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Leptospirosis is a globally disseminated zoonotic disease with no national surveillance

systems. On the other hand, surveillance is crucial for improving population health,

and surveillance systems produce data that motivates action. Unfortunately, like many

other countries, Ecuador put in place a monitoring system that has never been tested.

The goal of this study was to use scenario tree modeling to assess the sensitivity of

Ecuador’s current national surveillance system to human leptospirosis as the basis for an

economic assessment of the system. We created a decision-tree model to analyze the

current system’s sensitivity. The inputs were described as probabilities distributions, and

the model assessed the program’s sensitivity as an output. The model also considers

the geographical and weather variations across Ecuador’s three continental regions:

Andean, Amazonia, and the Coast. Several data sources were used to create the model,

including leptospirosis records from Ecuador’s Ministry of Public Health, national and

international literature, and expert elicitation, all of which were incorporated in a Bayesian

framework. We were able to determine the most critical parameters influencing each

scenario’s output (CSU) sensitivity through sensitivity analysis. The Coast region had the

best sensitivity scenario, with a median of 0.85% (IC 95% 0.41–0.99), followed by the

Amazonia with a median of 0.54% (CI 95% 0.18–0.99) and the Andes with a median of

0.29% (CI 95% 0.02–0.89). As per the sensitivity study, the most influential criteria on

the system’s sensitivity were “Attendance or probability of going to a health center” and

“probability of having symptoms,” notably for the Coast and Amazonia Regions.

Keywords: leptospirosis, surveillance, Ecuador, surveillance evaluation, public health, epidemiology

INTRODUCTION

Leptospirosis is a disease caused by infection with at least 64 species of spirochetes from the genus
Leptospira (1–4). These pathogenic Leptospira spp. can infect and cause disease in humans and
animals and can be divided into four subgroups (I–IV) (4, 5). It is a worldwide zoonotic disease;
nevertheless, it is endemic in Central and South America, where some of the world’s highest
rates of leptospirosis can be found (6). Despite the fact that it is a prevalent zoonotic disease,
it is underreported, and many nations lack surveillance infrastructure (7). The annual burden of
leptospirosis is estimated to be 1.03 million cases and 59,800 fatalities (8). Ecuador is an endemic
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region, and government health records show that the majority
of cases are clustered in Manabí province, which is located in
the Coast Region, which has favorable weather conditions for the
bacteria’s growth.

Leptospirosis can cause everything from an undifferentiated
fever state to multiple organ failure and death (9). Inadequate
diagnosis and monitoring system limitations in most
countries have decreased disease awareness within medical
and epidemiological communities, contributing to an
underestimation of Leptospirosis’ burden (10–12). In addition,
the low specificity of the symptoms, the diagnostic tests’ relative
poor diagnostic performance, and the leptospirosis surveillance
strategy all had a detrimental impact on case reporting (13).
For example, Fontes et al. (14) found that leptospirosis cases
in endemic zones of tropical diseases with similar clinical
manifestations to leptospirosis were 26–49 times higher than
those diagnosed and reported by the Health Services, and other
studies have shown the difficulty in diagnosing similar fever
syndromes in endemic zones of tropical diseases with similar
clinical manifestations to leptospirosis (15, 16).

From a societal perspective, public health surveillance systems
should improve the efficiency and efficacy of the public health
system, which is a fundamental determinant of population
health. By recording data and creating information that public
health practitioners and stakeholders may use to improve the
quality of their decisions and the effectiveness of their actions,
a surveillance system has an impact on population health (17).

Infectious disease surveillance concurrently involves the
health care delivery system, public health laboratories,
and epidemiologists. The four fundamental components of
surveillance are collection, analysis, dissemination, and response,
and each of these domains contributes to them. The assessment
of a surveillance system should be an approach used by health
authorities to evaluate its utility; in other words, the assessment
of a surveillance system allows one to estimate the effectiveness
and efficiency of the monitoring program, and as a result
enhance it. Ecuador, like many other governments, instituted a
monitoring system that has never been tested. Epidemiological
surveillance, according to Langmuir (18), is the systematic
collecting, analysis, interpretation, and timely publication of
health data for proper planning, performance, and evaluation
of public health programs. The concept of a surveillance system
and public health, on the other hand, has evolved over time.
Surveillance has a unique meaning in epidemiology: it describes
the pattern of disease incidence, it is tied to Public Health, and it
studies the natural history of diseases and provides information
through baselines (19).

Different aspects of the monitoring system can be examined,
and some are more important for specific surveillance goals
and health outcomes than others (20). For example, early
detection of the disease enables authorities to respond quickly,
and as surveillance is one of the most important components
of epidemics, early detection of prospective outbreaks and
patterns could help prevent the spread of the agent. As a result,
evaluating surveillance systems is usually driven by assessing
certain qualities. The purpose of mathematical modeling and
simulation is to enable for a quick assessment of a surveillance

system using data on behavior, transmission routes, and rates
of illness and mortality caused by a virus. When collecting
data is prohibitively expensive or there are several experimental
scenarios to test, simulation is also used (21). Simulation models
assist in the prediction and description of complex diseases
(22). The Bayesian synthesis approach was proposed by Raftery
et al. (23), in which the accessible encoded information about
inputs and outputs was encoded in a probability distribution
and inferred by constraining this distribution to the submanifold
specified by the model. Theoretical foundations of decision
analytic modeling can be found in statistical decision theory and
anticipated utility theory, and it has functioned as a framework
for clinical decision-making, for example Drummond et al. (24).
The probability and expected values are essential components of
this analysis. Due to its ability to analyze costs and implications,
decision analytical modeling (DAM) is gaining traction in this
industry. DAM is a framework for combining evidence from
various sources and extending the time horizon beyond the
follow-up phase (24).

