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Abstract
Climate change poses a serious threat to biodiversity. Predicting the effects of cli-
mate change on the distribution of a species' habitat can help humans address the 
potential threats which may change the scope and distribution of species. Pterocarya 
stenoptera is a common fast-growing tree species often used in the ecological resto-
ration of riverbanks and alpine forests in central and eastern China. Until now, the 
characteristics of the distribution of this species' habitat are poorly known as are 
the environmental factors that influence its preferred habitat. In the present study, 
the Maximum Entropy Modeling (Maxent) algorithm and the Genetic Algorithm for 
Ruleset Production (GARP) were used to establish the models for the potential dis-
tribution of this species by selecting 236 sites with known occurrences and 14 en-
vironmental variables. The results indicate that both models have good predictive 
power. Minimum temperature of coldest month (Bio6), mean temperature of warm-
est quarter (Bio10), annual precipitation (Bio12), and precipitation of driest month 
(Bio14) were important environmental variables influencing the prediction of the 
Maxent model. According to the models, the temperate and subtropical regions of 
eastern China had high environmental suitability for this species, where the species 
had been recorded. Under each climate change scenario, climatic suitability of the ex-
isting range of this species increased, and its climatic niche expanded geographically 
to the north and higher elevation. GARP predicted a more conservative expansion. 
The projected spatial and temporal patterns of P. stenoptera can provide reference for 
the development of forest management and protection strategies.
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1  | INTRODUC TION

Climate is one of the major factors contributing to the large-
scale distribution of species (Stocker et al., 2013). Global climate 
change has affected the distribution and abundance of numerous 
species in the past few decades (Zhang, Yao, Meng, & Tao, 2018) 
and also contributes to the extinction of species (Thuiller, Lavorel, 
& Araujo, 2005). The potential threats that may change the scope 
and distribution of species can be identified by predicting the 
effects of climate change on the landscape-scale spatial distri-
bution of habitat for individual species. Therefore, high-quality 
distributional data play an important role in setting priorities 
and implementing effective protection actions (Brooks, M'Lot, 
& McLachlan, 2006). However, the Wallacean shortfall, i.e. the 
deficiency of biogeographical information, often hinders various 
conservation actions (Bini, Diniz-Filho, Rangel, Bastos, & Pinto, 
2006).

Ecological niche modeling (ENM) provides an important tool 
that can be used to fill this gap and can also promote the study 
of ecology, conservation, and evolution (Elith, Kearney, & Phillips, 
2010; Renner & Warton, 2013; Solano & Feria, 2007). This type of 
modeling has been widely used in the study of habitat fragmenta-
tion (Austin, 2007; Thuiller, Araujo, & Lavorel, 2004), how climate 
change affects biodiversity (Heikkinen et al., 2006), the develop-
ment of conservation plans for rare species (Marage, Garraud, & 
Rameau, 2008; Zhang et al., 2018), and range expansion of invasive 
species (Peterson, Papes, & Eaton, 2007; Reino et al., 2009; Welk, 
2004). A variety of ENMs, such as CLIMEX, maximum entropy 
(Maxent), genetic algorithm for rule-set production (GARP), ecolog-
ical niche factor analyses, and bioclimatic prediction systems, have 
been employed for the prediction of the distribution areas, ecolog-
ical responses, and ecological requirements of various species. In 
general, these tools are different in the predictors used (physio-
logical constraints in a mechanistic approach or climatic empirical 
approach) and species records (presence-only or presence/absence) 
(Mac Nally, 2000; Peterson et al., 2007).

