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ABSTRACT
We postulated that multicentric glioblastoma (GBM) represents more 

invasiveness form than solitary GBM and has their own genomic characteristics. 
From May 2004 to June 2010 we retrospectively identified 51 treatment-naïve GBM 
patients with available clinical information from the Samsung Medical Center data 
registry. Multicentricity of the tumor was defined as the presence of multiple foci 
on the T1 contrast enhancement of MR images or having high signal for multiple 
lesions without contiguity of each other on the FLAIR image. Kaplan-Meier survival 
analysis demonstrated that multicentric GBM had worse prognosis than solitary GBM 
(median, 16.03 vs. 20.57 months, p < 0.05). Copy number variation (CNV) analysis 
revealed there was an increase in 11 regions, and a decrease in 17 regions, in the 
multicentric GBM. Gene expression profiling identified 738 genes to be increased 
and 623 genes to be decreased in the multicentric radiophenotype (p < 0.001). 
Integration of the CNV and expression datasets identified twelve representative 
genes: CPM, LANCL2, LAMP1, GAS6, DCUN1D2, CDK4, AGAP2, TSPAN33, PDLIM1, 
CLDN12, and GTPBP10 having high correlation across CNV, gene expression and 
patient outcome. Network and enrichment analyses showed that the multicentric 
tumor had elevated fibrotic signaling pathways compared with a more proliferative 
and mitogenic signal in the solitary tumors. Noninvasive radiological imaging together 
with integrative radiogenomic analysis can provide an important tool in helping to 
advance personalized therapy for the more clinically aggressive subset of GBM.

INTRODUCTION

Glioblastoma (GBM) is the most common and 
lethal brain cancer. Recent advances in the molecular 
analysis of GBM have led to significant advance in 
our understanding of the molecular mechanisms of this 
disease [1]. However, the overall survival remains poor 
with a median survival of 15 months. GBM often spreads 
through an established route, such as commissural 
pathways, CSF channels, or through local extension by 

satellite formations. Multicentric GBMs have widely 
separated lesions that cannot be attributed to one of the 
aforementioned pathways. Thus, we postulated that 
multicentricity of the tumors represents a more invasive 
phenotype and has worse clinical outcome. Since 
Diehn, et al. first demonstrated the association between 
imaging features and genomic expression patterns in 
GBM [2], radiogenomic analysis has been recently 
introduced to identify imaging traits corresponding to 
different molecular phenotypes with clinical and biologic 
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relevance [1–12]. Integrative analysis of multi-level 
molecular profiles for GBM and these imaging features 
can potentially provide new insights about the molecular 
mechanisms underlying the observed radiophenotype.

Thus, we postulated that multicentric GBMs have 
worse prognosis and have differential molecular signatures 
compared to other forms of GBM. To examine this 
hypothesis, we performed integrative analysis using RNA-
seq analysis, and copy number variation (CNV) analysis and 
applied to patients with multicentricity phenotype of GBM.

RESULTS

Multicentric phenotype in GBM has worse 
clinical outcome than solitary GBM

A total of 20 out of the 51 patients with GBM 
were identified to have the multicentricity phenotype by 
MR imaging. We binary classified 20 patients as having 
multicentric GBM, and 31 patients having solitary 
GBM. Cox proportional hazard model and log-rank test 
demonstrated that multicentric GBM had worse prognosis 
than their counterparts (median, 16.03 vs. 20.57 months, 
p = 0.031) (Figure 2A). This assessment was based on 
the patients’ MR contrast-enhancement of T1 weighted 
images and FLAIR images. We found that multicentric 
radiophenotype was closely associated with poor clinical 
outcome in the GBM patients. Other clinical parameters, 
including age, performance status, and extent of resection, 
were not significantly different between the groups. 

