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Formalin fixation of paraffin-embedded tissue samples is a well-established method for
preserving tissue and is routinely used in clinical settings. Although formalin-fixed, paraffin-
embedded (FFPE) tissues are deemed crucial for research and clinical applications, the
fixation process results in molecular damage to nucleic acids, thus confounding their use in
genome sequence analysis. Methods to improve genomic data quality from FFPE tissues
have emerged, but there remains significant room for improvement. Here, we use whole-
genome sequencing (WGS) data from matched Fresh Frozen (FF) and FFPE tissue
samples to optimize a sensitive and precise FFPE single nucleotide variant (SNV)
calling approach. We present methods to reduce the prevalence of false-positive SNVs
by applying combinatorial techniques to five publicly available variant callers. We also
introduce FFPolish, a novel variant classification method that efficiently classifies FFPE-
specific false-positive variants. Our combinatorial and statistical techniques improve
precision and F1 scores compared to the results of publicly available tools when
tested individually.

Keywords: FFPE (formalin fixed paraffin-embedded), whole genome, somatic variant calling, combinatorics,
machine learning

INTRODUCTION

While formalin-fixed, paraffin-embedded (FFPE) tissues are routinely used for clinical purposes,
many next-generation sequencing studies rely on whole blood or fresh frozen (FF) tissues to yield the
best results (Haile et al., 2019). Due to difficulties associated with fresh tissue procurement, the
infrastructure required for its retention, and the suitability of FFPE tissues for routine pathology
assays, FFPE remains the preferred method for storing clinical samples (Robbe et al., 2018a).
Unfortunately, the fixation process used to produce FFPE samples creates nucleic acid damage that
presents unique challenges to accurate and comprehensive whole-genome sequencing (WGS)
analyses (Robbe et al., 2018a; Haile et al., 2019). Methods to improve the extraction of nucleic
acids from FFPE tissues have emerged (Haile et al., 2017; Haile et al., 2019). Still, FFPE-induced
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artifacts, such as formaldehyde crosslinks, DNA fragmentation,
abasic sites, and deamination of cytosine bases (Do and Dobrovic,
2015; Haile et al., 2017), remain problematic and can confound
the identification of somatic single nucleotide variants (SNVs).
Approaches to filter or otherwise lessen the effects of these
artifacts while retaining true sequence variants are thus
needed. Several studies have benchmarked existing SNV callers
on data from FFPE samples (Robbe et al., 2018b; Xu, 2018), and a
recent tool is available to filter split-reads (Wei et al., 2021). Still,
relatively little work has been done to ameliorate artifacts in
genome sequence data (de Schaetzen van Brienen et al., 2020).

In this study, we analyzed WGS data from FFPE and matched
FF tissues to identify methods that yield high-quality somatic
FFPE-derived SNVs. We first tested available somatic callers
individually and subsequently in combination to evaluate the
extent to which recall, precision, and F1 score could be improved.
We describe FFPolish, a new tool that, to the best of our
knowledge, is the first open-source machine learning-based
method for filtering FFPE somatic SNV calls.

METHODS

Lacking orthogonal FFPE ground truth against which to compare
SNV results obtained using different computational approaches,
we chose instead to use SNV data from FFmaterial prepared from
the same patient tumours. WGS data from peripheral normal
blood samples, along with matched FFPE and FF tumour WGS
data, were used to identify somatic SNVs. We compared somatic
SNVs called from the FFPE material to somatic SNVs from the
matched FF material for each patient. This approach allowed us
to identify variants either unique to the FFPE samples (candidate
FFPE false positives) or unique to the FF tissue (candidate FFPE
false negatives). We used cancer patient samples from Human
Tumour Molecular Characterization Project (HTMCP)
(Gagliardi et al., 2020) and Burkitt Lymphoma Genome
Sequencing Project (BLGSP) (Grande et al., 2019) for this
study (Table 1).

Samples and Extraction
Cervical cancer and Burkitt lymphoma cases were selected from
the HTMCP and the BLGSP projects. The HTMCP cervical
cancer samples were obtained from female patients treated at
the Uganda Cancer Institute in Kampala, Uganda. The BLGSP
samples were obtained from Uganda and the United States of
America. Both the HTMCP cervical and BLGSP tumour samples
underwent rigorous pathology consensus review.

The Fred Hutchinson Cancer Research Center Institutional
Review Board (protocols #U009 and #7662), in consultation with
the Uganda Cancer Institute and the government of Uganda,
approved the accrual of both BLGSP and HTMCP samples.
Informed consent was obtained from all participants. The
molecular characterization protocol was approved by the BC
Cancer Research Ethics Board (UBC BC Cancer REB - certificate
number H16-02279).

Whole-Genome Sequencing, Analysis, and
Alignment of FF and FFPE Samples
Whole-genome sequencing library construction for BLGSP (FF
and FFPE) samples was performed on DNA provided by
Nationwide Children’s Hospital (Columbus, OH). Nucleic
acids from HTMCP tissue samples were extracted at Canada’s
Michael Smith Genome Sciences Centre, BC Cancer (Vancouver,
BC). For the BLGSP FFPE samples, we constructed sequencing
libraries from FFPE-derived DNA as described (Grande et al.,
2019). Briefly, solid-phase reversible immobilization (SPRI) bead-
based size selection was performed before library construction to
remove smaller DNA fragments from degraded FFPE DNA.
HTMCP FFPE sequence libraries were prepared as described
in Section 1 of the Supplementary Material. Briefly, 100 ng of
FFPE arrayed in each well of a 96-well plate were sheared and
subjected to magnetic bead-based size selection. After 3′
A-tailing, libraries were bead-purified and amplified using
eight cycles of PCR and primers containing a hexamer index,
which enabled library pooling. For the HTMCP and BLGSP FF
samples, we implemented a version of the TruSeq DNA PCR-free
kit, automated on a liquid handling device as described previously
(Grande et al., 2019; Gagliardi et al., 2020).