Maxent and GARP provide two commonly used niche-based 
modeling methods that use presence-background, and both have 
been used to predict the spatial distribution of species at different 
scales (Larson, Olden, & Usio, 2010; Phillips, Anderson, & Schapire, 
2006; Stockwell & Noble, 1992; VanDerWal, Shoo, Graham, & 
Williams, 2009). Maxent is a generalized linear model; it produces 
models by finding the distribution closest to uniform (maximum en-
tropy) constrained by the input of environmental variables (Phillips 
et al., 2006). In contrast, GARP, a superset of modeling algorithms, 
searches for nonrandom relationships between ecological con-
ditions and species occurrence data at sites. It constructs a set of 
rules to describe a species' ecological niche defined as a set of con-
ditions where a species can thrive in the environment (Elith et al., 
2010; Renner & Warton, 2013; Stockwell & Noble, 1992). The dif-
ferences between the two algorithms in their procedures and ra-
tionales will result in different performance (Hernandez, Graham, 
Master, & Albert, 2006). Previous studies indicate that the potential 

distribution generated by GARP is wider than that produced by 
Maxent (Hernandez et al., 2006).

Pterocarya stenoptera C. DC. (Juglandaceae), a species endemic 
to China, is a deciduous broad-leaved tree (Figure 1) that grows 
in forests along wet hillside land or along streams at elevations 
below 1,500 m above sea level (Lu, Stone, & Grauke, 1999). With 
a wide distribution in warm temperate and subtropical zones of 
China, the species can grow to a height of 20 m in the first 5 years 
and grows on acidic and slightly alkaline soil (Lu et al., 1999). 
Also, it can tolerate long-term flooding. Yang, Li, Li, Schneider, 
and Lamberts (2013) reported that plants of P.  stenoptera could 
survive in continuous submergence or inundation for 12 months. 
When compared with unplanted soils, the presence of P. stenop-
tera seedlings resulted in a significant increase in total nitrogen 
and total phosphorus in soil (Yang et al., 2013). In addition, this 
species has shown resistance to various diseases and pests that 
typically threaten walnut trees (Pan, 2009). Therefore, it has been 
commonly planted during ecological restoration projects along 
riverbanks and in alpine forested areas in the eastern and central 
parts of China (Pan, 2009). However, researchers know little about 
the potential geographical distribution of the species and the en-
vironmental factors that affect the suitability of habitat for this 
taxon. Knowing how climate change will affect habitat suitable for 
P. stenoptera is an important issue given the economic and ecolog-
ical significance of the species.

To determine the potential geographical distribution and the 
environmental variables influencing habitat suitability for this spe-
cies, we used Maxent and GARP modeling to predict the future dis-
tribution of P.  stenoptera. The objectives of this study were (a) to 
model this species' potential geographical distribution; (b) to identify 
the most important environmental factors shaping the distribution 
of P. stenoptera; and (c) to discuss the variations in the distribution 
of suitable habitat under climate change. The results will allow re-
searchers to identify the future suitable habitat and help in the use, 
management, and cultivation of P. stenoptera.

F I G U R E  1   Photograph of Pterocarya stenoptera
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2  | MATERIAL AND METHODS

2.1 | Species occurrence data

Species point locality data were collected from the following on-
line herbaria databases: Tropicos (http://www.tropi​cos.org/), the 
Global Biodiversity Information Facility (http://www.gbif.org) and 
the Chinese Virtual Herbarium (http://v5.cvh.org.cn/) database; the 
latter holds the plant distribution records of the main herbaria of 
China. Some results from other field survey reports and scientific 
research literature (Li, Wei, Lü, & Zhang, 2010; Lu et al., 1999; Pan, 
2009; Wang, Xu, Li, Zhao, & Zhang, 2018; Yang et al., 2013) were 
also included. The analysis excluded imprecise locations when no 
exact geo-coordinates exist in the occurrence records. The longitude 
and latitude of any specimens in the Chinese Virtual Herbarium that 
provided only the village location were determined using Google 
Earth (http://ditu.google.cn/) (Wei, Wang, Hou, Wang, & Wu, 2018). 
After deleting duplicate points, spatial filtering was carried out for 
the remaining data points. Therefore, only one point was mapped 
in each 1.0 × 1.0 km grid cell. A total of 236 unique geo-referenced 
occurrence records were used (Figure 2).