Scenario trees were employed in probabilistic modeling to
estimate the sensitivity of a complex non-random component
of a surveillance system. It is defined as the likelihood of
finding at least one infected person in a population with a
specified design prevalence (25, 26). The goal of this study
was to determine the sensitivity of Ecuador’s current national
surveillance system to human leptospirosis using scenario tree
modeling as the foundation for an economic evaluation of the
system. The sensitivity of the program is critical in generating a
comprehensive health economic evaluation of the leptospirosis
surveillance system.

MATERIALS AND METHODS

Description of the System
“Health is a right guaranteed by the State, the realization
of which is linked to the exercise of other rights, including
the right to water, food, education, physical culture, work,
social security, healthy environments, and others that sustain
food living,” the Ecuadorian Constitution states in Article 32.
Furthermore, Article 36 states, “The State, through the national
health authority, will be responsible for framing national public
health policies, that is, the government provides health, so
the national surveillance system covers any individual seeking
proper care through Community Health Units (CHU) or
district/regional/national referral hospitals.” As a result, Ecuador
has a well-developed national health system. All residents,
regardless of income or lack of medical insurance, have access
to free medical treatment (provided by a comprehensive system
of hospitals and regional health clinics). This system also serves
remote rural areas, with physicians, dentists, and nurses required
to complete a 1-year “rural” residency servicing isolated or
underserved populations.

In Ecuador, leptospirosis is a notifiable disease, and the
government has set up a passive surveillance system that is
coordinated by the Ministry of Public Health across the country.
There are two types of Leptospirosis case definitions. The first is
a “suspect case,” who is defined as someone who has a fever and
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FIGURE 1 | Scenario tree model representing the current national human leptospirosis surveillance system in Ecuador.

at least two other symptoms such as headache, chills, myalgia,
stomach discomfort, skin hemorrhage, or altered consciousness
with or without jaundice. Furthermore, any risk factor should be
exposed to the patient prior to the onset of symptoms, such as
exposure to water sources that may be contaminated with rodent
and other animal urine, as well as occupational risk activities.

The second is a “confirmed case,” who is essentially a
suspected case with a positive microagglutination test (MAT)
result. A commercial indirect ELISA test (PanbioTM Leptospira
IgM ELISA) can be used to quickly screen a suspicious case
(for qualitative detection of IgM antibodies to Leptospira in
serum), and it can be repeated 7 days apart based on the
practitioner’s criteria. However, as a confirmatory test, an ELISA
positive result should be validated by a single MAT during the
second or third week. The reciprocal titer for being considered a
positive result is 1:100. The testing panel included the 25 serovars
recommended by the WHO (for the description of serovars
see Supplementary Table 1). Physicians attending to the patient
report all cases in this system to the Ministry of Health.

Once the case has been identified, the patient freely receives
from health authorities the prescribed treatment like an
antibiotic therapy (Doxycycline) a weekly dose of 200mg
for as long as needed, and amoxicillin or erythromycin in

TABLE 1 | List of the current leptospirosis surveillance system component in

Ecuador’s humans, from nodes and branches to be estimated.

Nodes Branches

Attendance to health center No

Yes

Expositional risk No

Yes

Fever and symptoms No

Yes

Clinical detection No

Yes

Disease status (prevalence) Non-infected

Infected

ELISA Negative

Positive

MAT Negative

Positive

pregnant women and children under 8 years of age. The
health officers will start an epidemiological investigation
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TABLE 2 | Probabilities from specific surveillance system components (disease status and clinical detection) for different geographical areas, of the current surveillance

system for human leptospirosis in Ecuador.

Surveillance system

component

Scenario 1

(Andean)

Scenario 2

(Amazonia)

Scenario 3

(Coast)

Values Dist. Values Dist. Values Dist.

Disease status (prevalence) (α = 1.31; β = 5.89) Beta (α = 9.27; β = 44.44) Beta (α = 27.11; β = 75.31) Beta

Clinical detection 0.25 Fixed 0.50 Fixed 0.75 Fixed

FIGURE 2 | Flow chart diagram of studies selection process in the metaanalysis.

to identify possible outbreaks and to trace other contacts.
These definitions were established by the Ecuadorian
Ministry of Public Health through the official protocol
to notifiable disease, which were considered to build the
model below.

Model Description
There are various stages to create a decision-analytic model:
(a) Define the problem; (b) Define the model’s bounds; (c)
Conceptualize the model; (d) Implement the decision tree; and
(e) Evaluate the model critically.

We developed a decision-tree model that considered the
Epidemiological Surveillance Guidelines (SIVE-Alerta) from the
Ecuadorian Ministry of Health’s official protocol for notifiable
diseases to analyze the current leptospirosis surveillance system’s
sensitivity in Ecuadorian humans (Figure 1). Also, we identified
several parameters based on this protocol (Table 1). The model’s
inputs were expressed as probability distributions, and the
model’s output was an estimate of the current program’s
sensitivity. The model also considers the geographical and
weather variations between Ecuador’s three continental regions:
Andean (Scenario 1), Amazonia (Scenario 2), and Coast

TABLE 3 | Mean probability and their 95% confidence interval of the surveillance

system component (SSC) inputs of the current surveillance system for human

leptospirosis in Ecuador, based on expert’s elicitation using a Delphi method.

