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Abstract

Many students are taught about genome assembly using the dichotomy between the com-

plexity of finding Eulerian and Hamiltonian cycles (easy versus hard, respectively). This

dichotomy is sometimes used to motivate the use of de Bruijn graphs in practice. In this

paper, we explain that while de Bruijn graphs have indeed been very useful, the reason has

nothing to do with the complexity of the Hamiltonian and Eulerian cycle problems. We give 2

arguments. The first is that a genome reconstruction is never unique and hence an algorithm

for finding Eulerian or Hamiltonian cycles is not part of any assembly algorithm used in prac-

tice. The second is that even if an arbitrary genome reconstruction was desired, one could

do so in linear time in both the Eulerian and Hamiltonian paradigms.

Introduction

When you learned about genome assembly algorithms, you might have heard a story that goes

something like this:

In the overlap-layout paradigm, solving the assembly problem requires solving the Hamilto-
nian cycle problem in the overlap graph. This is difficult, because the Hamiltonian cycle pro-
gram is NP-hard. On the other hand, if we break our reads up into k-mers, we can build the
de Bruijn graph. Then, the assembly problem becomes the problem of finding an Eulerian
cycle in the de Bruijn graph, which is easily solvable in linear time. Thus, by formulating the
assembly problem in terms of the de Bruijn graph, we can solve the much easier Eulerian cycle
problem and not have to solve the NP-hard Hamiltonian cycle problem.

In this paper, we explain that while de Bruijn graphs have indeed been very useful, the rea-

son has nothing to do with the complexity of the Hamiltonian and Eulerian cycle problems.

We will first define the terms necessary to understand the above story. A Hamiltonian cycle

in a graph is a cycle that visits every vertex at least once, and an Eulerian cycle is a cycle that
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visits every edge once. In general graphs, the problem of finding a Hamiltonian cycle is NP-

hard, while finding an Eulerian cycle is solvable in polynomial time. Consider a set of reads R.

An overlap graph constructed from R is a directed graph where every vertex is a read, and

there is an edge from x to y if and only if a suffix (of a certain minimal length, which is given as

a parameter) of x is equal to a prefix of y. Under certain idealized assumptions of the input,

which we will not get into here, the genome is spelled by a cycle that visits every read exactly

once, i.e., a Hamiltonian cycle of the overlap graph. Alternatively, a de Bruijn graph of R is a

directed graph with a vertex for every k-long substring of R (called a k-mer) and an edge for

every (k+1)-long substring of R. Under certain idealized assumptions, the genome is spelled by

a cycle that visits every edge of a de Bruijn graph exactly once, i.e., an Eulerian cycle.

The answer to the question

Every Eulerian cycle in a de Bruijn graph or a Hamiltonian cycle in an overlap graph corre-

sponds to a single genome reconstruction where all the repeats (long sequences that appear

more than once) are completely resolved (i.e., their place in the genome determined). For

example, Fig 1 shows 2 different Eulerian cycles in the same graph (a similar example could be

constructed for Hamiltonian cycles in an overlap graph). Each cycle corresponds to a different

arrangement of segments between the repeats. The presence of multiple Eulerian or Hamilto-

nian cycles implies that the genome structure is ambiguous given the data available. In other

words, using the same set of reads, one can reconstruct different genomes, each of which is

fully consistent with the data (Fig 1 gives an example). Choosing one of these reconstructions

arbitrarily would be foolhardy since only one of them is the original genome. No sane assembly

algorithm would do this, and that is one of the major reasons why an algorithm for finding

Eulerian or Hamiltonian cycles is not part of any assembly algorithm used in practice.

Instead, assemblers output contigs—long, contiguous segments which can unambiguously

be inferred to be part of the genome. Finding such segments is a very different computational

problem than finding a single Eulerian or Hamiltonian cycle (see Endnote 1). In fact, it was

shown that finding all possible contigs can be done in polynomial time, regardless of whether

the genome reconstruction is modeled as a Hamiltonian or Eulerian cycle [1]. The algorithm

used in practice (the unitig algorithm) is linear and nearly identical in the 2 graph models.

