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ABSTRACT

Lipotoxicity is a pathophysiological process triggered by lipid overload. In metazoans, lipotoxicity is characterised by the
ectopic deposition of lipids on organs other than adipose tissue. This leads to organ dysfunction, cell death, and is
intimately linked to lipid-associated diseases such as cardiac dysfunction, atherosclerosis, stroke, hepatosteatosis, cancer
and the metabolic syndrome. The molecules involved in eliciting lipotoxicity include FAs and their acyl-CoA derivatives,
triacylglycerol (TG), diacylglycerol (DG), ceramides, acyl-carnitines and phospholipids. However, the cellular transport of
toxic lipids through membrane contact sites (MCS) and vesicular mechanisms as well as lipid metabolism that progress
lipotoxicity to the onset of disease are not entirely understood. Yeast has proven a useful model organism to study the
molecular mechanisms of lipotoxicity. Recently, the Rim101 pathway, which senses alkaline pH and the lipid status at the
plasmamembrane, has been connected to lipotoxicity. In this review article, we summarise recent research advances on the
Rim101 pathway and MCS in the context of lipotoxicity in yeast and present a perspective for future research directions.
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INTRODUCTION

The adverse effects of excessive nutrition are a global socioe-
conomic and health-threatening burden of pandemic propor-
tions. According to the World Health Organization (WHO), 39%
of the adult world population (more than 1.9 billion adults) were
overweight and 13% obese in 2016 (World Health Organization
(WHO) 2018). Obesity is frequently associated with metabolic
alterations that predispose individuals to co-morbidities such
as insulin resistance, non-alcoholic fatty liver disease, and car-
diovascular disease, together often referred to as metabolic
syndrome (Unger et al. 2010). A common pathologicalmanifesta-
tion ofmetabolic syndrome is ectopic lipid accumulation in non-

adipose tissues such as liver, heart, skeletal muscle and pan-
creas likely reflecting an oversupply and/or impaired disposal of
fatty acids (FA) in these tissues. Although the exact aetiology of
metabolic syndrome is not known, unbalanced lipidmetabolism
in non-adipose tissues is considered to contribute to lipotoxic-
ity. The term lipotoxicity was first introduced in 1994 by Roger
Unger to describe FA-induced β-cell degeneration in the con-
text of non-insulin-dependent diabetes mellitus (Lee et al. 1994).
Lipotoxicity is now generally used to describe the process dur-
ing which excess lipid accumulation in non-adipose cells and
tissues results in cellular dysfunction, which may manifest as
impaired cellular signalling, cellular stress responses and ulti-
mately cell death. Multiple lipid species have been implicated in
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lipotoxicity including FAs and their acyl-CoA derivatives, TG, DG,
ceramides, acyl-carnitines and phospholipids (Unger et al. 2010).

The toxicity of these lipid species varies between cell
types and depends on sub-molecular properties such as FA
chain length and saturation. Exposure to saturated FAs (SFAs)
such as palmitic acid and stearic acid triggers cell death at
lower concentration than its unsaturated counterparts in mam-
malian cell culture models (Listenberger, Ory and Schaffer 2001;
Listenberger et al. 2003; Malhi et al. 2007; Khan et al. 2012). Of-
ten concomitant provision ofmonounsaturated FAs (MUFAs) has
been shown to prevent the adverse effects of SFAs (Listenberger
et al. 2003). Poorer incorporation of SFAs versus MUFAs into TG
may explain this phenomenon (Listenberger et al. 2003). This
means that MUFAs are not as accessible to the most effective
detoxification route that is to withdraw lipids fromphospholipid
or ceramide synthesis pathways by conversion into TG and stor-
age in lipid droplets.

Research in yeast has provided valuable insights into the
toxicity associated with exposure to excess FAs, DGs, sterols
and ceramides (Garbarino et al. 2009; Petschnigg et al. 2009;
Rockenfeller et al. 2010, 2017; Carmona-Gutierrez et al. 2011;
Fakas et al. 2011). We will only briefly summarise knowledge on
these lipotoxic triggers in the following paragraph, as this con-
tent has been extensively reviewed (Eisenberg and Büttner 2014).

