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Abstract:  The organization and management of large amounts of data has become a major point in almost all areas 
of human knowledge. In this context, semantic approaches propose a structure for the target data, defining ontolo‑
gies that state the types of entities on a certain field and how these entities are interrelated. In this work, we introduce 
OntoRXN, a novel ontology describing the reaction networks constructed from computational chemistry calculations. 
Under our paradigm, these networks are handled as undirected graphs, without assuming any traversal direction. 
From there, we propose a core class structure including reaction steps, network stages, chemical species, and the 
lower-level entities for the individual computational calculations. These individual calculations are founded on the 
OntoCompChem ontology and on the ioChem-BD database, where information is parsed and stored in CML format. 
OntoRXN is introduced through several examples in which knowledge graphs based on the ontology are generated 
for different chemical systems available on ioChem-BD. Finally, the resulting knowledge graphs are explored through 
SPARQL queries, illustrating the power of the semantic approach to standardize the analysis of intricate datasets and 
to simplify the development of complex workflows.
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Introduction
The development of sensible, shareable and scalable data 
models has become an essential asset in nearly every area 
of science and knowledge. Data-driven approaches are 
rapidly increasing their impact, in such a way that the 

focal point is not as much the storage, but instead the 
ways in which data can be retrieved, explored and uti-
lized [1–3]. To reach this, more sophisticated (“smarter”) 
approaches to data organization are necessary. Among 
these, we can highlight the Semantic Web, proposed 
by Tim Berners-Lee [4] in 2001, whose basic building 
blocks are outlined in Fig.  1. The goal of the Seman-
tic Web is to add logic and structure to the data in the 
World Wide Web, permitting the application of reason-
ing schemes. Given that the Web is nothing else than a 
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collection of linked information, these principles may 
then be applied to any other specific body of knowledge. 
The information in the Semantic Web can be fetched by 
smart agents capable of making inferences based on the 
relationships between the entities, potentially answering 
complex questions about the data. In this context, data 
is identified by URIs [5] (Uniform Resource Identifiers), 
which provide a consistent and web-conforming notation 
scheme for each element. These elements are formatted 
as tags, using the XML [6] (eXtended Markup Language) 
format. Then, the RDF [7] (Resource Description Frame-
work) data model provides meaning to the tags, structur-
ing the information through the assertion of triples of the 
form “subject–predicate–object”. Finally, once all entities 
have been introduced, it remains to define the relation-
ships between them: in other words, to build an ontology.

Ontologies propose classes to characterize the different 
elements existing in a certain domain of knowledge, and 
then define how these classes relate between themselves 
through properties, effectively building a representational 
vocabulary of the target domain [8], also known as a 
taxonomy. In this sense, ontologies provide a standardi-
zation of knowledge, explicitly defining common terms 
and structures that can be shared and reutilized between 
different communities. Besides, these definitions can be 
used as templates for the data and metadata required 
to express the entities in a field of knowledge (e.g., user 
input forms). The term knowledge graph (KG), some-
times expressed as knowledge base, is used for datasets 
that have been expressed and categorized under the class 
structure of an ontology: the corresponding class mem-
bers are denoted as individuals of the KG. Currently, the 

OWL (Web Ontology Language) [9] format, an ontology-
oriented extension of RDF, is the language of choice for 
expressing ontologies and knowledge graphs.

Moreso, this kind of well-structured information allows 
to easily connect data coming from different sources, 
following the paradigm of Linked Data [10]. While spe-
cific areas of knowledge require specific ontologies, these 
(and their corresponding KGs) may be bridged by stating 
equivalencies between their common elements. Regard-
ing scientific data, ontologies have been widely adopted 
in biology and biomedicine [11–13], but are not yet as 
common in other fields like Chemistry. Among the exist-
ing chemical ontologies, for which a recent review was 
carried out by Pachl et al. [14], we may highlight ChEBI, 
for molecules of biological interest [15], CHMO, for the 
formalization of methods in experimental chemistry [16], 
RXNO, for conceptualizing chemical reactions [17] or 
OntoKin [18], for kinetic studies on mechanisms. There 
is a remarkable multiscale nature in the current chemi-
cal ontology ecosystem, from very low-level descriptions 
of phenomena, like in the reaction representations devel-
oped by Shankar and collaborators [19–21], describ-
ing up to the electron shells of atoms, to developments 
oriented to full laboratory automations as proposed by 
Kraft et  al. [22] or the more general information-driven 
approach of the CHEMINF ontology for cheminformat-
ics [23, 24].