SSC Mean (95% CI) Distribution

Attendance to health center 0.40 (0.06; 0.80) Pert

Expositional risk 0.68 (0.21; 0.88) Pert

Fever and symptoms 0.55 (0.15; 0.96) Pert

Clinical detection Fixed value*

Prevalence According Scenarios*

ELISA 0.86 (0.77; 0.95) Pert

MAT 0.83 (0.68; 0.96) Pert

*From Table 2.

(Scenario 3). Table 2 shows the differences in two parameters:
“Clinical Detection” and “Prevalence” (status disease).

Inputs Estimation
Data Collection

The decision-tree model was built using a variety of sources
(Figure 1), including leptospirosis records from Ecuador’s
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Ministry of Public Health database, national and international
literature, and expert elicitation. We used the Delphi method
elicitation process to get information from experts. We generated
probability distributions for the specific inputs produced by
this method, and for other parameters, we reviewed data from
the literature and summarized it using a meta-analysis, as
indicated below.

Delphi Survey
Expert knowledge elicitation (EKE) is the process of extracting
information from one or more experts. Experts might be asked
for specific information (facts, statistics, sources, requirements,
and so on) or their opinions on various topics (preferences,
utilities, probabilities, estimates, etc.). In this study, we were
primarily interested in expert estimation of uncertain quantities
(as facts were found in the literature); in this case, we do
not simply want the “best guess” of the quantity, but also a
representation of the uncertainty surrounding any guess.

Delphi is a widely used and accepted approach for gathering
expert knowledge in specific fields. The fundamental goal of this
protocol is to combine the opinions of experts who evaluate a
specific topic; in this process, experts make individual estimates
and get anonymous feedback until they reach a predetermined
level of agreement (27). Finally, the expert opinion is gathered
through anonymous questionnaires filled out by the panel (28).

We divided the process in three stages: (1) Preelicitation, (2)
elicitation, and (3) postelicitation.

Stage 1: Preelicitation
Recruit Experts. We made use of two criteria for identifying
experts. First, we looked for professionals who had prior
expertise with Leptospirosis clinical and diagnostic detection,
sanitary management, or epidemiological research. Second, we
balanced the number of experts according to sectors, including
government services, academia, and practitioners.

The panel of experts was chosen in multiple steps: initially, we
identified a list of experts who were categorized into specialties
such as researchers, academics, physicians, health authorities,
and others. The residency countries were diverse, although
Ecuador was home to most of the experts. The experts were then
invited to participate in the survey by e-mail, and the Delphi
survey procedure was implemented on the internet.

A total of 15 experts were invited to participate in the study
and six declined the invitation. As a result, we assembled a panel
of nine experts to interview to analyze our planned leptospirosis
surveillance program representing government services (22.2%),
practitioners (33.3%), and academia/laboratories (55.5%).

Develop Elicitation Questions. The Delphi protocol obtains
quantitative judgments and establishes a confidence interval
around the best estimate (29). Each session’s questions are
targeted toward eliciting probabilities. Experts submit their upper
and lower bounds for the lowest and highest chance that an
event will occur in this way before eliciting their best estimate.
Finally, experts provide their best assessment of the frequency of
occurrence of an event.

Experts were requested to determine the plausible minimum
value (step 1), feasible maximum value (step 2), and best estimate
(step 3) for the surveillance system that made up the various
parameters of the model that represented it in each scenario.

Stage 2: Elicitation
Round of Individual Estimates. We scheduled an introduction
meeting with each expert, in which we explained the expert
elicitation process’ motives, expectations, and context.

Experts were instructed via a videoconference that they could
download from YouTube, and as part of the elicitation process,
they were issued an electronic questionnaire by e-mail. In the first
round, we gathered information such as the probability of each
system parameter’s minimum, maximum, and most likely values.

Stage 3: Postelicitation
Aggregate Experts’ Judgments. From expert’s individual
responses, we obtained probabilities distributions for
the parameters related to the surveillance system using a
mathematical aggregation approach, giving an equal weightage
to all the experts.

Through the Delphi survey, we obtained the information
about each parameter or node of the Leptospirosis Surveillance
System (Table 1) except for “prevalence level” and “clinical
detection parameter” that were categorized by region, and this
is explained at the coverage of the model.

Metaanalysis
This metaanalysis aimed to derive realistic estimates for these
nodes or parameters: “fever and symptoms” and “expositional
risk” using existing data on leptospirosis surveillance systems.
In addition, as detailed below, the metaanalysis results were
combined with the Delphi survey data.

The preferred reporting items for systematic reviews and
metaanalysis (PRISMA) criteria were used to conduct the
metaanalysis (30). In the English language, platforms such
as “Google Scholar,” “Sciences Direct,” “Web of Sciences,”
and “Medline” were used as literature sources and searching
machines to recover published articles. The publications that
were examined were those that were published between 2001 and
2018. To search the literature, we used terms like “leptospirosis,”
“spirochetes,” “surveillance,” “assessment,” and “sensitivity,” as
well as a Boolean query that combined terms like “leptospirosis
surveillance,” “Assessment of leptospirosis surveillance,”
“Sensitivity of leptospirosis system,” and “Assessment of
spirochetes surveillance.”