Identification of differentially expressed genes 
using RNA-seq

We sequenced 51 tumor tissue samples from GBM 
tumors, with each sample occupying one lane on an Illumina 
TrueSeq RNA Sample Prep kit. We applied DEGseq to 
identify the differentially expressed genes between both 
groups. We identified a signature of 1361 differentially 
expressed genes when comparing the multicentric 
radiophenotype with the solitary radiophenotype samples 
at an adjusted p-value (false discovery rate) <  0.001. Of 
these, 738 genes were increased and 623 genes were 
decreased in the multicentric radiophenotype compared to 
the solitary radiophenotype (Figure 3). Enrichment analysis 
of the decreased genes, comparing the multicentric GBM 
to the solitary GBM show lower expression of cell cycle 
genes and genes involved in glycolysis. Interesting enriched 
terms, for example, are genes involved in abnormal glia 
cells when knocked out in mice (MP0003436, p-value 
< 0.000005, Fisher Exact test), or direct interactors of the 
glucose transporter SLC2A4 , p-value < 7.414e-23, Fisher 
Exact test. Full results can be accessed at:
http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=1ah9

On the other hand, genes that were decreasedin 
the multicentric GBM compared to the solitary GBM 
were enriched in extracellular matrix and cell adhesion 
components as well as immune response genes. Interesting 

enriched terms included high overlap with genes that 
cause abnormal nervous system (MP0003633, p-value 
< 4.1e-14, Fisher test) and the Lingula brain region from 
the Allen brain atlas (p-value < 2.365e-8, Fisher test). The 
Lingula wrinkle shape might use similar gene regulatory 
programs observed in multicentric GBM. Interestingly, the 
glucose transporter SLC2A4 was also enriched for direct 
interactors found in the increased genes. This suggests 
that regulation of glucose transport might be central to the 
difference between these two GBM subtypes. Complete 
analysis of the increased genes can be found at: http://amp.
pharm.mssm.edu/Enrichr/enrich?dataset=1ahm

Aberrant copy number variation between 
multicentric and solitary radiophenotypes in GBM

CNV analysis was performed using Agilent SurePrint 
G3 Human CGH 4 × 180 k arrays. Each tumor tissue was 
compared to normal tissue from the same individual. 11 
and 17 chromosomal regions were found to be significantly 
increased and decreased in copy number in the multicentric 
radiophenotype compared to the solitary radiophenotype, 
respectively. Structural genetic variation, such as CNAs, can 
critically is correlated with gene expression and contributes 
to significant phenotypic variation [23, 24]. To identify 
the significant genes that exhibited concordant CNV and 
gene expression changes, we overlapped the two datasets 
as presented in the Venn diagram (Figure 4). Decreased 
copy number was more prevalent at 7q31.1, 12q14.3, and 
13q34 in the multicentric radiophenotype. Gain was more 
prevalent at 7q23.1, 7q21.1, 10q23.1, and 12q14.1 in the 
multicentric phenotype. Eleven representative genes: 
CPM, LANCL2, LAMP1, GAS6, DCUN1D2, CDK4, 
AGAP2, TSPAN33, PDLIM1, CLDN12, and GTPBP10 
demonstrated high correlations between copy number 
variation and gene expression in the tumor tissues. 

Differential gene expression profiles reveal 
activation of the extracellular matrix receptor 
interaction pathway in GBM with invasive 
radiophenotype

To obtain a more global mechanistic view of the 
altered biological pathways that could be responsible for 
invasiveness in GBM, we performed network analysis 
using the Expression2kinases (X2K) software [21]. In the 
first step of the X2K analysis, the lists of up- and down-
regulated genes were used as input for enrichment analysis 
to generate a list of predicted upstream transcription factors. 
The transcription factor: SOX2, SUZ12, SMAD3, SMAD2, 
EGR1, PPARG, RARG, MTF2, AND NFE2L2 were 
predicted as top candidates that potentially regulate the 
expression of the up-regulated genes; and the transcription 
factors: E2F1, MYC, KLF4, POU5F1, SOX2, MITF, 
CLOCK, SALL4, EGR1 and TRIM28 were predicted as 
regulators of the down-regulation genes in the invasive 
phenotype (Figure 5). While there is some overlap among 
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these transcription factors, the predicted kinases upstream 
of these factors point clearly to two distinct processes. 
Nuclear kinases and casein kinases are enriched for the 
down regulated genes, consistent with the enrichment for 
cell cycle genes, whereas TGF beta receptors and other 
MAPK kinases are enriched for the upregulated genes. 
GSK3B, MAPK1 and HIPK2 are shared among both up and 
down predicted pathways. Overall these networks provide 
additional view of the potential regulatory mechanisms that 
differentiate the multicentric from the solitary GBM and 
potentially point to future drug targets (Figure 6). 