FA oversupply in a dga1, lro1, are1 and are2 quadruple knock
out (QKO) yeast strain, which is deficient for all DG and steryl
acyl transferase activity triggers ROS production and cell death
(Garbarino et al. 2009; Petschnigg et al. 2009; Rockenfeller et al.
2010). In this situation, a cell would normally direct the excess
FAs via the ER towards neutral fat (TG and SE) synthesis and stor-
age. However, in the case of the QKO this is not possible, leading
to the ER channelling surplus FA into phospholipid metabolism
(Petschnigg et al. 2009). This scenario generates massive ER-
membrane stacks (Petschnigg et al. 2009), ROS production (Rock-
enfeller et al. 2010) and induces ER stress (Garbarino et al. 2009).
Mitochondria have been suggested as a source of ROS (Rock-
enfeller et al. 2010) potential involvement of the ER-resident
ROS-producing NADPH oxidase Yno1 (Rinnerthaler et al. 2012: 1;
Leadsham et al. 2013: 1) still needs to be tested in this setting.

The toxic effects of excess FA exposure have been conflicting,
with some pointing to either an apoptotic (Garbarino et al. 2009)
or a necrotic mode of death (Rockenfeller et al. 2010). Ceramide
and DG-induced cell death in yeast have been classified as
necrotic (Carmona-Gutierrez et al. 2011; Rockenfeller et al. 2018).
The currentmodel of ceramide toxicity is mostly derived from in
vitro models and involves ceramide-induced pore formation in
the outer mitochondrial membrane (Birbes et al. 2001; Siskind,
Kolesnick and Colombini 2002, 2006; Samanta et al. 2011). These
ceramide poresmay allow for unspecific protein release from the
inter-mitochondrial space and thus facilitate the intrinsic apop-
tosis pathway (Siskind, Kolesnick and Colombini 2006).

In the following paragraphs, we attempt to provide a compre-
hensive picture of current lipotoxicity research in yeast focusing
on DG as a lipotoxic trigger, Rim101 signalling as an important
lipotoxic sensing and signalling pathway and the engagement
of membrane contact sites (MCS).

CONNECTING LIPOTOXICITY WITH CELL
SIGNALLING, STRESS RESPONSE AND CELL
DEATH

When cells die as a consequence of lipid overload, this can hap-
pen either accidentally or in a regulated fashion that is orches-

trated by specific cell death pathways. The first case results
in classical unregulated necrosis (accidental cell death), where
cells undergo an uncontrolled functional decline that ultimately
leads to the loss of plasma membrane (PM) integrity and thus
the leakage of cellular content into the culture medium. In the
second case, cells regulate their own demise in a properly organ-
ised fashion (regulated cell death). This modality includes yeast
regulated cell death, regulated necrosis, programmed cell death,
yeast apoptosis and autophagy-dependant cell death depending
on the morphological features of cell death (Carmona-Gutierrez
et al. 2010, 2018; Eisenberg et al. 2010). Even though these types
of cell death can be differentiated, a full understanding of the
molecular mechanisms regulating cell death is incomplete. Re-
cently new routes of lipid-induced cell death have been revealed
in yeast that could help us understanding basic cell death regu-
latory mechanisms involving lipids such as ceramide, DG or FA
and indeed lipotoxicity itself.

SENSING LIPID STRESS AT THE PM

It is important to understand how yeast cells sense lipid
stress and elicit an appropriate response. S. cerevisiae offers
a number of adaptive response stress pathways that respond
to lipid stress, most notably the mitogen-activated protein ki-
nase (MAPK), yeast protein kinase (Ypk1/2) and Rim101 path-
ways. These pathways sense changes at the PM and transduce
the signal into an intracellular response. The five MAPK path-
ways regulate the pheromone response, filamentation/invasion,
high osmolarity growth, spore wall assembly and cell wall in-
tegrity (CWI) (Chen and Thorner 2007). From these five path-
ways, CWI signalling has highest relevance for lipotoxicity.
Lipids can interferewith this pathway either on the extracellular
through changes in PM tension and activation of stretch recep-
tors or through the manipulation of phosphatidylinositol-4,5-
bisphosphate (PI4,5P2) distribution or recruitment and/or acti-
vation of Pkc1 (Levin 2011). CWI signalling is generally known as
an adaptive response pathway and is thus rather considered as a
protective mechanism; however, interference with this pathway
has been connected to cell death induction (Lommel, Bagnat and
Strahl 2004; Badrane, Nguyen and Clancy 2016).