2.2 | Environmental Data

Soil variables are important factors controlling plant distribution; 
they change over relatively short timescales based on direct and in-
direct effects caused by anthropogenic climate change (Richter & 
Markewitz, 2001). As a result, soil and climate variables should both 
be included in modeling. Nevertheless, the expected changes in soil 
variables under future climate scenarios are not generally available 

for China. Therefore, Stanton, Pearson, Horning, Ersts, and Reşit 
Akçakaya (2012) have suggested better results could be achieved by 
combining important static variables for which reliable projections 
are unavailable with dynamic climate variables whose future values 
have been predicted by general circulation models; this will produce 
a better result than excluding static variables. So, we used both dy-
namic climatic variables and static environmental variables in our 
models. Nineteen dynamic bioclimatic variables (11 temperature and 
eight precipitation metrics) were acquired from WorldClim (www.
world​clim.org/bioclim; Hijmans, Cameron, Parra, Jones, & Jarvis, 
2005). Three static soil variables, that is, soil class (SCla), soil organic 
carbon (SC), and soil pH (SpH), were acquired from the Resource 
and Environment Data Cloud Platform (http://www.resdc.cn/Defau​
lt.aspx) for 1984–1995 data.

For future climate scenarios, BCC-CSM1.1 climate change mod-
eling data under the Representative Concentration Pathways (RCPs) 
2.6 and 8.5 proposed by the Intergovernmental Panel on Climate 
Change were used for the years 2050 and 2070. The BCC-CSM1.1 
is recommended for use in studies of operational short-term climate 
prediction and studies of climate change in China [see Wu et al. 
(2014) and references cited therein]. Scenario RCP 2.6 reflects po-
tential radiative forcing by 2100 compared with the pre-industrial 
values of +2.6 W/m2 which is optimistic, while RCP 8.5, a more pessi-
mistic scenario, reflects high levels of greenhouse gas emissions, and 
results in 8.5 W/m2 of radiative forcing in 2100 (Hijmans et al., 2005). 
The three static soil variables remained unchanged for the analysis 
of ENM under future projected climate conditions. To ensure consis-
tency across all layers, all environmental layers were processed using 
the same spatial extent, cell size, and WGS84 projection in ArcGIS 
10.0. The raster files were projected to an equal-area grid and a 1.0-
km spatial resolution was used.

F I G U R E  2   Distribution records of 
Pterocarya stenoptera in China. Outlines of 
provinces and other administrative areas 
are shown

http://www.tropicos.org/
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Principal component analysis and correlation analyses (Pearson's 
correlation coefficient) were carried out to minimize the overfit-
ting of the model and decrease the high collinearity. Only one of 
the highly correlated variables (|r|  >  .90) in each set was retained 
for further analysis. The variables in the final environmental data-
set include precipitation of warmest quarter (Bio18), precipitation of 
wettest quarter (Bio16), precipitation seasonality (Bio15), precipita-
tion of driest month (Bio14), precipitation of wettest month (Bio13), 
annual precipitation (Bio12), mean temperature of warmest quarter 
(Bio10), mean temperature of wettest quarter (Bio8), minimum tem-
perature of coldest month (Bio6), temperature seasonality (Bio4), 
isothermality (Bio3), and mean diurnal temperature range (Bio2).

