects on appetite, blood sugar, insulin secretion,
lipid metabolism, gastrointestinal motility and immune function [20]. These bioactivities
confer incretins as the potential therapeutic targets for the treatment of obesity, diabetes
and cardiovascular disease [3,21].

Numerous studies have focused on GLP-1 and GIP receptor agonists and DPP-4 in-
hibitors for development of incretin-based antidiabetic drugs [22]. Recently, some nutrients
and natural products such as L-tryptophan, lauric acid, α-linolenic acid and nobiletin
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were found to regulate glycaemia, gastric emptying, food intake and circadian rhythm
via incretin stimulation [23–25]. Two saponins, ginsenosides and glycyrrhizic acid, have
been reported to increase GLP-1 secretion, which may be related to their antidiabetic
effects [13,26]. The triterpene saponins from tea seeds could modulate gastrointestinal
system and blood lipids in vivo. However, little is known about their effects on incretin. In
this work, it was demonstrated that TSS (65 mg/kg BW) and a major saponin compound,
TSE1 (2 and 4 µM), could significantly increase the mRNA and protein levels of GIP in the
mouse small intestine and STC-1 cells within 24 h (Figures 1 and 2). These results suggest
that stimulation of GIP secretion might be an important mechanism by which tea seed
saponins regulate intestinal function and metabolism.

SGLT1 (SLC5A1) is a key glucose transporter regulating glucose absorption in the gas-
trointestinal tract, and is considered a potential target for treating obesity and diabetes [27].
Several researches have demonstrated that SGLT1 participates in glucose- and high-fat-
dependent GIP secretion in the normal, obese and diabetic states [28–30]. Activation of
SGLT1 at the brush border of the small intestine leads to Na+ influx, membrane depo-
larization, and opening of Ca2+ voltage-gated channels, resulting in intracellular Ca2+

accumulation and secretion of intestinal peptides by enteroendocrine cells [31]. SGLT1
inhibitors block glucose-mediated GLP-1 secretion, and reduce intracellular cAMP and Ca2+

concentrations [32]. Our data showed that the SGLT1 inhibitor phlorizin (25 µM) could
significantly reverse the TSE1-induced enhancement of intracellular Ca2+ concentration
and GIP mRNA expression (Figure 3), suggesting that TSE1 regulates GIP expression at
least in part by triggering SGLT1 in the small intestine.

TGR5 (GPBAR-1) is highly expressed in intestine, brown adipose tissue, macrophages/
monocytes, spleen and gallbladder [33]. It regulates biliary homeostasis and related
metabolism, prevents gastrointestinal and liver inflammation, and is considered a candi-
date target for improving obesity, dyslipidemia, type 2 diabetes and nonalcoholic fatty
liver disease [34–36]. Pentacyclic triterpenoids such as betulinic acid and oleanolic acid
exhibit TGR5 agonist capacity, possibly due to their structural similarity to bile acids [37,38].
Glycyrrhizic acid, a triterpenoid saponin, can increase GLP-1 secretion via activating TGR5
in intestinal NCI-H716 cells and type 1-like diabetic rats [13]. In this work, TSE1 was found
to increase the TGR5 protein expression by approximately 30–80% in a dose-dependent
manner (Figure 4). Silence of TGR5 obviously counteracted the elevated GIP mRNA ex-
pression in the STC-1 cells induced by TSE1 (Figure 5). Our data revealed for the first time
that TGR5 was involved in the GIP regulation, which might be a common mechanism of
oleanane-type saponins to stimulate GIP secretion.

Network pharmacology is an effective strategy for identifying drug components and
their global mechanisms [39]. In the present study, the STRING and GeneMANIA databases
were used to analyze the protein-protein relationship, and six key proteins, ISL1, GIPR,
GPR119, GCG, FFAR1 and PCSK1, were found to be associated with SGLT1, TGR5 and GIP.
KEGG enrichment analysis showed that these proteins were mainly involved in insulin
secretion, cAMP signaling and neuroprotection (Figure 6). ISL1, a DNA-binding transcrip-
tional activator, not only regulates the gene expression of insulin and glucagon to maintain
the glucose homeostasis, but also plays a key role in cell proliferation, differentiation and
tumorigenesis [40]. GIPR activation promotes insulin secretion through increasing cAMP
and proinsulin gene transcription, and regulates pancreatic beta cell survival and prolifera-
tion independent of insulin [41]. GPR119 and FFAR1 are free fatty acid sensors that mediate
the release of incretin hormones and insulin [42,43]. Glucagon from α-cells was found to
be stimulated by GIP in hyperglycemia of Type 2 diabetics, but not in healthy people [44].
PCSK1, mainly expressed in neuronal and endocrine cells, could cleave many protein
precursors involved in energy homeostasis [45]. Downregulation of PCSK1 suppresses the
generation of GIP and GLP-1 in STC-1 cells [46]. These proteins are involved in tea seed
saponin-induced GIP secretion and related physiological functions, and should be further
studied as the targets of these saponins in the future.
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5. Conclusions

In summary, total tea seed saponins and individual saponin compound TSE1 could
stimulate GIP mRNA and protein expression in normal mice and STC-1 cells. Inhibition
of SGLT1 by phlorizin or silence of TGR5 by siRNA both reverse the TSE1-induced up-
regulation of GIP expression. Network pharmacology analysis indicated that ISL1, GIPR,
GPR119, GCG, FFAR1 and PCSK1 were involved in the regulation of SGLT1, TGR5 and GIP
by TSE1. These genes participate in insulin secretion, cAMP signaling, neuroprotection,
carbohydrate digestion and absorption, and mineral absorption, suggesting that tea seed
saponins possess these bioactivities and are worthy of further study as functional food
ingredients or drugs for improving metabolic diseases.
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