An alternative pathway activated by PM-stress is mediated
by yeast protein kinases (Ypk1/2) downstreamof TOR complex 2.
Interestingly thismechanism involves Lem3-dependent lipid re-
modelling (which will be explained in more detail in the Rim101
paragraph below) to establish Rho1 recruitment to the PM. As
part of the CWI pathway (see above), Rho1 is recruited to the
PM by PI4,5P2. Hence, the Ypk1/2 pathway can be regarded as a
backup signalling mechanism for PI4,5P2-free Rho1 recruitment
to cover for stress-induced loss of PI4,5P2 (Hatakeyama, Kono
and Yoshida 2017). Ypk1 has further been shown to regulate FA
uptake and energy homeostasis through regulating endocytosis
(Jacquier and Schneiter 2010).

The Rim101 pathway

The Rim101 pathway was initially introduced as a fungal adap-
tive response to alkaline pH (Futai et al. 1999; Maeda 2012;
Serra-Cardona, Canadell and Ariño 2015). The last decade of re-
search on this topic has revealed that the Rim101 pathway is
not limited to regulating the alkaline pH response but that it
can also sense lipid stress. As such, it can detect lipid alter-
ations at the PM or rearrangements of the asymmetrical lipid
distribution among the two leaflets of the bilayer (Ikeda et al.
2008; Obara, Yamamoto and Kihara 2012). The outer leaflets of
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all eukaryotic PMs are enriched in complex sphingolipids and
phosphatidylcholine (PC), whereas phosphatidylethanolamine
(PE), phosphatidylserine (PS), phosphatidylinositol (PI) and phos-
phatidic acid (PA) are the predominant building blocks shap-
ing the inner leaflet (Devaux 1991; Verkleij and Post 2000). The
uneven distribution of zwitterionic (PC, PE) and anionic lipids
(PS, PA) within the two PM leaflets thus establishes lipid asym-
metry and creates a non-zero potential difference between the
two sides of the PM (Gurtovenko and Vattulainen 2008). Lipid
asymmetry is important for cellular processes such as vesicu-
lar transport (Chen et al. 1999), cytokinesis (Emoto and Umeda
2000) and removal of apoptotic cells (Fadok et al. 1992). The PM
lipid asymmetry is actively achieved and maintained by the ac-
tivity of ATP-dependant flippases and floppases, which repre-
sent enzymes facilitating flip (outward-directed) or flop (inward-
directed) translocation reactions of lipids within a membrane
(Pomorski et al. 2003; Ikeda, Kihara and Igarashi 2006).

The Rim101 pathway contains a sophisticated sensor com-
plex that can sense lipid alterations at the PM. The sensor
complex consists of Rim8 and the three transmembrane pro-
teins Dfg16, Rim9 and Rim21. The carboxy-terminal cytosolic
domain of Rim21 localises to the PM under normal conditions,
whereas the lipid perturbation of the PM triggers its dissocia-
tion (Nishino, Obara and Kihara 2015). The activation of the sen-
sor complex induces a proteolytical complex, which consists of
Rim13, Rim20, Ygr122w and Rim101 (Maeda 2012). Rim13 pro-
teolytically cleaves and thereby activates the transcriptional re-
pressor Rim101 (Futai et al. 1999). The activation of the Rim101
pathway by lipid stress has been investigated in a number of
studies including (i) genetic deletion of flippases and floppases
or their upstream regulators (Ikeda et al. 2008; Obara and Kihara
2014; Nishino, Obara and Kihara 2015) (ii) addition of palmitoleic
acid (Richard et al. 2014) (iii) expression of phospholipase A2
(Mattiazzi et al. 2010) and most recently by (iv) excess DG (Rock-
enfeller et al. 2018). Whether the adverse effects of lipid overload
in the QKO or similar models also depend on Rim101 signalling
and whether PM asymmetry is disturbed still remains to be
tested. Also, the specific effects of lipotoxic triggers on PM asym-
metry are not very well documented in the literature. In most of
the above-cited studies, it appears that Rim21 senses changes
in the PM´s lipid asymmetry in a similar way as under alkaline
conditions. This is not surprising as both conditions, alkaline
and lipid stress, can actually interfere with the charge gradient
at the PM. Disturbance of specific physicochemical properties of
the PM can be perceived by the sensing complex involving Rim21
under both conditions of stress. This sensingmechanism allows
the cell to adapt to a changing environment—be it a change in
ambient pH or the lipid environment. Whether lipotoxic triggers
such as DG or palmitoleic acid trigger the Rim101 pathway di-
rectly at the PM or first enter the cell and then trigger the path-
way fromwithin remains unclear. The latter option has recently
been introduced by Obara and Kihara. They found that Rim101
signalling can be triggered by ER stress (Obara and Kihara 2017).
ER stress can affect lipid asymmetry and thus Rim101 could be
triggered in order to compensate for these changes. Once the
Rim101 pathway is activated by the Rim21 sensing complex, it
triggers carboxy-terminal cleavage of Rim101 by Rim13, which
uncovers its gene repressing activity (Fig. 1). Rim101 process-
ing is further dependent on Snf7, which is a component of the
endosomal sorting complex required for transport III (ESCRT
III). Rim20 is thought to function as an adaptor, bringing Snf7
into close proximity of Rim13 to facilitate Rim101 cleavage. A
number of Rim101-repressed genes have been identified (Lamb
and Mitchell 2003) among which NRG1 connects to functional