Computational chemistry seems particularly suited for 
this kind of approach, due to the digital nature of all gen-
erated information. Indeed, some proposals on the mat-
ter have already been done, such as Gainesville Core [25], 
a set of basic definitions aiming for “a complete descrip-
tion of a typical Computational Chemistry experiment”. 
Gainesville Core has then been used as the starting point 
for larger developments such as OntoCompChem [26], 
which was recently combined with OntoKin [27] to con-
nect computational studies with a more general descrip-
tion of chemical kinetics. Nevertheless, as the use of 
these ontologies has not yet been extended along the 
community, many aspects remain to be developed. While 
defining a complete ontology including every aspect 
of computational chemistry would be a daunting task, 
developing smaller specific ontologies and connecting 
them afterwards shows as a more feasible goal.

In this line, one area of application where a semantic-
based organization could be useful is the study of reac-
tion mechanisms and chemical networks. Recent efforts 
by our group have been devoted to the development of 
novel open-source tools for the treatment and processing 
of reaction networks through graph-based approaches: 
amk-tools [28] and gTOFfee [29]. The latter is an appli-
cation of the energy span model (ESM) developed by 
Sebastian Kozuch and collaborators [30, 31] extended 

Fig. 1  Base elements for the Semantic Web proposal, from 
Berners-Lee [4], depicted as stacked layers
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to manage reaction networks as undirected graphs [32]. 
In this sense, no forward or reverse direction is assumed 
to construct the network: the chemical flow comes from 
the exergonicity of the embedded reactions. Conse-
quently, there is a switch from the traditional k-repre-
sentation, based on reverse and forward rate constants, 
to the E-representation [33], undirected and based only 
on energies (Fig.  2). This change of paradigm permits a 
much more natural pairing with computational chem-
istry results, which provide energy and not rate con-
stants as a main output, and simplifies the final graph 
structures.

The concept of reaction mechanism introduced in 
previous ontologies, such as OntoKin, was built on 
the classical rate-constant-based representation. This 
approach, while perfectly valid, lacks the immediate 
matching with computational data from the E-repre-
sentation. Therefore, we took this undirected descrip-
tion of reaction networks as the foundation for a new 
ontology for computationally characterized reaction 
mechanisms: OntoRXN. We aim to directly connect 
this ontology with the ioChem-BD database [34, 35], 

a central piece for our data management workflow. 
ioChem-BD is a service which parses the outputs 
obtained from many common computational chem-
istry codes, such as Gaussian, ADF, VASP, MOLCAS, 
ORCA..., to store the results in an unified CML [36–39] 
(Chemical Markup Language) format. The informa-
tion contained in those CML files can be visualized and 
accessed through the ioChem-BD platform, allowing 
users to easily share information. Reaction networks 
can be also defined inside the platform, providing 
meaning and structure to the stored data, in line with 
the principles of the Semantic Web. While other pro-
jects tackling the semantic-based publication of com-
putational chemistry results proposed the definition of 
new formats (e.g. CSX [40]) to overcome some limita-
tions of CML, we believe that the connection with the 
already established ioChem-BD database justifies the 
direct use of CML. In this sense, the development of 
OntoRXN supposes another step forward in the stand-
ardization of information, presenting knowledge graphs 
as a standard format combining all the information for 
a given reaction mechanism: the computational results 
from the CML files and the network structure inter-
linking the calculations, which embeds the chemical 
knowledge about the system.

Following this idea, the main guidelines for the design 
of OntoRXN were:

•	 Apply the E-representation: networks as fully undi-
rected graphs.

•	 Use the information available on the CML files 
from ioChem-BD: readily available and already 
properly tagged.

•	 Aggregate individual calculations into molecule 
sets: chemical reactions and catalytic cycles do 
not usually refer to a single molecule per step, but 
instead group several species that have to be taken 
into account to preserve the number of atoms 
across the network.