Validation of differentially expressed genes 
signatures in independent cohorts

To validate the differentially expressed genes 
signature in independent cohorts of patient samples, we 
used publicly available microarray data from the TCGA 
dataset. 166 of a total 508 GBM samples had corresponding 
imaging data from The Cancer Imaging Archive. From the 
166 patients with primary GBM who had available clinical, 
genomic and radiological data, we binary classified 39 
patients as having multicentric GBM, and 127 patients 

Figure 1: (A) Kaplan-Meier survival curves showing overall survival between the two groups in the 51 patients with newly 
diagnosed glioblastoma (GBM). (B) Kaplan-Meier survival curve demonstrating overall survival between the two groups in the TCGA 
dataset with newly diagnosed GBM.
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having solitary GBM using preoperative MR imaging. Cox 
proportional hazard model and log rank test revealed that 
GBM patients with multicentric radiological phenotype had 

worse prognosis than those with solitary phenotype (median 
7.23 vs. 15.06 months, p < 0.0001) (Figure 2B). Based 
upon a predefined set of molecular markers specific to the 

Figure 2: Hierarchical clustering of the gene expression matrix. The standardized expression values of differentially expressed 
genes are shown in the heat map. Genes are clustered as the rows and patient samples are clustered as the column, with solitary and 
multicentricity tumor samples indicated by orange and blue, respectively.

Figure 3: Diagram overlapping differentially expressed genes and altered copy number variation between multicentric 
and solitary radiophenotypes in glioblastoma.
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multicentric group, we predicted the TCGA microarray 
dataset into two groups using the nearest template 
prediction (NTP) method with statistical significance (false 
discovery rate, FDR < 0.2). As a result, we found 76.9% 

(30 of 39) samples in the multicentric group represented 
predefined markers of multicentric group, while 60.6% (77 
of 127 patients) in the solitary group showed them (Pearson 
Chi-square test, p = 0.063).

Figure 4: Visualization of enriched gene-sets in down- and up- regulated genes in multicentricity tumors over solitary 
tumors. The enrichment of gene-sets for multicentricity and solitary tumors are shown in grids of different colors representing different 
gene-set libraries: ChEA, KEGG, WikiPathways and Gene Ontology Biological Process. Each square in the grid represents a gene-set and 
the brightness of the square positively correlate with the significance of the enrichment. Top enriched gene-sets are annotated.
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Figure 5: Network analysis using Expression2Kinase. (A) The transcription factors (red nodes), kinases (green nodes), and 
intermediate proteins (yellow nodes) predicted as top candidates to regulate the expression of the up-regulated genes in multicentric GBM 
compared with solitary. (B) The transcription factors, kinases, and intermediate proteins predicted for down-regulating genes with the more 
invasive phenotype.
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DISCUSSION

The dismal prognosis of GBM is attributed to the 
invasiveness of GBM cells to infiltrate surrounding brain 
parenchyma. Such invasiveness is the major cause of 
tumor recurrence or progression.  The tumors with the 
most aggressive invasive phenotype are more likely to 
have multiple tumor foci (multicentricity) compared with 
the other forms of GBM. 