Fastq files were generated using Bcl2fastq2 2.17.1.14 with
default parameters. Alignments were performed after the
phasing base was removed from the raw fastq files. BLGSP
and HTMCP reads were aligned to hg38 and hg19 human
genome references, respectively, using Minimap2 (2.15) (Li,
2018) with parameters "-ar sx”. Duplicates in the BAM files
were marked using Sambamba (0.6.1) (Tarasov et al., 2015).

Metrics including error rate, coverage, insert size, mapping
quality, percentage of reads with insertions or deletions and GC
bias were estimated and extracted using Qualimap (2.2.1)
(García-Alcalde et al., 2012) and Picard (2.4.1)1. IGV
(Robinson et al., 2011) was used for manual read and
alignment inspection.

Detection of Single Nucleotide Variants,
Ground Truth, and Benchmarking
Preliminary Assessment of Variant Callers Using
Sample BLGSP-71-06-00001-01B-01E
Each patient sample in our study had an FFPE tumour, FF
tumour, and FF normal genome available for analysis. For our
feasibility testing, we attempted to call somatic FFPE tumour and

TABLE 1 | Summary of the BLGSP and HTMCP samples. Fold redundancy of
genome sequencing coverage (X) is indicated.

HTMCP BLGSP

Genome Reference hg19 hg38
FFPE Tumour N = 39; HiSeq 2500; 50.3X N = 34; HiSeq X; 68.9X
FF Tumour N = 39; HiSeq 2500; 82.5X N = 34; HiSeq 2500; 82.4X
FF Normal N = 39; HiSeq 2500; 42.8X N = 34; HiSeq 2500; 41.0X

1GATK Picard http://broadinstitute.github.io/picard.
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FF tumour variants in a single sample using 10 variant callers:
LoFreq (Wilm et al., 2012), Pisces (Dunn et al., 2019),
SomVarIUS (Smith et al., 2016), Platypus (Rimmer et al.,
2014), Shimmer (Hansen et al., 2013), outLyzer (Muller et al.,
2016), Strelka2 (Saunders et al., 2012), Virmid (Kim et al., 2013),
Octopus (Cooke et al., 2018) andMutect2 (McKenna et al., 2010).
The commands used are in Section 2 of the Supplementary
Material. This test measured each tool’s resource requirement
and suitability in our study.

After initial testing, we eliminated Pisces, outLyzer, and Octopus
from further analysis due to computational requirements beyond
what we allocated to this project (Supplementary Table S1). We
further eliminated SomVarIUS and Platypus from subsequent
testing due to an observed inability to filter germline variants
(Section 3 of the Supplementary Material).

Complete Cohort Analysis of Five Selected Variant
Callers
For evaluating each of the 5 callers passing our initial tests, we
considered using the FF somatic variant calls from the tool as the
ground truth. Still, we reasoned that misleadingly high
concordance between the FFPE and FF variants was possible.
We note that high concordance could arise due to a
preponderance of false positives in the FF results. To address
this possibility, we assessed each tool using a compendium of
ground truth data assembled from the FF outputs of multiple tools.
Specifically, we used the vcf-merge function from rtg-tools (Cleary
et al., 2015) to take the union and intersection of the FF somatic
variants called by Mutect2 and Strelka2 (Figure 1A) - two tools

that have repeatedly been reported to generate high quality somatic
SNVs from FF sources (Chen et al., 2020).

recallest � Tool tested ∩ (Mutect2 ∩ Strelka2)
Mutect2 ∩ Strelka2

(eq.1)

precisionest � Tool tested ∩ (Mutect2 ∪ Strelka2)
Tool tested

(eq.2)
F1est � Harmonic mean(recallest, precisionest) (eq.3)

The comparison of results from the matched FF and FFPE tissues
is not without uncertainty, as the cells in each partition may express
non-identical biological signals. This uncertainty motivated a
rigorous selection of our performance metrics. Using the
intersection of FF variant sets from Strelka2 and Mutect2 (ground
truth callers) as the control for precision and recall estimates is the
standard approach. This would lead to misclassification of FFPE-
derived variants if they were called by one of the two ground truth
callers. In this case, a variant called in the FFPE and any one ground
truth caller would be classified as a false positive while being present
in two of three datasets being compared. To account for this scenario,
we introduce recallest, precisionest, and F1est as defined in Equations
1–3, where Mutect2 and Strelka2 are FF variant sets and ∪ , ∩
represent an intersection and union of the two sets involved.