While there is an evident discrepancy in “directedness” 
between our OntoRXN proposal and the pre-existing 
solutions (OntoKin + OntoCompChem [27]), both 
descriptions could be linked altogether, as the k- and 
E-representations are indeed equivalent. Activation 
free energies can be transformed into rate constants 
through the Eyring equation, eventually converting 
our undirected, energy-based graph to a directed, rate-
constant-based one. Under the ontology paradigm, 
this will be achieved through agents tailored to trav-
erse the network encoded in the KG and assign proper 
directionality.

Fig. 2  Schematic depiction of the directed k-representation (above) 
and the undirected E-representation (below) initially defined in the 
context of the energy span model and proposed here as building 
block for OntoRXN. Here, kij symbols represent rate constants, Ei node 
energies and Eij , edge energies
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Ontology development
Following the previous guidelines, we propose four core 
classes on OntoRXN, whose basic relationships are 
depicted in Fig. 3.

•	 CompCalculation. Storage of all computational data, 
as taken from the ioChem-BD preprocessed CML 
file.

•	 ChemSpecies. Representation of individual struc-
tures for molecules and transition states. Several 
CompCalculation objects could be mapped to an 
unique ChemSpecies (e.g. calculations at different 
levels of theory, with different solvation models, etc).

•	 NetworkStage. Set of structures (as ChemSpecies) 
that have to be considered together in a given point 
of the reaction network or catalytic cycle. All Net-
workStage objects in a given knowledge graph should 
have a consistent number of atoms, so properties 
such as relative energies can be properly computed 
across the graph. Both intermediates and transition 
states along the mechanism would be expressed as 
NetworkStage objects, which may include several 
additional reactants or products that appear in any 
other part of the cycle or reaction set.

•	 ReactionStep. Set of stages comprising two linked 
intermediates and (possibly) the correspond-
ing transition state, all expressed as NetworkStage 
objects. The undirected nature of the networks 
under the E-representation implies that no direc-
tionality-related properties need to be defined 
when instantiating either a ReactionStep or a Net-
workStage. The connection between different steps 

is simply determined by shared intermediates (aka 
nodes), so two given steps will be linked whenever 
they comprise a common NetworkStage.

To connect OntoRXN with the ecosystem of exist-
ing ontologies, we employed OntoCompChem [26] as 
a base for the CompCalculation class, doing the neces-
sary extensions over the OntoCompChem core. Apart 
from the definition of additional properties (present in 
the CML specifications from ioChem-BD but not yet 
defined in the original ontology), we considered a refac-
torization of OntoCompChem’s class structure. The 
current version of OntoCompChem has a main Gaussi-
anCalculation class in its topology, grouping subclasses 
related to different versions of the program, but does 
not consider yet any generalization to calculations 
performed with any other program. As ioChem-BD 
already handles the parsing step, converting all output 
files to CML format, our protocol should integrate this 
independence from the code employed to carry out 
the calculations. To overcome this issue on the ontol-
ogy side, we added a BaseCalculation superclass to 
properly extend OntoCompChem to handle the results 
from different programs, with the idea of adding child 
classes for the programs whose outputs are supported 
by ioChem-BD.

On the other hand, the ReactionStep class, which refers 
to the elementary reaction steps in a given reaction net-
work, shall also include information about the type of 
transformation to which it corresponds. Elementary 
molecular processes are collected in the MOP (Molecular 
Process Ontology) ontology, distributed with the RXNO 
ontology for chemical reactions [17]. Thus, we defined a 
hasReactionType property for ReactionStep entities, with 
the general molecular process class in MOP as its range: 
then, the types of elementary reactions in MOP can be 
directly mapped to the steps defined in OntoRXN. How-
ever, reaction type labelling assumes a direction for the 
reaction, a concept which is not on our ontology pro-
posal. Thus, reaction type assignment should involve 
pairs of types for a given step (e.g. oxidation/reduction, 
fragmentation/association...), with specific agents dealing 
with the KG being the ones to handle the assignment of a 
direction to each member of the pair.