2.3 | Model simulation

Desktop GARP version 1.1.3 (Stockwell & Peters, 1999) and Maxent 
version 3.3.3 k (Phillips et al., 2006) were used to establish models 
according to the bioclimatic variables and the species records. For 
Maxent, 25% of occurrence records were used to test the model and 
75% of occurrence records were applied for training. Sampling bias 
is known for having significant effects on the results of presence-
background distribution models (Elith et al., 2010; VanDerWal et al., 
2009). A bias file layer was used to avoid sampling bias in the species 
occurrence data (Phillips et al., 2009). This file was generated using 
occurrence point by deriving a Gaussian kernel density map that was 
rescaled from 1 to 20 based on Elith et al. (2010). The maps were cre-
ated using the bias file option in Maxent. Recent studies noted that 
nonoptimal models may result if the default configuration is used so 
it may not always be appropriate, particularly when a limited num-
ber of occurrence records of a species are available. Therefore, we 
analyzed different regularization multiplier values, finding that the 
default option performed best. That is, the default option provided 
the best display of the known distribution of P.  stenoptera but did 
not overfit the model [see Merow, Smith, and Silander (2013)]. The 
number of background points for sampling was limited to 10,000 
in the present study. Nevertheless, we also checked that increasing 
the background points (e.g., 100,000) failed to change the model. 
Maxent's “fade by clamping” function was used to modify the areas 
with projections that were affected by clamping. We set the maxi-
mum numbers of iterations to 1,000; this allows adequate time for 
model to reach convergence; 1 × 10−6 was selected as the conver-
gence threshold (Deb, Phinn, Butt, & McAlpin, 2017a). In addition, 
we used the default “autofeatures,” including linear, quadratic, prod-
uct, threshold, and hinge features (Merow et al., 2013).

Genetic Algorithm for Ruleset Production uses a sets of condi-
tional rules that were developed iteratively for rule selection, evalu-
ation, testing, and incorporation or rejection (Peterson et al., 2007). 
We used 25% of occurrence records to test the model and 75% of 
occurrence records for training. The best-subsets selection proce-
dure (Anderson, Lew, & Peterson, 2003; Phillips et al., 2006) was 
used with the maximum number of iterations of 1,000, the conver-
gence limit of 0.01, and 20 runs per model. Ten best models were 

finally selected to produce a single final grid. The best subset se-
lection standards included omission error with the lowest value of 
20% and commission error with the default value of 50% (Anderson 
et al., 2003). Other default parameters were maintained (Anderson 
et al., 2003).

2.4 | Model evaluation

The patterns of the Maxent output were explained through the re-
sponse curves. The significance of each variable for Maxent predic-
tions was examined by carrying out the Jackknife test. The models 
were evaluated according to true skill statistic (TSS) (Allouche, Tsoar, 
& Kadmon, 2006), omission rate (OR), and area under the receiver 
operating characteristic curve (AUC) (Fielding & Bell, 1997). The 
AUC is a threshold-independent statistic, ranging from 0 to 1. An 
AUC value around 0.5 indicates the prediction provided by a dis-
tribution model was no better than random, while values around 1 
indicate the observed species distribution was well fitted with the 
predicted distribution of a species. The distribution models with val-
ues greater than 0.7 were acceptable. The omission rate (OR) is also 
a threshold-independent statistic, and high-quality models should 
show zero or low OR [for more details, see Pearson et al. (2006)]. TSS 
is a statistic dependent on threshold, ranging from −1 to 1 (Allouche 
et al., 2006). TSS values near 0 or negative indicate the distributions 
were no better than a random pattern, while the values equal to +1 
represent the observed distribution was consistent with the pre-
dicted distribution. The TSS, OR and AUC were calculated for the 
ten models of both algorithms. A one-tailed Wilcoxon signed-rank 
test was used to evaluate the statistical significance of AUC, TSS, 
and OR values between GARP and Maxent.

3  | RESULTS

3.1 | Model evaluation and comparison

The average AUC of models generated by Maxent and by GARP 
were 0.996 and 0.976, respectively, indicating the good performance 
of both models (Table 1). According to the results of the one-tailed 
Wilcoxon signed-rank test, AUC and TSS of Maxent were statistically 

TA B L E  1   Comparison of AUC, TSS, and OR of GARP and 
Maxent models

Model
Area under the 
curve (AUC)

True skill 
statistic (TSS)

Omission rate 
(OR)

Maxent 0.996 ± 0.002 0.949 ± 0.029 0.012 ± 0.002

GARP 0.976 ± 0.014 0.915 ± 0.052 0.027 ± 0.008

p valuea  <.001 <.001 .005

aP value of the one-tailed Wilcoxon sign-ranked test on AUC, TSS, and 
OR between GARP and Maxent model. 
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significantly higher than that of GARP, while OR of GARP is statisti-
cally significant higher than Maxent (Table 1).