The phases of the systematic review that followed PRISMA
criteria were identification, screening, eligibility, and inclusion,
as indicated in Figure 2.

For research selection and data abstraction, the selection
criteria were first applied to the titles and abstracts of publications
before moving on to the whole text. Articles that did not
include at least one of the following terms: public health, animal
health/disease; theoretical studies without empirical data; and
articles with insufficient information to allow evaluation of the
method described and without evaluation of the surveillance
system described were all excluded. In addition, studies were
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FIGURE 3 | (A) Forest plot of the proportion of “fever and two more symptoms” for suspicious patients of leptospirosis. (B) Funnel plot of the proportion of “fever and

two more symptoms” for suspicious patients of leptospirosis.

FIGURE 4 | (A) Forest plot of the proportion of “fever and two more symptoms” for leptospirosis patients. (B) Funnel plot of the proportion of ”fever and two more

symptoms" for leptospirosis patients.

considered for this study provided they included data from
estimating at least one surveillance system attribute.

Data abstraction results were displayed using forest-plots, and
publication bias was addressed through funnel plots. We used
a metaregression technique to conduct a metaanalysis of the
relevant literature. This method enables us to look into patterns
of heterogeneity in our data and determine what causes them.
The variable x in meta-regression stands for study characteristics.
A metaregression model uses this data to try to predict y, the
study’s effect size. The fact that effect sizes are utilized as predictor
variables, however, adds a layer of complexity. By using a mixed-
effects model, metaregression achieves this. This model accounts
for the fact that observed studies deviate from the true overall
effect due to sampling error and between-study heterogeneity.
Furthermore, one or more variables x are used to forecast
variations in genuine effect sizes.

Then the combined results using the Shelf package (31) fromR
Software (32) were used to determine the value of each parameter.

For the parameters “fever and two additional symptoms” and
“expositional risk,” we evaluated them using two datasets derived
from the manuscripts retrieved and selected during the searching
process: one of them included all the patients included in the
manuscripts (dataset A) and the other just the number of positive
Leptospira patients (dataset B).

Statistical Analysis of Data
The probability distribution captures what is known about the
variable, making expert elicitation with priors a logical match
for Bayesian techniques (33). As a result, in this study, we
emphasize the use of Bayesian models to include expert opinion.
In brief, Bayesian modeling consists of four key elements: a prior
probability distribution that captures prior knowledge about a
parameter; data on the parameters captured by the likelihood;
a model that describes the underlying process and incorporates
both the likelihood and priors; and posterior estimates that result
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TABLE 4 | Summary of metaregression analysis outputs for the variables that

influenced the proportion of fever and two more symptoms at suspicious patients

of leptospirosis.

Variable Estimate 95% Confidence

interval

P-value

Intercept 1.2645 (0.6342; 1.8949) <0.0001

Cross-sectional design −0.2147 (−0.6397; 0.2103) 0.3220

Longitudinal design −0.2850 (−0.6905; 0.1205) 0.1683

Asia 0.0753 (−0.2258; 0.3764) 0.6241

Europe −0.0876 (−0.4038; 0.2286) 0.5871

Latin-American and Caribbean −0.0106 (−0.2890; 0.2678) 0.9404

Serologic test −0.1091 (−0.5745; 0.2656) 0.5719

Serologic and molecular test −0.1544 (−0.5745; 0.2656) 0.4711

N −0.0001 (−0.0001; 0.0000) 0.0642

Positive Leptospira patients 0.0002 (−0.0000; 0.0003) 0.0743

tau∧2 (estimated amount of residual heterogeneity): 0.0544 (SE = 0.0178).

tau (square root of estimated tau∧2 value): 0.2333.

I∧2 (residual heterogeneity/unaccounted variability): 99.92%.

H∧2 (unaccounted variability/sampling variability): 1201.95.

R∧2 (amount of heterogeneity accounted for): 0.00%.

from combining the likelihood with the prior and reflect model
uncertainties (34, 35).

Probabilistic modeling aims to capture the uncertainty in
the decision model’s input parameters and explain what this
means for the model’s outputs (36). In a Bayesian model, for
example, expert subjective judgments are employed to calculate
uncertainty. This uncertainty could be caused by a lack of data,
natural variance, or a combination of both (37).

The tree’s nodes’ values were calculated independently of
one another. Then, using the method proposed by Christensen
et al. (38) and implemented in the package EpiR (39), run on
R Software (V. 3.5.1), we elicited a beta distribution from each
expert for each parameter of the existing system (32). The expert
information was then combined into conjugate priors, which
were then used to represent it.

The posterior distribution was obtained by combining the
findings of the metaanalysis with official Department of Health
statistics (according to the parameter). It was estimated using the
R program MCMCpack (40).

Scenario Tree Model Description
A tree represents all the events influencing the detection of
the infection as nodes dividing the population into groups
of individuals with similar probabilities of being infected
and detected. Each of these category nodes may have one
or more possible outcomes, with a specific probability of
occurrence estimated from historical data, published findings, or
expert opinion.