Combination of Somatic Variant Caller
Results and FFPolish
For each patient, variant calls from five tools (LoFreq, Mutect2,
Strelka2, Virmid, Shimmer) were each evaluated in isolation and

FIGURE 1 | FFPE somatic variants were identified using five callers. Ground truth used to evaluate the FFPE variants is generated using the Strelka2 and Mutect2
variants from FF tumours (A). Recallest and precisionest are calculated by comparing against the intersection and the union of the Strelka2 and Mutect2 FF results,
respectively. The FFPE results from the five callers are collated into groups of three and intersected in a Venn-like fashion. Each of the 127 possible combinations of the
Venn intersection parts is compared against the ground truth (B). The results reported in (B) are from sample BLGSP-71-06-00001-01B-01E.
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then combined to test for improved FFPE variant calling recallest,

precisionest, and F1est. To make the test computationally feasible,
ten data sets, each containing results from 3 tools, were used for
the analysis. The VCF files from three tools in each combination
were intersected using Starfish2, a VCF intersection tool that uses
rtg-tools, to partition the called SNVs into the parts of a three-way
Venn diagram (Figure 1B). One hundred twenty-seven merged
VCF files were generated by the vcf-merge function in rtg-tools
representing all possible combinations of the seven areas for each
three tool three-way Venn diagram (∑7

k=1 nCk = 2n - 1 = 127).
FFPolish is an FFPE variant filtering approach based on a

logistic regression model from scikit-learn (Pedregosa, 2011). The
model was trained on somatic Strelka2 FFPE calls from both
HTMCP cervical and BLGSP cohorts, with a total of 8,698,388
training SNVs. As above, variants were evaluated by comparing
FFPE variant calls and the ground truth variants (FF variants
from Strelka2 and Mutect2). We trained FFPolish with the most
sensitive (Strelka2) and precise (Lofreq) variant caller (See Results
and Section 6 of the SupplementaryMaterial); however, we saw a
decrease in the median F1est as well as a decrease in flexibility in
the LoFreq model compared to using Strelka2 calls
(Supplementary Tables S2, S3).

FFPolish includes an optimized hyper-parameterized model
generated from 10-fold cross-validation, allowing users to re-
train the model as required. Re-training with additional new,
labelled data can result in increased performance, as the influence
of any batch effects could be minimized. Feature extraction is
performed using a modified version of DeepSVR (Ainscough
et al., 2018) and bam-readcounts3 that require a tumour BAM
and a VCF file (either tumour-only or tumour-normal paired) as
input. A total of 31 features (Supplementary Table S4) are
extracted from the tumour bam are used to classify variants in
FFPolish and can be divided into three categories:

• Summary metrics (e.g., tumour variant allele fraction
(VAF), tumour depth)

• Read-count metrics (e.g., the number of reads on the
negative strand) for both the variant and reference allele

• Read-averaging metrics (e.g., the average base quality of
reads) for both the variant and reference allele

Logistic regression coefficients were used to assess the
importance of the extracted features (Section 4 of the
Supplementary Material). Performance validation was
conducted through leave-one-out cross-validation to obtain
median precisionest, recallest, and F1est. Validation was carried
out using additional samples (Supplementary Table S5) that
were not part of the training data, thus demonstrating
generalizability. We applied FFPolish to the previously unseen
POG dataset and evaluated the precisionest, recallest, and F1est.
This validation was also used to compare the generalizability
between FFPolish trained with Strelka2 against FFPolish trained

with LoFreq (Supplementary Table S6). The FFPolish workflow
is described in Figure 2.

RESULTS

This study aimed to 1) evaluate and improve FFPE SNVcalls
through the combination of multiple tools and 2) present an
alternative machine learning-based filtering technique fine-tuned
to eliminate FFPE artifacts from a single tool.

Benchmarking Existing SNV Callers on
FFPE Samples
We analyzed the overlap between somatic variants using the
FFPE and FF tumours to evaluate and optimize the recallest and
precisionest of somatic SNV calls from FFPE tissue samples. As
expected, the number of variants called was tool-dependent
(Supplementary Table S7). All FFPE and FF tumours were
evaluated for GC bias, background base-error rate, mapping
quality, duplicate reads, and the number of mapped reads with
insertions or deletion. These metrics were then correlated with
each SNV calling performance from each variant caller (Section 5
of the Supplementary Material). In BLGSP, all tools (except
Strelka2 and Virmid for recallest) showed significant correlations
between recallest, precisonest, and the quality metrics. The most
significant correlations for precisionest and recallest being the
qualimap derived percentage of reads with insertions with
median Pearson’s correlation of −0.78 (p-value 5.00E-08) and
−0.410 (p-value 1.60E-02), respectively. These correlations were
not present in the HTMCP data. Although HTMCP (hg19) and
BLGSP (hg38) were extracted at different locations, there were
minor differences in the recallest and precisionest observed after
selected samples were aligned to another reference
(Supplementary Table S8).

Tools were tested on FFPE tissue samples using the FF
matched normal and then compared to variants in the ground
truth data, corresponding to variants called on (FF variants called
by tissue data by bothMutect2 and Strelka2). LoFreq and Strelka2
had the highest precisionest and recallest outperforming other
tools (Section 6 of the Supplementary Material). This indicates
that the choice of variant caller can be made based on the metric
(recallest, precisionest, or F1est) that is most relevant to the user.

A Combination of Variant Callers Improves
Precisionest and F1est
To improve precisionest and F1est for somatic SNVs called in
FFPE tissues, SNVs identified using multiple callers were
combinatorically intersected. We sought to determine the
combination and required Venn region intersection of three
tools that generated the highest scores (see Methods
Combination of Somatic Variant Caller Results and Figure 2).
We found that different combinations of tools performed best for
different sample types (Figure 3).