Multicentric gliomas are well-separated lesions, 
localized in different lobes or hemispheres, without 
anatomical continuity between lesions [25–27]. Overall 
incidence of multifocal or multicentric glioblastoma ranges 
from 16.2 to 35% at the time of initial diagnosis, which is 
higher than was previously considered [25–28]. Continuous 
advances in MR imaging technologies have contributed to 
the increase diagnosis of multiplicity in gliomas. A growing 
number of studies supported that changes in T2-weighted 
images or FLAIR sequences can reflect modifications 
in the extracellular matrix by invading glioma cells 
[28– 30]. A recent study by Patil, et al. [31] suggested that 
multicentricity GBM was biologically different from single 
lesion disease and spreads more quickly, leading to worse 
survival. Therefore, we hypothesized that multiple lesions 
in GBM can represent more invasive phenotype and have 
their own underlying molecular genomic characteristics. 

To account for this complex relationship between 
multiple genomic profiles and invasive phenotype in 
GBM, we performed integrative analysis of multicentric 
radiophenotype imaging and genomic data including 
gene expression and CNV profiling. First, we found 
that multicentric radiophenotype in GBM was closely 
associated with overall survival as observed in two 
independent GBM cohorts (TCGA and Samsung Medical 
Center). This finding was consistent with the concept 
that multicentric GBM represents a more aggressive and 
invasive phenotype, leading to poor clinical outcome. 
We then determined the relationship between invasive 
imaging phenotype and the respective gene-expression 
profiles assessed by next generation RNA-seq analysis.

High-throughput sequencing technology is 
rapidly becoming the standard method for measuring 
RNA expression levels [32, 33]. Finding genes that are 
differentially expressed between the two radiophenotypes 
is an integral step toward understanding the molecular 
basis of this phenotypic variation. Combined with copy 
number alterations detected by CGH arrays we provided 
a comprehensive view to discover underlying candidate 
genes. As CNV harboring duplications and deletions 
potentially lead to changes in  gene expression levels 
[34–36]. Concordance between RNA gene expression 
levels and CNV gene dosage has been found in several 
genes in multiple cancers [37–41]. Accordingly, integrated 
analysis of radio-genomic data can discover copy number 
alterations and their possible regulatory effects on gene 
expression in the specific imaging phenotype [42–44]. 

In this study, CGH arrays revealed that 
chromosomes at 7q, 12q and 13q had decreased copy 
number compared with non-invasive phenotype. Gene 
expression profiles demonstrated that up-regulated genes 
in the multicentric phenotype were associated with cell 
adhesion and cell-to-cell interactions functions. Among 
eleven representative genes showing high correlations 
between copy number and gene expression in this study, 
LAMP1 is a late endosomal/lysosomal marker [45, 46] 
associated with tumor cell motility and invasiveness. 
GAS6, major ligand of AXL receptor tyrosine kinase, 
is also notable because it has been demonstrated to be 
overexpressed and activated in many human cancers such 
as lung, breast, and pancreatic, and have been correlated 
with poor prognosis, promotion of increased invasiveness 
and metastasis, the EMT phenotype and drug resistance 
[47–51]. AGAP2 belongs to the centaurin gamma-
like family. It mediates anti-apoptotic effects of nerve 
growth factor by activating nuclear phosphoinositide 
3-kinase. AGAP2 is overexpressed in cancer cells, and 
promotes cancer cell invasion [41, 52, 53]. In the future, 
those characteristic molecular candidates can be further 
investigated to be closely involved with the tumor 
invasiveness and as such are great candidates for future 
in-vitro and in-vivo studies. In conclusion, integrative 
radiogenomics analysis provides more in-depth knowledge 
about the genomic landscape of glioblastoma.