A scenario tree displays the disease detection process using a
surveillance system component (SSC), tracing the chances that
a single unit (person) will yield a positive or a negative result.
To accomplish this, we constructed a stochastic scenario tree
model. Scenarios are realizations of multidimensional stochastic
processes (trajectories). A scenario tree’s root node is connected

to multiple endnotes by an SSC, which is a logical succession of
states and occurrences. The edge weights are usually determined
by probabilities. One of the advantages of this instrument is
its ability to analyze infection risks and detection probabilities.
Stochastic scenario tree models were built for the quantitative
evaluation of complex surveillance systems, and they were used
to describe each SSC and evaluate the sensitivity of each SSC, as
discussed below. The structure of the scenario tree is described in
Figure 1, and the content is described in Tables 1, 2.

Given that the population is sick, the scenario tree separates
the population into smaller groups, each with a equal likelihood
to become ill. It describes the population’s structure as well as
any events (inside an SSC) that influence the likelihood of a
disease or disease agent being detected by the SSC if one exists. At
each branch of the tree, probabilities for each possible outcome
are first estimated. Then, by multiplying the probabilities along
each branch of the tree and adding those that result in a positive
result, SSC sensitivity is calculated (disease detected). Finally, as
indicated in the preceding section, the parameters were estimated
using metaanalysis and expert elicitation.

From 10,000 runs, we estimated the median and percentiles
5th and 95th for each tree using a Monte Carlo technique. We
used the Monte Carlo method to generate the scenario trees
in Excel, fixed them with a seed number, and then ran the
models stochastically using @RISK (Decision Tool, version 6).
We defined input and output parameters as distributions to
account for the uncertainty of the estimations.

Coverage’s and Scope’s Model
The sensitivity of an SSC to a population is influenced by
the disease’s prevalence; the method allows different probability
of detection (at the threshold prevalence) to be assigned
to different population segments. Thus, the scenario trees
coupled geographic risk (three scenarios based on Ecuador’s
continental areas) with the clinician’s ability to notice a
suspicious case, which are both expressed in the model’s
“inputs” parameters, “Status Disease or Prevalence,” and “Clinical
Detection,” respectively. Based on reports from official health
statistics, we established the geographic risk scenarios for these
characteristics (Table 2).

For each scenario, we identified these geographical regions
as zones with low (1–10%), medium (11–20%), and high
(21–30%) prevalence levels, based on the information
from cases reported by health authorities as well as the
environmental conditions in each region, which play a key
role in Leptospira transmission dynamics. We estimated
the parameters shape 1 and shape 2 from beta distribution
for each scenario based on these assumptions; on the other
hand, we assumed that the “clinical detection” parameter
could be measured subjectively, so we decided to express
it as a fixed value, but we assumed that the level of the
zone’s prevalence was linked to the doctor’s knowledge of the
disease (Table 2).

The model’s scope was disease detection, with individuals as
the unit of analysis, each region’s population as the coverage, and
a 1-year time frame to account for the length of the intervention
and its long-term effects.
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FIGURE 5 | (A) Forest plot of the proportion of “expositional risk” for suspicious patients of leptospirosis. (B) Funnel plot of the proportion of “expositional risk” for

suspicious patients of leptospirosis.

FIGURE 6 | (A) Forest plot of the proportion of “expositional risk” for leptospirosis patients. (B) Funnel plot of the proportion of “expositional risk” for leptospirosis

patients.

Component Sensitivity Calculations
The scenario tree modeling method is being used to evaluate
the sensitivity of detection, defined as the likelihood of
detecting at least one positive case of leptospirosis for a given
prevalence by SSC or each type of test defined. Different
probabilities of detection (at the threshold prevalence) can
likewise be assigned to different population sections using the
scenario tree.

The tree is based on the probability of detecting an
infected patient (CSeU, SSC unit sensitivity) and is determined
by assessing the possibility that any randomly selected unit
in the population will provide a positive result (SeU). The
component’s sensitivity (CSe) is the sensitivity of the surveillance
(CSe). It was calculated by adding the branch probabilities
for all branches with positive outcomes and computing
the total branch probability for each branch of the tree
(i.e., for each outcome/terminal node). Finally, using the
formula SSe, the total sensitivity of the surveillance system
was determined.

Evaluation of Influential Parameters per SSC

Through sensitivity analysis, we determined the most
important parameters determining the sensitivity of
the result (CSeU) for each scenario. @RISK was used
to evaluate it (Decision Tool, version 6). Furthermore,
this data assists decision-makers in identifying
potential avenues for increasing the entire monitoring
system’s quality.

RESULTS

Experts’ Elicitation
The outcomes of the expert’s elicitation procedure utilizing
the Delphi technique are summarized in Table 3. Except
for the test sensitivities, the parameter estimations were
broad and heterogeneous in general. However, for all
parameters, confidence intervals are positive, and therefore,
statistically significant.
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Metaanalysis Results
We were able to extract 30 studies for the metaanalysis from
the 198 publications found (Figure 2). The likelihood of fever
plus two additional symptoms for suspicious patients was
calculated to be 27% (95% CI = 18–36%) using the whole
dataset A (Figure 3). Figure 3B suggests a low probability of
publication bias. Furthermore, in confirmed Leptospira patients,
the likelihood of “fever plus two more symptoms” was calculated
to be 89% (95%CI= 80–97%) (see Figure 4A). Figure 4B suggest
the presence of potential publication bias. The metaregression
estimation and heterogeneity analysis are summarized inTable 4.
The results of this table (confidence intervals and model
indicators like tau2 or I2) suggest that none of the parameters
considered in the analysis explained the estimated heterogeneity.