In principle, this basic 4-class structure, together with 
the connection with the more general OntoCompChem 
ontology, should be enough to start instantiating knowl-
edge graphs for different example networks. The use of 
real data to generate the corresponding KGs will allow to 
find possible points of further development of the ontol-
ogy and possible connections with pre-existing ones, 
following the common iterative development process of 
ontologies.

Fig. 3  Core class structure (topology) for OntoRXN, specifying the 
four main classes and the properties interlinking them
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Knowledge graph generation from ioChem‑BD
As mentioned before, recent additions to ioChem-BD 
allow for the construction of reaction network graphs 
from reaction energy profiles built in the platform [28]. 
These reaction networks are an ideal starting point for 
the generation of KGs: all information about the indi-
vidual calculations can be easily fetched from the CML 
files, and structured according to the corresponding net-
work topology. Eventually, it would be possible to add the 
knowledge-graph-building machinery as an additional 
module in the platform, thus allowing the user to pain-
lessly create OntoRXN-compliant graphs.

As a first approach to such an implementation, we built 
a Python interface, provided as the ontorxn-tools mod-
ule distributed with the ontology, to manage the com-
plete pipeline from fetching and processing the data in 
ioChem-BD to the generation of the knowledge graph, as 
summarized in Fig. 4.

The process starts by characterizing the target reac-
tion mechanism, either manually searching all intermedi-
ates and transition states or employing automated search 
tools. The predicted mechanism defines a reaction net-
work (RXNet), which can then be uploaded to ioChem-
BD. There, the individual calculations are stored in a 

collection, while the structure of the graph is defined as 
a report where the network is described through a set of 
individual profiles including all species and connections 
across the graph. In this way, we obtain the connectivity 
of the network as this graph in DOT format, while the 
calculation information can be obtained by querying the 
corresponding report through ioChem-BD’s REST API.

Later, ontorxn-tools is used to parse the graph and the 
associated CML files. Technical details about the imple-
mentation of this step of the protocol is available in the 
Additional file  1: Section S3. After parsing, the library 
generates the final knowledge graphs, structured through 
the set of classes and properties defined in OntoRXN and 
fed from the information in the CML files.

Semantic querying of knowledge graphs
One of the main goals of this semantic approach to 
information is, as stated in the Introduction, the ability 
to formulate and answer complex questions from data. 
Eventually, a fully ontology-organized body of knowl-
edge would allow the user to make arbitrarily compli-
cated queries targetting widely different properties of the 
system under study. For example, in the case of Chem-
istry, a query may bring together aspects about energies 

Fig. 4  Workflow scheme for ioChem-BD/OntoRXN-based knowledge graph generation
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from computational calculations, properties of the sol-
vents employed to carry out a given synthesis, prices of 
reagents... with all of these factors being defined in dif-
ferent, but interrelated, chemical ontologies. While such 
a degree of development and interconnection may still 
be quite far at the time being, the semantic querying of 
smaller knowledge graphs, like the reaction networks 
described through OntoRXN, does already provide a 
powerful tool to simplify the analysis of complex systems.

Because ontologies depend on the RDF data model, the 
SPARQL [41] query language developed for RDF data-
bases arises as the tool of choice for this kind of tasks. 
Like RDF, SPARQL is also based on the statement sub-
ject/predicate/object triples, but in the query language 
some of the elements in the triple can indeed be vari-
ables. The application of these triple patterns to an RDF 
graph provides a RDF subgraph including only the triples 
matched by the query, which can be employed either to 
effecively add new statements to the main graph (CON-
STRUCT query) or to isolate these subsets to answer 
questions (SELECT query). Several SPARQL endpoints 
to semantically-organized chemical databases, such as 
RHEA [42] or the Integrated Database of Small Mole-
cules [43] (IDSM), have been proposed.

Moreover, combining SPARQL querying with script-
ing, we can develop powerful workflows (or, following the 
original nomenclature from the Semantic Web proposal, 
agents) that can retrieve the information encoded in the 
knowledge graphs to generate plots, do further calcula-
tions and post-processing, or generate structured inputs 
for additional simulations. To demonstrate the versatil-
ity of this approach, we will consider three examples of 
computational mechanistic studies on different systems, 
whose reaction networks have been transformed to 
knowledge graphs and processed by specific agents tack-
ling points of interest from the original studies.