MATERIALS AND METHODS

Patient population 

Between May 2004 and June 2010, 51 GBM tumor 
samples with available clinical and pathology reports were 
obtained from the Samsung Medical Center data registry 
(SMC, Seoul, Korea). Recurrent tumors, secondary 
GBM, previous history of treatment and those without 
comprehensive clinical information were excluded from 
this study. All tissue samples were previously untreated 
surgical specimens from patients with grade IV gliomas, 
which were histologically confirmed grade IV GBM 
according to the World Health Organization (WHO) 
classification [13] and collected with written informed 
consent under a protocol approved by the Institutional 
Review Board of the Samsung Medical Center (2010-04-
004, Seoul, Korea). Median age of the patients was 53 
years (range, 29-74 years) and patients were composed 
of 31 males and 20 females. The metadata about the 51 
GBMs samples are provided in Table S1. 

To validate the prognostic value of our multicentric 
radiophenotype in the primary dataset, we used the original 
material and data provided by The Cancer Genome Atlas 
(TCGA) [14] and corresponding imaging data from The 
Cancer Imaging Archive (TCIA) [15, 16], which are 
publicly available resources containing multidimensional 
genomic and clinical information about GBM before 2014. 
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We first downloaded the DICOM files from TCIA GBM 
database and analyzed their MR data with the open-source 
OsiriX software (http://www.osirix-viewer.com/). All MR 
images were acquired by using the same imaging protocol 
as described above. Using clinical data from the TCGA 
dataset based upon this classification of multicentricity, we 
performed survival analysis on 230 patients with primary 
GBM (treatment naive GBM).

MR imaging protocol

MR imaging in this study was conducted on a 1.5 T 
and 3.0 T scanner and included T1-weighted, T2-weighted, 
and fast-spin echo sequences. Post-contrast images were 
acquired 5 minutes after contrast agent injection. The 
standard MRI protocol included axial T1-weighted imaging, 
T2-weighted imaging, and fluid-attenuated inversion 
recovery (FLAIR), perfusion-weighted MR images.

Definition of multicentric GBMs on MR finding

All MRI exams were performed on a 1.5 T 
Sigma Echospeed scanner (GE Medical Systems). All 
GBMs were binary classified as multicentric or solitary 
phenotype by their radiological MR characteristics. 
Multicentricity of the tumor on MR images was defined 
as the presence of multiple foci on the T1 contrast 
enhancement image (Figure 1A), or high signal multiple 
lesions without contiguity of each other on the FLAIR 
image (Figure 1B). All images were evaluated by 
consensus in a blinded fashion by two board-certified 
radiologists (ST Kim, 24 year-experience & JH Cha 
4 year-experience). Both readers were blinded to the 
genomic signatures and other clinical details at the time 
of image interpretation. 

Survival analysis

Overall survival (OS) was defined as the time 
between the date of pathological diagnosis and the date of 
death or the date of last clinical follow-up. The univariable 
Cox proportional hazards model was used to determine 
hazard ratios (HRs) of each variable as a predictor of OS. 
Kaplan-Meier survival analysis was performed using 
R 3.0.1 (Vienna, Austria; http://www.R-project.org/) and 
p-value < 0.05 was deemed statistically significant.

Comparative genome hybridization array (CGH)

For 32 of a total of 51 patients, CGH array data was 
collected. DNA was extracted using the DNeasy kit. CGH 
arrays were applied using Agilent SurePrint G3 Human 
CGH 4 × 180 k arrays, according to the manufacturer’s 
instructions. CGH FE files were processed and normalized, 
using the Agilent Genomic WorkBench 7.0.4.0. The 
DNAcopy R package was used to estimate DNA copy 
number for genomic segments. From the segmentation data, 

the copy number of each gene was calculated, by averaging 
copy numbers of all exonic segments of each gene. 