Furthermore, the proportion of people with “expositional
risk” records was estimated to be 24 percent (95% CI =13–
35%) using the more restricted dataset B (Figure 5A). Figure 5B
suggests a low probability of publication bias. The estimated
proportion of people with “expositional risk” was 69% (95%
CI = 58–80%) among confirmed Leptospira cases (Figure 6A).

TABLE 5 | Summary of metaregression analysis outputs for the variables that

influenced the proportion of fever and two more symptoms at suspicious patients

of leptospirosis.

Variable Estimate 95% Confidence

interval

P-value

Intercept 1.2112 0.6162; 1.8063 <0.0001

Cross-sectional design −0.4977 −0.9996; 0.0042 0.0519

Longitudinal design −0.4417 −0.9374; 0.0540 0.0807

Asia −0.1736 −0.5625; 0.2153 0.3817

Europe 0.1286 −0.2859; 0.5431 0.5431

Latin-American and Caribbean −0.0075 −0.3493; 0.3342 0.9655

Serologic and molecular test 0.1421 −0.1940; 0.4783 0.4073

N −0.0001 −0.0002; −0.0000 0.0117

Positive Leptospira patients 0.0002 −0.0004; 0.0009 0.4356

tau∧2 (estimated amount of residual heterogeneity): 0.0649 (SE = 0.0260).

tau (square root of estimated tau∧2 value): 0.2547.

I∧2 (residual heterogeneity/unaccounted variability): 98.69%.

H∧2(unaccounted variability/sampling variability): 76.14.

R∧2(amount of heterogeneity accounted for): 9.69%.

Test for Residual Heterogeneity: QE(df = 13) = 1239.4682, p-val <0.0001.

Test of Moderators (coefficient(s) 2:9): QM(df = 8) = 10.1535, p-val = 0.2544.

Figure 6B also suggests a low probability of publication
bias. Table 5 summarizes the metaregression estimation and
heterogeneity analysis. The table’s results (confidence intervals
and model indicators such as tau2 or I2) indicate that none
of the parameters evaluated in the analysis explained the
estimated heterogeneity.

SSC Inputs Estimation
Table 3 summarizes the resulting input (Mean and CI 95%)
probabilities obtained for each SSC that conforms to the current
leptospirosis surveillance system in the humans in Ecuador.
These values were estimated through the prior probabilities
obtained by the Delphi Survey using expert’s elicitation.

Scenario Tree Model
The median, 5th and 95th percentiles of each SSC’s output
distributions for the unit component sensitivity (CSeU-
depending on the probability of infection) are presented in
Table 6 and Figure 7 and specified by region. The best sensitivity
scenario corresponded to the Coast region with a median of
0.85% IC 95% (0.41–0.99) followed by the Amazonia with a
median of 0.54% (CI 95% 0.18–0.90) and lastly, the Andes with a
median of 0.29% (CI 95% 0.02–0.89).

Evaluation of Influential Parameters per
SSC
Figures 8A–C shows the probabilistic sensitivity analysis (PSA),
which shows the impact of each SSC on the overall sensitivity
of the scenario. Figure 8A depicts the leptospirosis surveillance
system’s sensitivity analysis for Scenario 1 (Andean Region).
The most influential SSC in the model is the “probability of
being infected” (Prevalence) (0.84). “Attendance or probability
of attending a health center” and “probability to have symptoms”
(0.34 and 0.26, respectively) were two other SSCs with a
moderate influence, followed by “probability of exposition risk”
(0.19). Finally, “probability of being positive to MAT test” and
“probability of being positive to ELISA” both do not represent a
significant influence on the overall sensitivity of the model (0.07)
and (0.05).

Figure 8B shows that the Attendance or “probability to
attending a health center” is the most influential SSC in
scenario 2 (Amazonia Region), followed by the other two SSC
“prevalence or probability to being infected” and “probability to

TABLE 6 | Percentiles for surveillance system unit sensitivity and surveillance system component sensitivity, for different geographical scenarios, of the current

surveillance system for human leptospirosis in Ecuador.

Components sensitivity Scenario 1

(Andean region)

Scenario 2

(Amazonia region)

Scenario 3

(Coast region)

Percentiles Percentiles Percentiles

5th 50th 95th 5th 50th 95th 5th 50th 95th

CseU 0.0002 0.003 0.02 0.002 0.008 0.02 0.005 0.02 0.05

Cse 0.02 0.29 0.82 0.18 0.54 0.90 0.41 0.85 0.99

CseU, Surveillance System Unit Sensitivity; CSe, surveillance system component sensitivity.
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FIGURE 7 | Probability density distributions for the sensitivity of the current

surveillance system for humans leptospirosis by different Ecuador

geographical scenarios.

have symptoms” which influences equally (0.48), and “exposition
risk probability” (0.32). Again, neither the “probability of being
positive to MAT test” nor the “probability of being positive to
ELISA” (0.10 and 0.07, respectively) has a significant impact on
the model’s overall sensitivity.

Finally, Figure 8C shows that “attendance or probability of
attending a health center” (0.66) is the most influential SSC
in the model for Scenario 3 (Coast Region), and “probability
of having symptoms” (0.51), “probability of exposition risk”
(0.35), and “prevalence or probability of being infected” (0.28)
are also important SSC for this scenario. In other scenarios, the
diagnostic test does not have any effect on the overall sensitivity
of the system.