Figure 1. The Rim101 pathway mediates a response to lipid stress: adaptation
or necrosis. Lipid stress is sensed by the Rim21-sensing complex consisting
of Rim8, Rim9, Rim 21 and Dfg16. The sensing complex triggers activation of

the Rim101 pathway which depends on ESCRT III. The cysteine-protease Rim13
cleaves the carboxy-terminus of Rim101 and thus activates it as a transcriptional
repressor. Activated Rim101 regulates gene expression of NRG1 and RSB1 among
others. RSB1 itself encodes a sphingoid long chain base transporter. Rsb1 also

regulates PM-flippase (Yor1) and floppase activities (Dnf1 and Dnf2) via Lem3.
This may facilitate adaption to PM-lipid stress or trigger necrotic cell death.

lipid changes at the PM. It is likely that the activation of the
Rim101 pathway in response to lipid stress facilitates changes
in lipid composition at the PM to facilitate adaptation to the en-
vironment. For example, the rearrangement of PM lipids can be
achieved via altered expression or activation of PM lipid translo-
cases such as Rsb1, Yor1, Dnf1 and Dnf2 (Kihara and Igarashi
2004). However, the abrogation of the Rim101 pathway has been
shown to prevent cell death in a number of lipotoxic settings
(Richard et al. 2014; Rockenfeller et al. 2018), which at first glance
seems counterintuitive. A potential explanation for this could be
that active Rim101 signalling is needed to efficiently direct lipids
from the PM to the ER. If the pathway is abrogated, lipids might
not be delivered and hence toxic effects downstream of Rim13
and Rim101 can be prevented. This hypothesis would suggest
that the Rim101 pathway may act not only as a detector of PM
lipid stress, but also as a regulator of lipid transport. In addi-
tion, in the case of DG and palmitoleic acid stress, Rim101 ac-
tivity may also actively disrupt PM integrity to promote necrosis
(Richard et al. 2014; Rockenfeller et al. 2018). These findings raise
the possibility that yeast cells may initiate a Rim101-dependent
form of necrosis if cells are unable to adapt to lipotoxic condi-
tions.

THE ROLE OF MCS IN LIPOTOXICITY

Research over the last decade has shown that lipid transport
is not limited to vesicular and protein-mediated transport, but
also involves non-vesicular inter-organelle lipid transfer viaMCS
(Prinz 2014; Gatta and Levine 2017). It has become apparent
that virtually all cell organelles are interconnected in a dynamic
MCS-network, which effectively participates in signalling and
metabolic channelling of substrates between organelles (Prinz
2014; Quon and Beh 2016) (Fig. 2). The MCS that have been de-
scribed in yeast so far include the ERmitochondria encountering
structure (ERMES) (Kornmann et al. 2009) and ER-mitochondria
contact (EMC) (Lahiri et al. 2014), mitochondrial inner with outer
membrane (Harner et al. 2011), vacuole and mitochondria patch
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Figure 2. Perspectives view of how lipid traffic could affect cellular lipotoxicity.