When tested in isolation for BLGSP samples, Lofreq had the
highest precisionest and F1est of all individual tools when

2https://github.com/dancooke/starfish.
3https://github.com/genome/bam-readcount.
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evaluated across all samples with median values of 65.59 and
0.663, respectively. However, when intersected with Shimmer and
Mutect2, median precisionest increased to 96.89%. LoFreq
intersected with Strelka2, and Mutect2 resulted in the median
F1est of 0.770, respectively. Strelka2, in combination with
Shimmer and Mutect2, resulted in a median recallest of 87.76%
compared to the isolated Strelka2 results (86.86%).

For HTMCP samples, LoFreq intersected with Shimmer and
Mutect2, improved the median precisionest and F1est across the
samples to 97.78% and 0.751, respectively, compared to LoFreq
tested individually (57.67%, 0.612). Strelka2, in combination with
Virmid and Mutect2, increased median recallest to 81.39%. Based
on the choice of combined callers, recallest and precisionest were
improved for every sample in both sample cohorts,
demonstrating that specific combinations could be used to
increase the confidence of FFPE variant calls. The top three
combinations for recallest, precisionest and F1est are listed in
Supplementary Table S9. Results for all tested combinations
are listed in Supplementary Tables S11–S16.

In a recent study, Brienen et al. (2020) used the “at least two”
variant calling strategy on nine WGS FFPE samples to improve
their SNV calling results. They evaluated four (Strelka2, Mutect2,
VarScan2, and Shimmer) variant callers (de Schaetzen van
Brienen et al., 2020). Aiming to increase F1 scores, this
strategy qualified a variant as putatively positive if called by at
least two of the four variant callers. We tested this strategy using
the ten combinations of tools on our dataset. These results are
summarized in the smaller pie plots in Section 7 of the
Supplementary Material. Consistent with the results reported
in the Brienen et al. (2020) study, the intersection of the results
produced by the combination of Strelka2, Mutect2, and Shimmer
resulted in a median F1est of 0.210 (recallest of 0.815, precisionest

of 0.120) for BLGSP and 0.506 (recallest of 0.725, precisionest of

0.389) for HTMCP. These values represent a reduction of 56.0%
and 24.6% for BLGSP and HTMCP samples, respectively, from
our suggested combinations of LoFreq, Strelka2, andMutect2 (for
BLGSP) and LoFreq, Shimmer, and Mutect2 (for HTMCP).

FFPolish Achieves Results Comparable to
Variant Caller Combinations
To provide an alternative solution to the manual combination of
variant callers, a resource and time-intensive task, we developed a
machine learning-based approach, namely FFPolish, to refine
variants called by any single tool. As shown in Figure 3,
FFPolish is a viable alternative to variant caller combinations. It
significantly reduces the runtime needed from dozens or hundreds
of hours to around the time taken for a single variant caller (Section
8 of the Supplementary Material). FFPolish filters a median of
99.9% of variants from Strelka2 calls, with a median VAF of 0.129
for filtered variants (Supplementary Table S10). For LoFreq calls,
FFPolish filters a median of 32.1% of variants, with a median VAF
of 0.146 for filtered variants.

By examining the coefficients of FFPolish’s logistic regression
model, the most important features can also be determined. Section 4
of the Supplementary Material shows the importance of all 31
features. Overall, some important features are related to reads
containing the variant allele and the VAF. The most important
feature by a large margin is the average sum of base qualities of
mismatches for variant reads. A large negative coefficient can be
interpreted such that mismatches (in this case, mismatches are
considered as any allele other than the variant allele) of higher
base qualities indicate that a called variant may be an artifact.

For BLGSP samples, filtering Strelka2 variant calls using
FFPolish obtained a median precisionest of 83.08% and a median
F1est of 0.775 across all samples when compared to the FF ground

FIGURE 2 |Description of the FFPolish workflow. Generation of the training data was done using Strelka2 FFPE VCFs and the intersection of Strelka2 andMutect2
FF VCFs. Users may use any somatic variant callers of choice in place of those listed in parentheses. Model training is done using features extracted from FFPE BAM files
and Strelka2 FFPE VCF files. The model is built using hyperparameter optimization of logistic regression using grid search and 10-fold cross-validation. The generated
model can be applied to any new FFPE VCF and bam file to obtain a filtered FFPE VCF. Users can train a new model if more FFPE data with matched FF results
become available in the future.
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truth data (Supplementary Table S3). Compared to the original
Strelka2 variant calls, these values represented improvements, with a
precisionest of 3.71% and F1est of 0.071. Applied to LoFreq calls,
FFPolish obtained a median precisionest of 95.66% and a median
F1est of 0.757, which are an improvement from 65.59% and 0.663
respectively for the original LoFreq variant calls (Supplementary
Table S3). FFPolish also performed similarly to the (LoFreq,
Shimmer, Mutect2) and (LoFreq, Strelka2, Mutect2)
intersections, which produced the bestmedian precisionest and F1est.

Likewise, for HTMCP samples, FFPolish obtained a median
precisionest of 81.85% and a median F1est of 0.753, compared to
the 16.39% precisionest and 0.270 F1est of the original Strelka2
variant calls (Supplementary Table S3). When applied to LoFreq
calls, FFPolish obtained a median precisionest of 88.86% and a
median F1est of 0.727, which are an improvement from 57.67%
and 0.612 respectively for the original LoFreq variant calls
(Supplementary Table S3). Furthermore, FFPolish performed
similarly to the LoFreq, Shimmer, and Mutect2 intersection on
the HTMCP data.