Next-generation RNA-sequencing (RNA-Seq)

RNA-Seq was performed for all the 51 patients. 
RNA-Seq based transcriptome profiling was performed 
by the Samsung Institute for Intractable Cancer Research 
(Seoul, Korea), using the Illumina TrueSeq RNA Sample 
Prep kit. For the samples subjected to RNA-seq, we isolated 
5 μg of total RNA from each sample. For quantitation of 
mRNA abundance, sequenced reads in FASTQ files were 
trimmed to include only 30 nucleotides from the 5′ end of 
each read. The trimmed reads were aligned on the human 
reference genome (hg19) using GSNAP, not allowing any 
mismatches, indels, or splicing variants. The resulting 
alignment SAM files were sorted and summarized into 
BED files using SAMtools and bedTools (bamToBed). 
The DEGseq R package was used to calculate RPKM 
(Reads Per Kilobase per Million mapped reads) from the 
hg19 refFlat file downloaded from the UCSC genome 
browser and the BED files that were generated during the 
per nucleotide coverage analysis. Log transformation was 
applied to correct for the skewed distribution. 

To identify the differentially expressed genes in 
the multicentric GBMs, DEGseq was used. The input to 
DEGseq was uniquely mapped reads from the RNA-seq 
data with a gene annotation of the corresponding gene 
expression values. The DEGseq R package MA-plot-based 
method was used to estimate the noise level by comparing 
technical replicates in the data by integrating the Fisher’s 
exact test and likelihood ratio tests [17, 18]. P-values 
calculated for each gene are adjusted to Q-values for 
multiple hypotheses testing with Benjamini and Hochberg 
(BH) [19] or Storey [20] correction methods. 

Integration of copy number variation and 
genome-wide expression analyses

Data from copy number variation (CNV) and 
genome-wide expression profiles were analyzed individually 
(Figure 1C). To identify the significant genes that exhibited 
CNV and gene expression changes, we overlapped the two 
datasets as presented in the Venn diagram. Thus, correlation 
between mRNA and CNV signatures was performed for all 
32 patients having CNV and expression data. Subsequent 
analysis and correlation with the imaging features was 
performed for all patients as well. 

Pathway analysis

The dataset containing differentially expressed 
genes was uploaded into the Expression2Kinases (X2K) 
software [21]. The first step of the X2K computational 
pipeline is to perform gene-set enrichment analysis, using 
the ChIP-seq/chip Enrichment Analysis (ChEA) database 
on the differentially expressed genes to identify the likely 
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Figure 6: Multicentric phenotypes defined in glioblastoma. (A) Multiple enhancing tumors on T1 contrast enhancement MR 
image. (B) Multiple infiltrative lesions without continuity on the FLAIR image. (C) Schematic diagram of this study.
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transcription factors that are responsible for the observed 
changes in expression. The Fisher exact test (p < 0.05, 
with BH correction) was used to assess the significance of 
the associations between the list of differentially expressed 
genes and targets of the transcription factors based on 
prior ChIP-Seq published studies. The next step in the 
X2K pipeline is to connect the enriched transcription 
factors using known protein-protein interactions. Using 
the shortest path algorithm and a collection of online 
protein-protein databases, a subnetwork is constructed to 
expand the set of transcription factors to its local protein 
interaction neighborhood. Finally, the X2K pipeline 
applies kinase enrichment analysis applied to all the 
proteins in the subnetworks, to predict the most likely 
upstream protein kinases that are involved in the observed 
changes in gene expression. The kinase enrichment 
analysis is performed using the kinase enrichment analysis 
(KEA) module within X2K with the same statistical test as 
the enrichment analysis for the transcription factors. 

Other statistical analyses

Hierarchical clustering of the gene expression 
matrix was performed by taking the RPKMs of the 1,361 
differentially expressed genes identified by DEGseq [1] 
across all 51 patient tumor samples. Correlation distance 
was used to measure the dissimilarities between genes 
and samples. The average linkage function was used for 
agglomerative clustering. Enrichment analysis of the 
lists of differentially expressed genes was performed 
using Enrichr [2] to examine the overlap of genes across 
multiple gene-set libraries. The enriched gene-sets were 
visualized using Rubik (http://amp.pharm.mssm.edu/
rubik/). Most other calculations were performed using the 
R language and the R statistical programming environment 
with Bioconductor packages. GC content was calculated 
using the DEGseq package [22]. 
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