DISCUSSION

The sensitivity of the current national human leptospirosis
monitoring system was assessed using a stochastic technique,
which is an important attribute of any surveillance system (25).
Furthermore, decision-tree modeling offers a transparent and
systematic approach to decision-making, as well as chances to
improve the framework by obtaining more accurate data (26).
With this method, it is possible to include multiple sources of

information in the same tree. It is a considerable advantage when
not all the data required are available, and expert opinion must
be sought. An evaluation of the surveillance activity efficiency
provides for a comparison of the performance of various
surveillance strategies. To aid in the quantitative assessment
of surveillance sensitivity and disease likelihood, the data can
be acquired from a range of sources, including random or
non-random surveillance data, as well as the documentation of
risk differences (41). This is the first evaluation of a human
leptospirosis surveillance system that we are aware of, and
therefore there is not much to compare it to. However, scenario
tree modeling has been frequently used to assess and improve
surveillance systems for different illnesses, with most of these
assessments concentrating on animal productivity and health
(26, 42–44).

Based on an examination of current surveillance-system
assessment choices, the model’s conclusions will help Ecuador
public health policymakers to provide guidance on the basis of
national surveillance system for Leptospirosis. Furthermore, by
identifying the most relevant features of the selected SSC in
relation to the provided CSe, particular attempts to reinforce
these SSCs may be implemented.

Human leptospirosis surveillance in Ecuador is a passive
system, therefore it is shaped by several circumstances. A case
must have at least two or more parameters or symptoms to
be reported. The passive component of the monitoring system
operates in the same manner as the country. Ecuador, on the
other hand, is split into four distinct geographical regions. As a
result, disease patterns vary depending on the location. The coast
and amazon regions have favorable environmental conditions
for pathogenic Leptospira spp. transmission, which agrees with
our findings that the sensitivity of Ecuador’s current national
surveillance program for human Leptospirosis is not uniform
across regions; this is consistent with the health report, which
states that these zones account for most cases. One disadvantage
of a passive system is that it ignores these risk differences; as a
result, we approached this study’s evaluation with the differences
between nation regions in mind. We noticed differences in the
system’s sensitivity between them. The Coast area had the best
sensitivity scenario, with a median of 85%. As a result, these
communities may be more equipped to recognize outbreaks
and the typical course of a leptospirosis case. Furthermore, it
implies that the majority of patients are discovered and can be
treated if necessary. The sensitivity of the system for the other
scenarios is much lower (the Amazonia region has a median
sensitivity of 54%, while the Andean region has a median of
29%), and the probability ranges are much wider than for the
Coast region. Although it is difficult to determine whether these
sensitivities are higher or lower than those of similar monitoring
programs in other countries, reaching 100% sensitivity in practice
is nearly impossible (45). These findings may arouse concern
among authorities because they suggest that there is likely to be
a significant under-detection, implying that the disease’s burden
could be much greater. However, just because the surveillance
system’s sensitivity is lower in various geographical regions, it
does not mean it i’s useless; it can still be utilized to track trends
as long as the sensitivity is constant (46). Other variables not
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FIGURE 8 | Probabilistic sensitivity analysis. (A) For scenario 1 (Andean Region); (B) for scenario 2 (Amazonian Region); (C) for Scenario 3 (Coast Region).

investigated in this study also compensate for the system’s limited
sensitivity and keep it operational.

For surveillance systems to have the greatest impact, it is
critical to identify system stakeholders, define their roles, and
engage them throughout the process (47). The most significant
aspects of the system’s sensitivity, according to the sensitivity
analysis done on the models, were “Attendance or probability of
attending a health center” and “probability of having symptoms,”
especially for the Coast and Amazonia Regions. As a result,
the sensitivity of a system with a higher prevalence and clinical
detection will be good, but it will be dependent on the patients’
attendance at the health center and, as a result, on whether the
patients feel sick and exhibit clinical symptoms that are severe
or harmful enough to persuade them to see a doctor. On the one

hand, community education should develop trust and confidence
among the population by involving typical stakeholders, such as
public health practitioners, health care providers, policymakers,
and people of affected communities. Medical staff training, on the
other hand, can be improved continuously.

Another important metric was “prevalence,” or the likelihood
of becoming infected, but only for the Andean Region. These
findings are in line with animal disease studies (48), which
discovered that the sensitivity of a monitoring system is
dependent on the severity of disease in the population. The
infection level is determined by the threshold prevalence, which
differs from common prevalence; the scenario tree allows for
variable chances of being identified (at the threshold prevalence)
(25). These data confirm that the Andes’ weather conditions
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are less favorable for the bacterium’s survival, and that it has
the fewest known cases. The findings could also explain why in
hotspot areas of the country, the scenario with reduced sensitivity
and existing system restrictions is desirable. Standardization of
the leptospirosis threshold prevalence will be critical in the
future, and the differences could make sensitivity comparisons
of surveillance programs difficult (49).

Non-specific symptomatology characterizes leptospirosis;
studies reveal that clinical diagnosis and diagnostic procedures,
particularly in developing countries, are still in need of
improvement, and physicians frequently confuse leptospirosis
symptoms with those of other diseases (50–52). Another
important factor we identified was the relationship between the
severity of illness in a certain zone and the health professional’s
knowledge of the condition. Other research shows that physicians
should be aware of the characteristics of leptospirosis to avoid
confusion when dealing with suspected cases, and that the
infection phases should not be overlooked (53). As a result,
clinicians should be urged to increase their leptospirosis clinical
suspicion (52).