Externally supplied lipids such as palmitoleic acid (POA) and dioctanoyl glyc-
erol (DOG) trigger necrosis in yeast. Here, we schematically depict the potential
cellular lipid trafficking routes and potential involvement of vesicular and MCS-
mediated transport. Lipids can be internalised by endocytosis, direct interaction

with PM-lipids or receptor/translocase-mediated (not shown) pathways. Once
internalised, lipids may be transported via the vesicular ESCRT-dependent traf-
ficking route or via contact sites. Lipid-containing endosomes can interact and

exchange lipids with the ER and/or LD, which could further deliver lipids to other
organelles including the vacuole, mitochondria and Golgi via fusion events or
lipid exchange through MCS. Lipids can trigger ER stress and potentially disrupt
ER-membrane integrity. In order to alleviate from ER-stress/toxicity, toxic lipids

could be channelled into the Golgi, mitochondria and LDs for metabolisation or
storage purposes. LDs can remobilise stored lipids via lipolysis or lipophagy. De-
livery of external-lipid-containing-endosomes can fuse with the vacuole possi-
bly involving HOPS/CORVET or other SNARE/Rab machineries. Toxic lipids could

then be delivered to the PM via recycling endosomes and thus disrupt PM in-
tegrity. Toxic lipids reaching the mitochondria could induce MOMP and thus in-
duce cell death via mitochondrial pathways.

(Hönscher et al. 2014), ER-PM contact site (Stefan et al. 2011;
Manford et al. 2012), nucleus vacuolar junction (NVJ) (Pan et al.
2000; Toulmay and Prinz 2012), ER-GOLGI contacts (Liu et al.
2017), mitochondria-ER-cortex anchor (MECA) (Lackner et al.
2013) and ER-peroxisome contacts (Munck et al. 2009). MCS
are characterised by the presence of so-called tethers, which
are proteins or protein complexes that simultaneously bind the
membranes of two distinct organelles to bring them into close
proximity and physically tether them. Excellent overviews of
MCS-tethering proteins are already available (Prinz 2014; Gatta
and Levine 2017). In the following paragraphs, we will focus on
a small selection of MCS, which provide considerable relevance
for lipotoxicity.

Nvj2 facilitates ceramide transfer at ER-Golgi contact
sites

MCS are of particular interest in lipotoxicity research as they
may give key answers as to how toxic lipids are transported,
metabolised and distributed within the cell and how lipids can
participate in cross-organelle signalling. A recent study revealed
that Nvj2 tethers the ER and medial-Golgi (Liu et al. 2017). Nvj2
localises to the ER and is enriched at the nucleus-vacuole junc-
tion under unstressed conditions. However, during ER stress
Nvj2 disappears from the NVJ and induces novel contacts be-
tween the ER and medial-Golgi. The authors of the study sug-

gest that the establishment of such contacts couldmeet the pur-
pose of effectively channelling toxic ceramide, which is known
to increase upon ER stress, from the ER to the Golgi. This would
represent an ER-protective mechanism to prevent from toxic ce-
ramide accumulationwithin the ER (Liu et al. 2017). Interestingly,
Nvj2 contains a synaptotagmin-likemitochondrial lipid-binding
protein (SMP) domain (Toulmay and Prinz 2012), which could al-
low for lipid transfer between membranes. Such activities have
been demonstrated by SMP domain containing proteins before
(Schauder et al. 2014; AhYoung et al. 2015; Saheki et al. 2016; Yu
et al. 2016). The exact mechanism of how ceramide facilitates
cell death is still illusive but there is some good evidence that
C16-ceramide can trigger pore formation in the outer mitochon-
drial membrane (Siskind and Colombini 2000; Siskind, Kolesnick
and Colombini 2006). This mitochondrial outer membrane per-
meabilisation (MOMP) could allow for the release of apoptogenic
or necrosogenic cell death signals from mitochondria (Siskind,
Kolesnick and Colombini 2002) such as cytochrome C (Manon,
Chaudhuri and Guérin 1997; Ludovico et al. 2002), apoptosis in-
ducing factor (Wissing et al. 2004) and endonuclease G (Büttner
et al. 2007) or simply lead to ATP depletion and/or dysfunctional
phospholipid supply to the PM culminating in necrosis. Future
research should address the questions whether ERMES or EMC
contact sites are essential for ceramide-induced MOMP in vivo
andwhether ceramide accumulation in the ER also induces pore
formation in the ER or rather transmits its adverse effects via
the mitochondrial route. To protect from ceramide accumula-
tion in the ER, ceramide can be converted into acylceramides by
the acyltransferases Dga1 and Lro1 (Voynova et al. 2012). Acyl-
ceramides are then stored in LDs. Accordingly, the deletion of
DGA1 and LRO1 increases ceramide accumulation in the ER upon
ER stress in the NVJ2 deletion mutant that increases toxicity.
However, the detoxification pathways via Dga1/Lro1 or Nvj2 are
redundant as only the triple deletion mutant shows significant
ceramide increase (Liu et al. 2017). Lipid detoxification via Dga1
and Lro1 is not limited to ceramide, but also extends to DG
(Rockenfeller et al. 2018) and FA (Garbarino et al. 2009; Petschnigg
et al. 2009; Rockenfeller et al. 2010). Whether Nvj2 can also facil-
itate DG transfer or ameliorate FA stress remains to be tested.