Applications
Mapping the knowledge graph
We will be using our recent mechanistic study on the 
decomposition of tert-butyl peroxyformate [44], in Fig. 6, 
to showcase the generation of knowledge graphs from 
the OntoRXN ontology. This system provided us with a 
relatively simple mechanism (which can be encoded in 
a small reaction network), whose assorted calculations 
were already available at ioChem-BD, thus supposing 
an ideal test case for both OntoRXN and ontorxn-tools. 
The corresponding representations for this mechanism 
(energy profile, reaction network and knowledge graph) 
are shown in Fig. 5.

The knowledge graph depiction in Fig. 5 highlights the 
additional information provided by the highly explicit 
ontology-based approach compared with the plain 

reaction network graph. While the basic network struc-
ture is somehow preserved in the NetworkStage objects 
(pink circles), the KG makes clear how some stages group 
several different molecules (as ChemSpecies, orange 
circles), and how these molecules might have several 
assorted CompCalculation entities (green circles). This 
study, indeed, considered the recalculation of the reac-
tion mechanism in a wide variety of implicit solvents, 
which can be naturally expressed by the one-to-many 
mapping between species and calculations defined in 
OntoRXN. For compactness, the elemental steps (Reac-
tionStep entities) are depicted here as blue squares in the 
middle of the lines connecting the stages for their reac-
tion intermediates. These steps are interconnected by 
dashed lines, which highlight another layer of connectiv-
ity along the network.

It should be recalled that Fig. 5 is only a simplified rep-
resentation of the KG, without including any of the chem-
ical descriptors obtained from the actual calculations. 
These magnitudes are mapped to the individual Comp-
Calculation entities, and defined as objects containing 
not only the value of the descriptor itself but also its units, 
when applicable. While at the moment we have focused 
on a small core property subset as a demonstration, 
including only electronic energy, Gibbs free energy, geom-
etry, method, basis set, vibrational frequencies and InChI 
string descriptors, the ontology and the accompanying 
XSL stylesheet should be expanded in the future, eventu-
ally targetting all properties captured in ioChem-BD.

Once we have defined our entire reaction network as 
a knowledge graph, we can easily extract information 
on the system through SPARQL queries and process it 
as needed. Once we have defined our structured KG, it 
is straightforward to write a query to fetch a given indi-
vidual property from every CompCalculation entity and 
then group the results by the corresponding Network-
Stages the calculations (via the ChemSpecies they belong 
to) are linked to. This approach produces tables mapping 
every stage in the reaction network to properties such as 
their total energy, for instance. From this basic proposal, 
queries can be further refined, filtering and grouping the 
results as needed.

For example, for the process of peroxyformate 
decomposition we were interested in how the Gibbs 
free energy of the rate-determining step, from the reac-
tants to the first transition state, varied depending on 
the solvent. To do this, we would need to know the 
energies of the corresponding intermediates and transi-
tion states for every solvent in the network. Therefore, 
our question to the knowledge graph could be: What 
are the electronic and free energies for every stage in the 
network for every different solvent?. If we “translated” 
this question from English to SPARQL (with a couple of 
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additional modifications), we get would get the query in 
Additional file 1: Listing S6. This query produces a table 
listing all unique combinations of stages and solvents, 
combining the energies from the appropiate calcula-
tions across the complex KG containing results for 29 
total implicit solvents and 300 individual calculations. 
From there, we may easily obtain plots comparing acti-
vation energies with the polarity of the solvent, as done 
in the initial mechanistic study [44] (see Additional 
file 1, where Fig. S1 reproduces Figure 2 from that orig-
inal study).