FFPolish yielded an overall increase in precisionest and F1est for
both cohorts compared to unfiltered Strelka2 variant calls. FFPolish is
optimized for F1est and therefore did not achieve recallest or precisionest

scores as high as software combinations and intersections optimized
for those metrics. However, the short runtime of FFPolish may be
helpful in cases where runtime and computational resources are
limiting factors. Running the highest accuracy combinations for
BLGSP (LoFreq, Strelka2, and Mutect2) and HTMCP (LoFreq,
Shimmer, and Mutect2) required a median of 4936 and
4040 CPU-hours, respectively. In contrast, FFPolish requires only a
median of 152 and 135 CPU-hours (including generation of Strelka2
output).

DISCUSSION

As FFPE samples remain central to clinical diagnostics, methods
for confidently calling variants in genomic data derived from such
samples are required for enhanced utility in clinical and

FIGURE 3 | Recallest, precisionest, and F1est of tools tested individually (A) compared to the combinations and intersections of tools and FFPolsih (B) generated the
top three results. Where data points overlap, they have beenmerged and represented by a single point. For the combinatorial method, a union of the three tools was used
for the highest recallest and an intersection for maximum precisionest and F1est, as shown in the legend. Special Venn cases have been indicated by * and described in the
legend. The regions of the Venn diagram used are shaded in black. The intersection of LoFreq, Shimmer, and Mutect2 resulted in the best precisionest for BLGSP
(96.89%) and HTMCP 97.78% cohorts. The intersected trios of (LoFreq, Strelka2, Mutect2) and (LoFreq, Shimmer, Mutect2) also obtained the best F1est of 0.770 and
0.751 for BLGSP and HTMCP, respectively. The union of Strelka2, Shimmer and Mutect2 generated the most optimal recallest (87.76%) for BLGSP while the union of
Strelka2, Virmid Mutect2 returned the highest recallest(81.39%) for HTMCP.
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translational research settings. Our study aims to improve the
accuracy of these calls by filtering FFPE caused false-positive
variants while retaining the real variants. Separating true variants
from sequencing errors is particularly challenging in samples with
low tumour content as variant callers may classify variants with
low allelic fractions as sequencing errors. Since the allelic fraction
of somatic and germline variants will vary with tumour content,
standardization of variant calling procedures in diverse FFPE
samples represents a challenge (Halperin et al., 2019).

Our findings are consistent with previous studies (Xu, 2018;
Halperin et al., 2019) showing that Strelka2 and LoFreq are highly
sensitive and precise, respectively. In the HTMCP samples,
Mutect2 had a median recallest of 72.04%, which was only
~3% lower than Strelka2. Notably, Mutect2 did not perform as
well with the BLGSP samples, with a median recallest of 63.28%.
For studies using a single, well-established somatic variant caller,
our findings indicate that LoFreq is best for acquiring high
precisionest and F1est scores while Strelka2 is best for
maximum recallest.

To improve confidence in variant calls over what was available
from a single caller, we intersected variants from combinations of
three tools to maximize estimated recallest, precisionest, and F1est.
The intersection of LoFreq, Shimmer, and Mutect resulted in the
best precisionest for BLGSP (96.89%) and HTMCP (97.78%)
cohorts. The above intersection combined with calls from
[LoFreq ∩ Shimmer] and [LoFreq ∩ Mutect2] for HTMCP
obtained the top F1est 0.751. The intersection of LoFreq,
Strelka2, and Mutect2 for BLGSP obtained the best F1est 0.770.
The union of Strelka2, Shimmer and Mutect2 generated the most
optimal recallest (87.76%) for BLGSP while the union of Strelka2,
Virmid, Mutect2 returned the highest recallest (81.39%) for
HTMCP.

We separately introduce FFPolish, a powerful, machine
learning-based post-processing tool that is fine-tuned to
eliminate artifactual variant calls from FFPE samples. FFPolish
utilizes features such as the read depth, read mapping quality, and
read clipped length from FFPE samples, which it obtains directly
from VCF and BAM files. The F1 scores obtained by FFPolish for
BLGSP (0.775) and HTMCP (0.753) were comparable to the
results from combinatorial approaches.

Our comprehensive, rigorous comparison of variant caller
performance may allow clinicians and researchers to further
rely on whole-genome sequencing data derived from FFPE
sources. We have presented options above for the single
combinations and intersections of multiple tools and a novel
classification method to provide improved recallest, precisionest,
or F1est scores.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://portal.gdc.
cancer.gov/, phs000527, phs000528, https://ega-archive.org/,
EGAZ00001233252, EGAZ00001233267, EGAZ00001233281,
EGAZ00001708828, EGAZ00001708850 EGAZ00001233208,