Fig 1. A worked out example for a set of reads R = {TATTA, TAATA} and k = 3. Here, the set of all k-mers is S =

spk(R) = {TAT, ATT, TTA, TAA, AAT, ATA}. Panel A shows G1 = dBGk(S) and one possible Eulerian cycle of G1 (in

blue). Panel B show the only other Eulerian cycle in G1 (in orange). The genome reconstruction corresponding to the

blue cycle is ATTAATAT and to the orange cycle is ATTATAAT (note that because the genome is circular, the last 2

characters of each string are equal to the first 2 characters).

https://doi.org/10.1371/journal.pcbi.1008928.g001
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Perhaps you are not convinced by the above reasoning? Fine. For the sake of argument, let

us imagine that we really are interested in finding a single, arbitrary, genome reconstruction.

But even in this case, the distinction between Eulerian and Hamiltonian cycles is misleading.

We make our point with this theorem, which we first state informally (a formal statement and

proof will come later):

Main Theorem (informal): The following problems are equivalent and solvable in linear time:

1. Find an Eulerian cycle in the de Bruijn graph where the edges correspond to k-mers

in the reads.

2. Find a Hamiltonian cycle in the de Bruijn graph where the edges correspond to all

the possible (k+1)-mers that can be obtained from the reads’ k-mers.

The first part of the theorem should not be surprising. It states one half of the story we

started with, namely that we can solve the assembly problem in linear time by finding an Euler-

ian cycle in a de Bruijn graph. The second part of the theorem, though, adds a twist. It is about

finding a Hamiltonian cycle, but it differs from the initial story in 2 ways. First, it is a Hamilto-

nian cycle in a de Bruijn graph, not in an overlap graph. This might seem strange, but there is

no special connection between overlap graphs and the Hamiltonian cycle problem—one is

free to find a Hamiltonian cycle in any graph they wish. Second, the problem is solvable in lin-

ear time in this case, even though it is NP-hard in general. This might also seem strange, but in

fact it is common for NP-hard problems to have polynomial time solutions for a restricted

class of inputs. For example, the satisfiability problem is NP-hard in general but is polynomial

time solvable when the clauses are restricted to have only 2 variables.

What the theorem states, then, is that one can solve the assembly problem in linear time by

finding a Hamiltonian cycle within an appropriately defined de Bruijn graph. The fact that the

Hamiltonian cycle problem is NP-hard in general graphs is not directly relevant. What is

important is the underlying structure of the de Bruijn graph which makes the Hamiltonian

cycle problem easy to solve (for more details, see Endnote 2). Hence, the initial story was right

in the sense that using de Bruijn graphs is a good idea but wrong to imply that the complexity

of the Hamiltonian cycle problem is a reason. All of this is of course assuming we are, for some

reason, interested in an arbitrary genome reconstruction, which, as we argued earlier, we typi-

cally are not.

Formal statement and proof of main theorem

We will now give some definitions to prove the main theorem. Let t be a string, k be a positive

integer, and S be a set of k-mers. Let R be a set of reads, i.e., strings of length�k.We define

prei(t) and sufi(t) as the prefix and suffix, respectively, of length i of t. The k-spectrum of R,

denoted by spk(R), is the set of all k-mer substrings of the strings of R. The de Bruijn graph of

order k of S, denoted as dBGk(S), is defined as follows. The vertex set is spk−1(S), and for every

k-mer x2S, we add an edge from prek−1(x) to sufk−1(x). Fig 1 shows an example of a de Bruijn

graph. See Endnote 3 for more for some context about how the term de Bruijn graph is used

more broadly. We define the closure of S, denoted closure(S), to be the set of all (k+1)-mers y
such that prek(y)2S and sufk(y)2S. Informally, it is the set of all (k+1)-mers that can be con-

structed from S.

The main theorem follows almost directly from definitions. The proof here is based on first

principles, for expository purposes, but it is actually a corollary of deeper results (see Endnote

4).

Main Theorem (formal): Let R be a set of strings whose smallest length is l. Let k be a posi-

tive integer less than l. Then, there is a one-to-one correspondence between Eulerian cycles in
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dBGk(spk(R)) and Hamiltonian cycles in dbGk+1(closure(spk(R))). Moreover, an Eulerian or

Hamiltonian cycle can be found in its respective graph in O(|spk(R)|) time.

Proof: Let S = spk(R). Let G1 = dBGk(S) and G2 = dBGk+1(closure(S)). First, we show that the

vertex set of G2 is S, i.e., spk(closure(S)) = S. Clearly, spk(closure(S))�S, since no new k-mers are

created during the closure process. Now, let x be a k-mer in S. It must appear in some read r, and

since the length of r is greater than k, x must be a prefix or suffix of some (k+1)-mer y in R. More-

over, y must be in closure(S), since its prefix and suffix are both in r and hence in S. Therefore,

x2spk(closure(S)), completing our proof that S�spk(closure(S)) and the vertex set of G2 is S.