Building on this protocol, analogous queries can be easily 
built to fetch any other property of interest across the knowl-
edge graph, providing an unified interface to all the infor-
mation generated by the calculations and encoded in the 
reaction network. The strong organization of the resulting 
tables or results allows for a very simple post-processing to, 

Fig. 5  Schematic depiction of possible mechanism depictions for peroxyformate decomposition. Above left, reaction energy profile comprising 
two routes. Below left, basic reaction network structure with nodes as intermediates and edges as transition states. Right, simplified OntoRXN-based 
knowledge graph, with hierarchical step > stage > species > calculation structure

Fig. 6  Peroxyformate decomposition reaction, producing 
carbon dioxide and tert-butanol in the presence of pyridine as an 
organocatalyst
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for example, generate plots like the one in Additional file 1: 
Fig. S1.

Complex reaction networks
While the previous example relied on a “hand-made” 
mechanistic characterization, there is a growing interest in 
the automation of mechanistic searches, employing either 
chemical heuristics or reactive molecular simulations. 
Irrespectively of the details of how the exploration is car-
ried out, these tools end up producing some kind of reac-
tion network as output, revealing the connectivity between 
the different species characterized along the search. These 
likely quite complex networks provide an immediate target 
for the application and development of our ontology.

As we mentioned before, we recently developed the 
amk-tools [28] library to process and visualize the net-
works discovered by AutoMeKin [45–47], a flexible, open-
source program for automated mechanism predictions. 
The amk-tools toolkit allows not only to easily process the 
obtained networks, but also to directly upload the net-
work topology and the accompanying calculations to the 
ioChem-BD platform in a fully automated manner. There-
fore, the ioChem-BD-based protocol to build KGs can 
be directly used for AutoMeKin results, wrapping up the 
overall workflow.

As a target system for this AutoMeKin–ioChem-BD–
OntoRXN pipeline, we considered the decomposition of 
indole, which we recently studied to showcase the capa-
bilities of the amk-tools package, and which like the per-
oxyformate example was already available on ioChem-BD 
[28]. The resulting KG shows a total of 69 stages and 40 
steps, many more than in the previous example, but also 

has a simpler 1:1 mapping between calculations and spe-
cies, demonstrating the different kinds of complexity that 
we may encounter when treating chemical systems.

In this more intricate network, a question of interest 
might be how many times a given fragment appears across 
different stages of the knowledge graph: the correspond-
ing query and the tabular results are provided in the Addi-
tional file 1: Listing S1 and Table S1. Cyanide radical is the 
most common species, appearing in a total of six stages, 
followed by HCN and HNC, participating in two stages 
each. The rest of species in the network, in contrast, are 
only matched to unique stages.

To wrap everything up, it is also possible to build a query 
to recover the original reaction network graph used to 
build the connectivity on the KG (see Additional file 1 for 
additional details). While this process might seem redun-
dant at first (build the KG from the reaction network, then 
generate the very same reaction network from that KG), 
it allows us to effectively employ our OntoRXN-based 
knowledge graphs as a standard format to share the net-
works together with all required calculation data. In this 
way, KGs can be easily integrated in existing workflows 
relying on “traditional” reaction networks (e.g. gTOFfee 
input, depiction of reaction mechanisms, graph-based 
profile searches...), with the advantage of having a simple 
and robust way to feed more information into these simple 
networks. For example, we can map the InChIs identify-
ing all the species belonging to each node in the network, 
which we can process to obtain 2D molecular representa-
tions (using the RDKit [48] library) that can be embed-
ded in the network depiction (Fig. 7).

Fig. 7  Reaction network graphs for indole decomposition, with molecular depictions for every node taken from InChI strings
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Utilization of KGs in complex simulation workflows
While on the previous examples we have focused on uti-
lizing the knowledge graph for the direct analysis of the 
data it contains, it can also be employed as an stand-
ard format to generate input for other calculation tools, 
selectively extracting the calculation properties required 
in each case. This approach can be especially valuable for 
building complex workflows and automating tasks, mini-
mizing the need for manual user input. As an example of 
this, we built a microkinetic model from the knowledge 
graph of the reaction network for a CO2 fixation process 
whose mechanism was studied by our group [49] (Fig. 8). 
In that article, we employed microkinetic modeling to 
demonstrate the thermodynamic control of the reaction, 
reproducing with good accuracy the experimental values 
of conversion and selectivity.