3.2 | Important environmental variables

According to the internal jackknife test results of the Maxent model, 
the factors that contribute to the distribution model for P. stenop-
tera included Bio6 (9.6% of variation), Bio10 (14.1% of variation), 
Bio12 (23.2% of variation) and Bio14 (29.2% of variation) (Figure 3; 
Table 2). These factors had the cumulative contributions up to 76.1% 
(Table 2). In contrast, the contributions of other variables were low 
in weights, suggesting that their influence on the suitable habitat 
distribution of P. stenoptera was limited (Table 2).

The individual response curves (marginal responses created by 
holding all other bioclimatic variables to their average sample values) 
for those four most important variables in Maxent were generated to 
examine the climatic preference of P. stenoptera (Figure 4). Overall, 
there was a positive nonlinear response observed for the precipita-
tion in the driest month (Bio14). The optimum annual precipitation 
(Bio12), minimum temperature in the coldest month (Bio6), and aver-
age temperature in the warmest quarter (Bio10) were approximately 
1,300 mm, 5°C, and 28°C.

3.3 | Current potential distribution of P. stenoptera

According to the prediction results of Maxent and GARP models, the 
climate in most coastal regions of southern China, such as Guizhou, 
Guangxi, Guangdong, Fujian, Hubei, Jiangxi, Zhejiang, Anhui, Jiangsu, 
Henan, Shandong, Liaoning, eastern Sichuan, and Chongqing, is suit-
able for the growth of P. stenoptera (Figure 5). However, the current 
potential distributions predicted by the two algorithms are inconsist-
ent: GARP predicted large areas in Heilongjiang, Jilin, and Hebei to 
be suitable, which were marginally predicted by the Maxent. Also, 

GARP predicted that the potential geographic distribution with high 
suitability was continuous and covers a large area, whereas that pre-
dicted by Maxent was scattered and small.

3.4 | Forecasting the future distribution of 
P. stenoptera

The effects of climate change on the potential distribution of 
P.  stenoptera were visually analyzed by using both emission sce-
narios (RCP 2.6 and RCP 8.5) and modeling methods (GARP 
and Maxent), showing that the climatic suitability of the exist-
ing distribution range increased, and the suitable habitats of the 
species expanded geographically to the north and to higher el-
evations (Figure 5). In the two emission scenarios by 2070, both 
GARP and Maxent predicted that the areas suitable for the spe-
cies decreased in Taiwan, Hainan, and the southern limit of the 
species' distribution and increased in northeast Inner Mongolia, 
Heilongjiang, and Jilin. On average, Maxent predicted the suitable 
habitat conditions for China will increase by 4.51% and 9.49% by 
2070 under RCP 2.6 and RCP 8.5, respectively. However, GARP 
predicted the suitable habitat conditions for China will decline by 
0.54% and increase 2.4% by 2070 under RCP 2.6 and RCP 8.5, 
respectively (Figure 5).

4  | DISCUSSION

One prerequisite for using a species in ecosystem restoration is 
gaining a detailed understand of its distribution. P.  stenoptera is a 
common fast-growing tree species often used in the ecological res-
toration of riverbanks and alpine forests in central and eastern China. 
However, the impacts of climate changes on its distributions of have 
not been examined. In the present study, we model the distributions 
of P. stenoptera under current and future climate scenarios.