EGAZ00001233239, EGAZ00001233274, EGAZ00001708827,
EGAZ00001708849 EGAZ00001253013, EGAZ00001253091,
EGAZ00001253099, EGAZ00001708820, EGAZ00001708842
EGAZ00001253014, EGAZ00001253044, EGAZ00001253094,
EGAZ00001708826, EGAZ00001708848 EGAZ00001253052,
EGAZ00001253134, EGAZ00001253218, EGAZ00001708821,
EGAZ00001708843 EGAZ00001253009, EGAZ00001253015,
EGAZ00001253076, EGAZ00001708823, EGAZ00001708845
EGAZ00001253027, EGAZ00001253131, EGAZ00001253160,
EGAZ00001708824, EGAZ00001708846 EGAZ00001253132,
EGAZ00001253151, EGAZ00001253191, EGAZ00001708815,
EGAZ00001708837 EGAZ00001253016, EGAZ00001253168,
EGAZ00001253221, EGAZ00001708822, EGAZ00001708844
EGAZ00001253026, EGAZ00001253112, EGAZ00001253159,
EGAZ00001708829, EGAZ00001708851 EGAZ00001252877,
EGAZ00001252900, EGAZ00001252955, EGAZ00001708817,
EGAZ00001708839 EGAZ00001313645, EGAZ00001313749,
EGAZ00001313758, EGAZ00001708816, EGAZ00001708838
EGAZ00001313644, EGAZ00001313701, EGAZ00001313764,
EGAZ00001708814, EGAZ00001708836 EGAZ00001313829,
EGAZ00001313852, EGAZ00001313890, EGAZ00001708818,
EGAZ00001708840 EGAZ00001313693, EGAZ00001313759,
EGAZ00001313761, EGAZ00001708819, EGAZ00001708841
EGAZ00001313689, EGAZ00001313729, EGAZ00001313751,
EGAZ00001708825, EGAZ00001708847 EGAZ00001313963,
EGAZ00001314013, EGAZ00001314022, EGAZ00001708831,
EGAZ00001708853 EGAZ00001313833, EGAZ00001313903,
EGAZ00001313911, EGAZ00001708830, EGAZ00001708852
EGAZ00001314002, EGAZ00001314010, EGAZ00001314027,
EGAZ00001708832, EGAZ00001708854 EGAZ00001390301,
EGAZ00001390450, EGAZ00001390505, EGAZ00001708834,
EGAZ00001708856 EGAZ00001390307, EGAZ00001390443,
EGAZ00001390548, EGAZ00001708835, EGAZ00001708857.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by BC Cancer Research Ethics Board (certificate
number H16-02279) The University of British Columbia. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

DD, MN, MM, and RC wrote the manuscript. RM conceived of,
named, and oversaw the implementation of FFPolish. RC and
MM supervised the study and oversaw all aspects of this project.
All authors reviewed and approved the final manuscript.

FUNDING

This work has been funded in whole or in part with U.S. federal
funds from the National Institutes of Health (NIH) National
Cancer Institute, under contract HHSN261200800001E. The

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8347647

Dodani et al. Improved FFPE Somatic Variant Calling

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://ega-archive.org/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


content of this publication does not necessarily reflect the views
or policies of the Department of Health and Human Services, nor
does mention of trade names, commercial products, or
organizations imply endorsement by the U.S. Government.

ACKNOWLEDGMENTS

We dedicate this work to the memory of our colleague Daniela
Gerhard, Office of Cancer Genomics, National Cancer Institute,
United States of America. Gerhard was a passionate scientist and
research administrator and was a staunch advocate for cancer
research. She will be missed. We thank patients and their families
for their support and participation. The authors acknowledge the
Fred Hutchinson Cancer Research Center and the Uganda
Cancer Institute for sample and data collection in Uganda.
The authors thank Nationwide Children’s Hospital, Ohio,
United States, for BLGSP nucleic acid extractions. The authors
acknowledge Maureen Dyer and Gina McGeehan, Frederick
National Laboratory for Cancer Research, Frederick, MD,

United States, for contract administration. We thank Patee
Gesuwan and Nicholas B Griner, Office of Cancer Genomics,
National Cancer Institute, NIH, United States, for sample and
data submission assistance. The authors are grateful for the
contributions from various groups at Canada’s Michael Smith
Genome Sciences Centre at BC Cancer, including the
Biospecimen, Quality Assurance, Library Construction,
Instrumentation, Sequencing, Laboratory Information
Management System (LIMS), Purchasing, Bioinformatics
teams, and Karen Novik for project management. We also
thank the Personalized OncoGenomics (POG) program at BC
Cancer (https://www.bcgsc.ca/personalized-oncogenomics-
program) for samples used in validating FFPolish.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.834764/
full#supplementary-material

REFERENCES

Ainscough, B. J., Barnell, E. K., Ronning, P., Campbell, K. M., Wagner, A. H.,
Fehniger, T. A., et al. (2018). A Deep Learning Approach to Automate
Refinement of Somatic Variant Calling from Cancer Sequencing Data. Nat.
Genet. 50, 1735–1743. doi:10.1038/s41588-018-0257-y

Chen, Z., Yuan, Y., Chen, X., Chen, J., Lin, S., Li, X., et al. (2020). Systematic
Comparison of Somatic Variant Calling Performance Among Different
Sequencing Depth and Mutation Frequency. Sci. Rep. 10, 3501–3509. doi:10.
1038/s41598-020-60559-5

Cleary, J. G., Braithwaite, R., Gaastra, K., Hilbush, B. S., Inglis, S., Irvine, S. A., et al.
(2015). Comparing Variant Call Files for Performance Benchmarking of Next-
Generation Sequencing Variant Calling Pipelines. BioRxiv, 023754. doi:10.
1101/023754