ER-PM contact sites

ER-PM contact sites represent MCS where the ER comes into
close proximity to the PM. The average distance of the two con-
tacting membranes is about 33 nm (Pichler et al. 2001; West et al.
2011) and tethering is achieved through at least six different
proteins, namely Tcb1, Tcb2, Tcb3, Scs2, Scs22 and Ist2 (Man-
ford et al. 2012). A yeast mutant deleted in the six genes encod-
ing these tethers (�-tether mutant) is disrupted in ER-PM con-
tacts and is thus a valuable tool to study ER-PM-dependent lipid
transfer, which has been described to occur at these sites (Ste-
fan, Manford and Emr 2013). Sterol transport that is facilitated
by a conserved family of oxysterol-binding (OSBP)-related pro-
teins (ORPs) has been thoroughly studied at these sites (Lev 2010;
Toulmay and Prinz 2011). ORP proteins contain a conserved
sterol-binding domain as well as specific domains that regu-
late targeting to ER–PM contacts such as pleckstrin homology
domain that bind PI4P in the PM (Roy and Levine 2004) and the
FFAT (two phenylalanine residues in an acidic tract) motif that
interacts with vesicle associated membrane protein-associated
protein in the ER membrane (Loewen and Levine 2005).

A recent study investigated whether Rim101 signalling de-
pends on ER-PM contact sites (Obara and Kihara 2017). The au-
thors revealed that Rim101 signalling occurred mostly at sites
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different from ER–PM contact sites. However, Rim101 signalling
was constitutively activated in the �-tether mutant. Since loss
of ER–PM contact sites has been shown to induce ER stress
(Manford et al. 2012), the authors also testedwhether the Rim101
pathwaywas activated as a consequence of ER stress. Indeed the
conducted experiments confirmed that Rim101 signalling is trig-
gered in order to facilitate adaptation to ER stress at the level of
PM lipid organisation.