Observe that a sequence of k-mers C1 = x0,. . .,xn−1 is a sequence of edges defining an Euler-

ian cycle in G1 if and only if the set of k-mers of C1 is exactly S (without any repetitions) and,

for all i, sufk−1(xi) = prek−1(xi+1 mod n). Also, observe that a sequence of k-mers C2 = x0,. . .,xn−1

is a sequence of vertices defining a Hamiltonian cycle in G2 if and only if the exact same criteria

holds, i.e., the set of k-mers of C2 is exactly S (without repetitions) and, for all i, sufk−1(xi) =

prek−1(xi+1 mod n). Thus, there is a one-to-one correspondence between Eulerian cycles in

dBGk(S) and Hamiltonian cycles in dBGk+1(closure(S)). Fig 2 shows an example.

For the running time, an Eulerian cycle can be found in time linear in the number of edges

using a classical algorithm, e.g., Hierholzer’s Algorithm. Giving the one-to-one correspon-

dence above, the vertex labels of a Hamiltonian cycle in G2 can be found by outputting the

edge labels of an Eulerian cycle in G1. Hence, the running times for the 2 problems are

equivalent.

Conclusions

So why are de Bruijn graphs so popular for short read assembly, if not for the difference in the

complexity of finding Eulerian or Hamiltonian cycles? The answer is complex, which might

explain why the initial simple story was appealing. It may have to do with the simplicity of their

implementation, the appeal of the k-mer abstraction, the ease of error correction, or with some-

thing else. In fact, the difference between using de Bruijn graphs and overlap graphs is poorly

understood and is a fascinating open research problem. But, the Eulerian and Hamiltonian cycle

dichotomy is not really relevant to assembly or to the popularity of de Bruijn graphs.

Endnotes

1. For those who are curious, the problem of finding all possible contigs was first mentioned

in [2] and later explored by [1] and other follow-up papers. In this line of research, the set

of substrings which must appear in all possible genome reconstructions are called omnitigs.

Fig 2. Using the same example as in Fig 1, this figure shows G2 = dBGk+1(closure(S)) and the 2 possible Hamiltonian

cycles in G2. Notice that the k-mer sequence corresponding to the blue cycle in Panel A is the same as in Fig 1A;

similarly, the k-mer sequence for the orange cycle in Panel B is the same as in Fig 1B.

https://doi.org/10.1371/journal.pcbi.1008928.g002
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For a broader discussion on how to formulate the genome assembly problem, see the tuto-

rial by Medvedev [3].

2. There is much more that has been said on the complexity of finding a single genome recon-

struction. For a starting point, see the papers [2,4–6]. The last 2 papers [5,6], especially,

show how the complexity depends more on the repeat structure of the underlying genome

than on the graph model used.

3. The definition of de Bruijn graph that we give here is sometimes referred to as the edge centric

dBG, not to be confused with a node centric one (see https://www.biostars.org/p/175058/

#256741 for an explanation of the 2 terms). Historically, the term “de Bruijn graph” had a dif-

ferent definition, which is still used today in other contexts, especially outside of bioinformat-

ics. There, the "full" de Bruijn graph of order k is not defined with respect to a set of k-mers S,

but, instead, has the edge set as the universe of all k-mers [7,8]. The de Bruijn graph as defined

here is then the subgraph induced by the set of edges S in the full de Bruijn graph.

4. The main theorem can be viewed as a corollary of a similar result for full de Bruijn graphs

(see Endnote 3) and of the relationship between Eulerian cycles in a digraph G and Hamil-

tonian cycles in the line digraph of G. The full de Bruijn graph of order k+1 is the line

digraph of the full de Bruijn of order k (Lemma 2.5.1 in [9]). Using this fact, de Bruijn

already observed in his original paper that there is a one-to-one correspondence between

Eulerian cycles in the full de Bruijn of order k and Hamiltonian cycles in the full de Bruijn

graph of order k+1 [3]. The proof in this paper can be viewed as first arguing that G2 is the

line digraph of G1 and then using the same type of argument as de Bruijn [3] to show the

one-to-one correspondence.
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