Assuming all processes to be reversible, we can build 
a model by defining all the reactions encoded in the 
network, computing their barriers in both possible 
directions. From these barriers, we can use the Eyring 
equation to compute the pertinent rate constants. With 
all processes being reversible, we do not need to assign 
any direction on network traversal, as the chemical flow 
will be marked by the own simulation.

Additionally, when applying microkinetic models to 
homogeneous systems in solution [50], we shall take into 
account the change in the reference state for Gibbs free 
energies, going from 1.0 atm in the gas phase (as present 
in standard output files) to 1.0 M in solution. The refer-
ence temperature may also be modified, improving the 
match with experimental conditions: here, calculations 
were done at the standard temperature of 25 ◦ C, while 
the working temperature for the reaction was 80 ◦ C. Rec-
omputing these energy corrections does only require a 
trivial recalculation of partition functions, employing the 
standard formulas on statistical thermodynamics. Once 
again, the knowledge graph structure simplifies the task 
of extracting the relevant magnitudes required for these 
partition function recalculations: namely, electronic 
energy, vibrational frequencies, moments of inertia, 
molecular mass and symmetry number.

In terms of working with the knowledge graph, we 
need three queries (Fig.  9) to (i) fetch all properties for 

partition function recalculation, (ii) match stages with 
their calculations, and (iii) process the unique reactions 
encoded in the graph. From (i) it is possible to recom-
pute Gibbs free energies at the requested pressure and 
temperature, while (ii) allows to match stages with all the 
calculations they comprise, so individual energies can be 
summed obtaining stage energies. The unique reactions 
from (iii) come directly from the ReactionStep entities in 
the graph: for every step, we only need to select the two 
interlinked NetworkStages, and go along the ChemSpecies 
that they contain. The reaction is then defined by stating 
that the species on one of the stages are transformed to 
the species on the other, removing later on the species 
that appear on both sides. Precomputed stage energies 
are finally mapped to the steps, so the relative forward 
and reverse barriers required for the microkinetic model 
can be computed.

From the data fetched from the knowledge graph, we 
employed COPASI [51] and its Python API to generate 
the final microkinetic model and run the correspond-
ing time course simulation programatically, passing the 
external parameters (reagent concentrations, tempera-
ture, simulation time) to obtain the profile in Fig. 10.

The main strength of this kind of workflows based on 
knowledge graphs is their transferrability: the current 

Fig. 8  CO2 fixation reaction over cyclooctene epoxy alcohol 
derivative, including the two main diastereoisomeric cyclic carbonate 
products 2A and 2B

Fig. 9  Schematic depiction of the querying workflow to set up a 
microkinetic model in COPASI from the knowledge graph
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simulation protocol might in principle be applied to any 
other reaction network, as the KG provides an already 
standardized format containing all required information. 
Consequently, task automation becomes easier, avoiding 
the likely time-consuming steps of parsing and organiz-
ing the information from raw outputs.

Conclusions and future work
Our main goal throughout this manuscript was to pre-
sent our novel ontology-based approach for reaction 
networks, aiming at the standardization of this kind of 
entities in an unified format containing both network 
topology and individual calculation results. Up to now, 
this proof of concept consists of:

•	 Definition and development of the core ontology 
structure for OntoRXN.

•	 Development of the knowledge graph instantiation 
agents (ontorxn-tools) linked to the ioChem-BD 
platform.

•	 Development of agents for the post-processing and 
utilization of OntoRXN-based KGs as a standardized 
format for reaction networks, integrating them into 
pipelines for data analysis or further simulation.

From there, several development areas and possible 
applications for the ontology and the derived knowledge 
graphs arise naturally.

•	 Extension of the ontology, incorporating new proper-
ties and classes for the fields already available on the 
CML files generated by ioChem-BD. Simultaneously 

to ontology growth, the XSL stylesheets employed 
for querying these CML files shall also be expanded.

•	 Generation of a database of computed catalytic cycles 
expressed as knowledge graphs.

•	 Development of smarter agents for the instantia-
tion and extension of knowledge graphs, introduc-
ing features such as the automated identification of 
the reaction types defined in the Molecular Process 
Ontology.

•	 Identification and development of other possible 
connecting points from OntoRXN to other relevant 
chemical ontologies.
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