Cooke, D. P., Wedge, D. C., and Gerton, L. (2018). A Unified Haplotype-Based
Method for Accurate and Comprehensive Variant Calling. BioRxiv 39, 456103.
doi:10.1038/s41587-021-00861-3

de Schaetzen van Brienen, L., Larmuseau, M., Van der Eecken, K., De Ryck, F.,
Robbe, P., Schuh, A., et al. (2020). Comparative Analysis of Somatic Variant
Calling on Matched FF and FFPE WGS Samples. BMC Med. Genomics 13,
94–15. doi:10.1186/s12920-020-00746-5

Do, H., and Dobrovic, A. (2015). Sequence Artifacts in DNA from Formalin-Fixed
Tissues: Causes and Strategies for Minimization. Clin. Chem. 61, 64–71. doi:10.
1373/clinchem.2014.223040

Dunn, T., Berry, G., Emig-Agius, D., Jiang, Y., Lei, S., Iyer, A., et al. (2019). Pisces:
an Accurate and Versatile Variant Caller for Somatic and Germline Next-
Generation Sequencing Data. Bioinformatics 35, 1579–1581. doi:10.1093/
bioinformatics/bty849

Gagliardi, A., Porter, V. L., Zong, Z., Bowlby, R., Titmuss, E., Namirembe, C., et al.
(2020). Analysis of Ugandan Cervical Carcinomas Identifies Human
Papillomavirus Clade-specific Epigenome and Transcriptome Landscapes.
Nat. Genet. 52, 800–810. doi:10.1038/s41588-020-0673-7

García-Alcalde, F, Okonechnikov, K., Carbonell, J., Cruz, L. M., Götz, S., Tarazona,
S., et al. (2012). Qualimap: Evaluating Next-Generation Sequencing Alignment
Data. Bioinformatics 28, 2678–2679. doi:10.1093/bioinformatics/bts503

Grande, B. M., Gerhard, D. S., Jiang, A., Griner, N. B., Abramson, J. S., Alexander,
T. B., et al. (2019). Genome-wide Discovery of Somatic Coding and Noncoding
Mutations in Pediatric Endemic and Sporadic Burkitt Lymphoma. Blood J. Am.
Soc. Hematol. 133, 1313–1324. doi:10.1182/blood-2018-09-871418

Haile, S., Corbett, R. D., Bilobram, S., Bye, M. H., Kirk, H., Pandoh, P., et al.
(2019). Sources of Erroneous Sequences and Artifact Chimeric Reads in

Next Generation Sequencing of Genomic DNA from Formalin-Fixed
Paraffin-Embedded Samples. Nucleic Acids Res. 47, e12. doi:10.1093/nar/
gky1142

Haile, S., Pandoh, P., McDonald, H., Corbett, R. D., Tsao, P., Kirk, H., et al. (2017).
Automated High Throughput Nucleic Acid Purification from Formalin-Fixed
Paraffin-Embedded Tissue Samples for Next Generation Sequence Analysis.
PloS One 12, e0178706. doi:10.1371/journal.pone.0178706

Halperin, R. F., Liang, W. S., Kulkarni, S., Tassone, E. E., Adkins, J., Enriquez, D.,
et al. (2019). Leveraging Spatial Variation in Tumor Purity for Improved
Somatic Variant Calling of Archival Tumor Only Samples. Front. Oncol. 9, 119.
doi:10.3389/fonc.2019.00119

Hansen, N. F., Gartner, J. J., Mei, L., Samuels, Y., and Mullikin, J. C. (2013).
Shimmer: Detection of Genetic Alterations in Tumors Using Next-Generation
Sequence Data. Bioinformatics 29, 1498–1503. doi:10.1093/bioinformatics/
btt183

Kim, S., Jeong, K., Bhutani, K., Lee, J., Patel, A., Scott, E., et al. (2013). Virmid:
Accurate Detection of Somatic Mutations with Sample Impurity Inference.
Genome Biol. 14, R90. doi:10.1186/gb-2013-14-8-r90

Li, H. (2018). Minimap2: Pairwise Alignment for Nucleotide Sequences.
Bioinformatics 34, 3094–3100. doi:10.1093/bioinformatics/bty191

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A.,
et al. (2010). The Genome Analysis Toolkit: a MapReduce Framework for
Analyzing Next-Generation DNA Sequencing Data. Genome Res. 20,
1297–1303. doi:10.1101/gr.107524.110

Muller, E., Goardon, N., Brault, B., Rousselin, A., Paimparay, G., Legros, A., et al.
(2016). OutLyzer: Software for Extracting Low-Allele-Frequency Tumor
Mutations from Sequencing Background Noise in Clinical Practice.
Oncotarget 7, 79485–79493. doi:10.18632/oncotarget.13103

Pedregosa, F. (2011). Scikit-learn: Machine Learning in Python. J. Machine Learn.
Res. 12, 2825–2830. doi:10.5555/1953048.2078195

Rimmer, A., Wilkie, AOM, Phan, H., Mathieson, I., Iqbal, Z., Twigg, S. R. F., et al.
(2014). Integrating Mapping-, Assembly- and Haplotype-Based Approaches for
Calling Variants in Clinical Sequencing Applications. Nat. Genet. 46, 912–918.
doi:10.1038/ng.3036

Robbe, P., Popitsch, N., Knight, S. J. L., Antoniou, P., Becq, J., He, M., et al. (2018).
Clinical Whole-Genome Sequencing from Routine Formalin-Fixed, Paraffin-
Embedded Specimens: Pilot Study for the 100,000 Genomes Project. Genet.
Med. 20, 1196–1205. doi:10.1038/gim.2017.241