We included the parameter “clinical detection or illness
detection capacity” in the model since we considered it as
an important aspect of the surveillance system and wanted to
explore how critical it was. Due to a lack of information on
the value for that variable, the subjectivity of this parameter,
and the variability in physician’s abilities to diagnose the disease
correctly among patients across the country, we built different
subscenarios combining different conditions as low, medium,
and high clinical detection capacity applied on a population
of patients with a low, medium, and high prevalence of the
disease. For example, one scenario stated that clinicians in a low-
prevalence zone had limited ability to recognize questionable
patients, and so on. Medical students lack comprehension of
zoonoses, according to research (54), and there is a link between
relative knowledge of different diseases and the frequency or
recognition in everyday practice (55).

Furthermore, the occurrence (or absence of) of an illness
in a selected area is likely to alter awareness (56), and the
ability to detect suspicious cases in endemic areas could be
a problem. As a result, as has been shown during arbovirus
outbreaks (57, 58), it may increase leptospirosis mortality,
given that symptoms are similar but misinterpretation
occurs and many cases are either not treated or diagnosed
too late to establish a prompt therapy. As a result, the
next step in defining a zoonotic surveillance system’s
sensitivity should be to parameterize the “capacity of
clinical detection” or healthcare practitioners’ awareness of
zoonotic infections.

One of the study’s drawbacks is the variability, uncertainty,
and bias in the sources of information on inputs. Although
the methodology we used allowed us to account for
variability and uncertainty in the data we handle through
input distributions, there was a lack of precise and unbiased
information on different parameters; as a result, we are likely
to have obtained inaccurate estimates, which could affect the
surveillance program’s sensitivity estimate (59). The model
was constructed by combining data from a literature review

and parameterizing it using expert estimates; however, it is not
without risk.

Scenario tree models do not account for the time gap between
nodes or parameters, which is a weakness in this approach
(26, 60). The temporal frame used in an economic evaluation
is the duration of health outcomes and costs. The nature of
the disease and intervention under consideration, as well as the
analysis’ purpose, all influence the time span used for economic
modeling (York; 2016). The incubation period of the disease
and the consequences of the intervention strategy determine
the model’s time frame; as a result, we publish the findings in
this context, following the routine of epidemiological reports
conducted by the health authority. Other studies looked at the
incubation period that was dependent on the characteristics
of the disease (48, 49, 61). According to Martin et al. (25),
the amount of surveillance data acquired over time, and thus
the SSC’s estimated sensitivity over time, has no effect on the
projected chance of the population being free at threshold
prevalence. Time is not explicit in this model and has no
bearing on sensitivity, in contrast to the population scope in
the estimate; in this study, we decided to input data based on
several scenarios.

The surveillance system’s sensitivity is the most important
factor for early detection, and scenario tree modeling is a
crucial tool for developing effective surveillance strategies (62).
According to the World Health Organization, governments
should review surveillance programs while pursuing early
detection of epidemics, optimize them in a period of public
resource scarcity, and underestimate cases (WHO). All of
these factors capture our attention and underline the need
to assess Ecuador’s national human leptospirosis surveillance
system and, if possible, propose a new strategy to address the
system’s inadequacies. Health authorities in the Americas, on
the other hand, must improve notification. The leptospirosis
record, for example, is an important tool for highlighting the
disease’s importance as a public health issue and should be
registered as an official document. Leptospirosis is underreported
in many countries and territories, and incomplete records
prevent the disease from being recognized as a public health
issue. As a result, it is necessary to start documenting
leptospirosis baselines across the Americas, enhance laboratory
capacity, and, eventually, harmonize case definitions across
countries (7).

This study is the first of its kind in the world on the
effectiveness of a human leptospirosis surveillance system,
and the methodology might be applied to other disease
surveillance systems. Systematic surveillance system evaluation
is also essential to aid decision-making processes or the
implementation of various surveillance strategies. Furthermore,
concluding the system’s evaluation with a cost-effectiveness
analysis is important for making more holistic selections,
allowing for efficient monitoring systems that might save
authorities a large amount of money (63). Government resource
allocation is a prevalent problem (especially in developing
countries), and more work should be done to carry out cost
analyses to improve the effectiveness and sustainability of
monitoring programs.

Frontiers in Public Health | www.frontiersin.org 12 March 2022 | Volume 10 | Article 711938

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Calero and Monti Assessing Ecuador’s Leptospirosis Surveillance System

CONCLUSIONS

Based on scenario tree modeling, we give the first assessment
of the sensitivity of Ecuador’s current national Leptospirosis
surveillance system for humans. As a result of this research,
several qualitative insights have been gathered. The present
Ecuador human Leptospirosis monitoring system, for example,
differs in sensitivity across the country’s many areas, and we
were able to quantify the relative contributions of each SSC in
the system.

The current surveillance system is sensitive enough to be
utilized for decision support and performance monitoring in
high-risk locations (coastal area); however, it may present far
more cases than the system reports in other parts of the country.
As a result, surveillance system evaluation should be conducted
as a complementary strategy by public health practitioners and
other surveillance system stakeholders. Despite the difficulties,
monitoring approaches can still be improved.
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