LD contact sites and their potential involvement in
lipotoxic signalling

In addition to the above-listed contact sites, LDs can also en-
gage in similar cellular substructures that are summarised in a
recent review (Schuldiner and Bohnert 2017). These LD-contact
sites include interactions with organelles such as the ER (Mark-
graf et al. 2014; Mishra et al. 2016; Wang et al. 2016), mitochon-
dria (Wang et al. 2011), peroxisomes (Binns et al. 2006), endo-
somes (Guimaraes et al. 2015), vacuole (Wang, Miao and Chang
2014a; Barbosa et al. 2015), inclusion bodies (Moldavski et al.
2015) or homotypic interactions with a second LD (Binns et al.
2006; Wang, Miao and Chang 2014b). However, these contacts
are slightly different to conventional MCS due to the nature
that LDs do not contain a double-leaflet-membrane with an
aqueous core but only a single layer of phospholipids cover-
ing the neutral lipid core (Wang 2015). LDs originate from the
ER; hence, the existence of an LD-ER contact is rather obvi-
ous. It became apparent that not only in yeast cells nearly
all LDs remain connected to the ER since even mature LDs
are accessible to luminal ER proteins (Mishra et al. 2016). An
additional special feature of LD-ER contacts is the prevalence
of lipidic bridges, which represent continuous phospholipid
monolayer surrounding the LD and outer leaflet of the ER. These
lipidic bridges do not seem to be sufficient to structurally main-
tain contacts, which suggest the existence of additional pro-
teinaceous tethers (Schuldiner and Bohnert 2017). Even though
particular tethering complexes at LD contact sites have not
been clearly identified so far, some proteins, which are po-
tentially part of such complexes, have been proposed to facil-
itate contacts (Schuldiner and Bohnert 2017). As such Seipin
(Sei1/Fld1) is potentially involved in stabilising LD-ER contacts
(Wang,Miao andChang 2014b; Grippa et al. 2015) and the ER acyl-
CoA synthetase FATP1 and the LD-resident diacylglycerol acyl-
transferase (DGAT2) have been proposed as ER-LD tethers in C.
elegans (Xu et al. 2012). The ER-resident protein Ice2 has further
been identified as an important regulator of lipid metabolism
at LD-ER contact sites (Markgraf et al. 2014). Ice2 has a cytoso-
lic domain with affinity to lipid LDs. It facilitates TAG mobil-
isation in early exponential growth phase and TAG synthesis
during early stationary phase via transfer of Dga1 from ER to
LDs. Controlling LD´s access to Dga1, which represents themajor
DG-acyltransferase, Ice2 determines TAG synthesis and LD-size.

At least some of these LD contact sites might be of impor-
tance for cell death signalling under lipotoxic conditions. LDs
are to be understood as buffers to cope with lipid overload. As
such the connection to the ER is of major importance to facili-
tate alleviation from lipid stress within the ER (Liu et al. 2017).
However, LDs might also serve as a source to deliver toxic lipids
to trigger regulated cell death. For instance, the connection be-
tween LDs and mitochondria allows for FA delivery to the mi-
tochondrion. This MCS could possibly further facilitate MOMP
via supply of ceramide to establish pore formation as described
above. This could lead to apoptotic or necrotic outcomes. LD-PM
contact sites might be actively involved in lipid supply to the
PM bilayer possibly joining forces with the ER. Lipid stress could

potentially affect the function of LD-PM-contacts and thus in-
hibit lipid transport across contact sites. This could disrupt the
dynamics of PM lipid homeostasis and further trigger loss of PM
integrity in necrotic scenarios. These potential involvements of
LD contact sites in the regulation of cell death are ready to be
addressed in future research questions and will doubtless in-
crease our understanding of lipotoxicity and cell death. An in-
teresting question is for example whether Seipin-regulated PA
metabolism (Wolinski et al. 2015) is required in diverse settings
of lipotoxicity such as DG or palmitoleic acid stress.

CONCLUSION AND OUTLOOK

The Rim101 pathway is established as an important lipid re-
sponsive pathway. However, important questions need to be ad-
dressed in future research: Can Rsb1/Lem3-dependent translo-
case regulation account for the full effects of Rim101-dependent
cell death or are there other downstream effectors of the Rim101
pathway that are responsible for cell death under conditions
of lipid stress? Transcriptional control by the Rim101 pathway
has been proposed to account for the downstream adaptations
at the PM in response to lipid stress (Ikeda et al. 2008; Richard
et al. 2014). However, the transcriptional control of Rim101 sig-
nalling might only reflect one side of the coin. We are currently
investigating whether additional events such as lipid transport,
metabolism and storage succumb to lipotoxic cell death and
whether these are situated up- or downstream of Rim101 sig-
nalling. It may be the case that the generation of lipotoxicity
is dependent upon the sum of transcriptional responses, lipid
metabolism, trafficking and presence of cell stress (Fig. 2). In
response to this, a number of unanswered questions are re-
vealed: how does vesicular lipid traffic interact with contact site-
mediated lipid transfer?; what are the dynamic changes of con-
tact sites as a response to lipid stress and how does that affect
cell fate? Answers to questions such as these will be a key to un-
derstanding lipid metabolism and homeostasis in its entity and
thus lipotoxicity itself. Such advances will not only offer new
perspectives for drug development, but also add to our general
understanding of lipid and membrane biology in healthy and
disease states.
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