Robbe, P., Popitsch, N., Knight, S. J. L., Antoniou, P., Becq, J., He, M., et al. (2018).
Clinical Whole-Genome Sequencing from Routine Formalin-Fixed, Paraffin-
Embedded Specimens: Pilot Study for the 100,000 Genomes Project. Genet.
Med. 20, 1196–1205. doi:10.1038/gim.2017.241

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8347648

Dodani et al. Improved FFPE Somatic Variant Calling

https://www.bcgsc.ca/personalized-oncogenomics-program
https://www.bcgsc.ca/personalized-oncogenomics-program
https://www.frontiersin.org/articles/10.3389/fgene.2022.834764/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.834764/full#supplementary-material
https://doi.org/10.1038/s41588-018-0257-y
https://doi.org/10.1038/s41598-020-60559-5
https://doi.org/10.1038/s41598-020-60559-5
https://doi.org/10.1101/023754
https://doi.org/10.1101/023754
https://doi.org/10.1038/s41587-021-00861-3
https://doi.org/10.1186/s12920-020-00746-5
https://doi.org/10.1373/clinchem.2014.223040
https://doi.org/10.1373/clinchem.2014.223040
https://doi.org/10.1093/bioinformatics/bty849
https://doi.org/10.1093/bioinformatics/bty849
https://doi.org/10.1038/s41588-020-0673-7
https://doi.org/10.1093/bioinformatics/bts503
https://doi.org/10.1182/blood-2018-09-871418
https://doi.org/10.1093/nar/gky1142
https://doi.org/10.1093/nar/gky1142
https://doi.org/10.1371/journal.pone.0178706
https://doi.org/10.3389/fonc.2019.00119
https://doi.org/10.1093/bioinformatics/btt183
https://doi.org/10.1093/bioinformatics/btt183
https://doi.org/10.1186/gb-2013-14-8-r90
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.18632/oncotarget.13103
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1038/ng.3036
https://doi.org/10.1038/gim.2017.241
https://doi.org/10.1038/gim.2017.241
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S.,
Getz, G., et al. (2011). Integrative Genomics Viewer. Nat. Biotechnol. 29, 24–26.
doi:10.1038/nbt.1754

Saunders, C. T., Wong, W. S. W., Swamy, S., Becq, J., Murray, L. J., and Cheetham,
R. K. (2012). Strelka: Accurate Somatic Small-Variant Calling from Sequenced
Tumor-normal Sample Pairs. Bioinformatics 28, 1811–1817. doi:10.1093/
bioinformatics/bts271

Smith, K. S., Yadav, V. K., Pei, S., Pollyea, D. A., Jordan, C. T., and De, S. (2016).
SomVarIUS: Somatic Variant Identification from Unpaired Tissue Samples.
Bioinformatics 32, 808–813. doi:10.1093/bioinformatics/btv685

Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J., and Prins, P. (2015). Sambamba:
Fast Processing of NGS Alignment Formats. Bioinformatics 31, 2032–2034.
doi:10.1093/bioinformatics/btv098

Wei, L., Dugas, M., and Sandmann, S. (2021). SimFFPE and FilterFFPE: Improving
Structural Variant Calling in FFPE Samples. GigaScience 10, giab065. doi:10.
1093/gigascience/giab065

Wilm, A., Aw, P. P. K., Bertrand, D., Yeo, G. H. T., Ong, S. H., Wong, C. H., et al.
(2012). LoFreq: a Sequence-Quality Aware, Ultra-sensitive Variant Caller for
Uncovering Cell-Population Heterogeneity from High-Throughput
Sequencing Datasets. Nucleic Acids Res. 40, 11189–11201. doi:10.1093/nar/
gks918

Xu, C. (2018). A Review of Somatic Single Nucleotide Variant Calling Algorithms
for Next-Generation Sequencing Data. Comput. Struct. Biotechnol. J. 16, 15–24.
doi:10.1016/j.csbj.2018.01.003

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Dodani, Nguyen, Morin, Marra and Corbett. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8347649

Dodani et al. Improved FFPE Somatic Variant Calling

https://doi.org/10.1038/nbt.1754
https://doi.org/10.1093/bioinformatics/bts271
https://doi.org/10.1093/bioinformatics/bts271
https://doi.org/10.1093/bioinformatics/btv685
https://doi.org/10.1093/bioinformatics/btv098
https://doi.org/10.1093/gigascience/giab065
https://doi.org/10.1093/gigascience/giab065
https://doi.org/10.1093/nar/gks918
https://doi.org/10.1093/nar/gks918
https://doi.org/10.1016/j.csbj.2018.01.003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Combinatorial and Machine Learning Approaches for Improved Somatic Variant Calling From Formalin-Fixed Paraffin-Embedded Ge ...
	Introduction
	Methods
	Samples and Extraction
	Whole-Genome Sequencing, Analysis, and Alignment of FF and FFPE Samples
	Detection of Single Nucleotide Variants, Ground Truth, and Benchmarking
	Preliminary Assessment of Variant Callers Using Sample BLGSP-71-06-00001-01B-01E
	Complete Cohort Analysis of Five Selected Variant Callers

	Combination of Somatic Variant Caller Results and FFPolish

	Results
	Benchmarking Existing SNV Callers on FFPE Samples
	A Combination of Variant Callers Improves Precisionest and F1est
	FFPolish Achieves Results Comparable to Variant Caller Combinations

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