F I G U R E  3   Jackknife test for evaluating 
the relative importance of environmental 
variables for Pterocarya stenoptera in 
China
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4.1 | Model performance

Previous studies have shown that model performance differs 
among different ENMs based on the sampling size, the study area, 
and the species modeled (Elith et al., 2006; Hernandez et al., 2006; 
Pearson et al., 2006; Tsoar, Allouche, Steinitz, Rotem, & Kadmon, 
2007). Because of the variation of predictions, the “optimal” mod-
eling technique is difficult to identify (Pearson et al., 2006). Elith 
et al. (2006) showed that Maxent had the highest performance in 
a comparison of several habitat suitability models, and the AUC 
values were near 1.0. In contrast, the performance of GARP was 
poor, and the AUC values were low. However, Peterson et al. 
(2007) indicated that GARP was better at predicting the distri-
butions of species that occupy broad areas than Maxent. Here, 
we have found that both GARP and Maxent have high AUC and 
TSS values and low OR values. The results from all three evalu-
ation methods suggest both models have good predictive power. 
Moreover, although the AUC, TSS, and OR values of Maxent were 
statistically significantly higher than GARP, the size of difference 
is small (Table  1). Therefore, we can conclude that the perfor-
mance of Maxent and GARP was roughly the same.

From the geographic perspective, GARP predicted large areas 
to be environmentally suitable, which were marginally predicted 
by the Maxent model. Also, GARP predicted the potential geo-
graphic distribution with high suitability was continuous and 
covers a large area, whereas those predicted by Maxent were 
scattered and small. Although GARP prediction was too extensive 
and Maxent models underestimated the species range especially 
in the Heilongjiang, Jilin, and Hebei, both algorithms drew maps 
consistent with the known distribution of the species (Figure 5). 
Similar results were found by Elith et al. (2006) and Hernandez 
et al. (2006).

4.2 | Ecological processes that influence the 
distribution of P. stenoptera

An important issue in evolution and ecology are the factors influenc-
ing and maintaining geographic distributions (Austin, 2007; Bucklin 
et al., 2015; Guisan & Zimmermann, 2000). Among the 15 environ-
mental variables adopted in the model, the most important ones that 
explained the species' environmental requirements best were two 
temperature-derived variables and two precipitation-derived vari-
ables, that is, precipitation of driest month (Bio14, 29.2% of variation), 
annual precipitation (Bio12, 23.2% of variation), mean temperature of 
warmest quarter (Bio10, 14.1% of variation), and minimum tempera-
ture of coldest month (Bio6, 9.6% of variation) (Figure 4; Table 2). Note 
that marginal responses were obtained by keeping all other biocli-
matic variables at their average sample value. In reality, variables are 
not held at their means. There are interactions between variables that 
modify suitability in ways that are completely obscured by marginal 
response curves. Nevertheless, it allows us to see the relationships 
between selected variables and probability of suitable conditions.

Pterocarya stenoptera occurs extensively in the warm temper-
ate and subtropical zones of China along wet hillside land or along 
streams. The species can tolerate high temperatures and long peri-
ods of inundation (up to 12 months) (Li et al., 2010). Drought limits 
plant growth when precipitation is low and results in low river levels 
(Pan, 2009). When comparing the effects of flood and submergence 
on seedlings to the effects of drought, seedlings wilted more se-
verely during drought resulting in plant death after day 9–15 (Yang 
et al., 2013). The photosynthesis, respiration, and transpiration of 
P. stenoptera subjected to drought decreased (Pan, 2009). Therefore, 
changes of precipitation of driest month and annual precipitation 
will affect the distribution of P. stenoptera as indicated in our results. 
Areas with rainfall less than 50 cm annually are to be discarded be-
cause they do not provide suitable habitat for P.  stenoptera (Pan, 
2009). However, plants of P. stenoptera can withstand a short pe-
riod of −20°C weather during the middle of winter, but a longer cold 
spell with temperatures of −10°C could cause serious dieback (Pan, 
2009). Previous studies have shown that seedling emergence and 
death of P. stenoptera were directly affected by winter temperature 
in P. stenoptera (Wang et al., 2018). Therefore, these hydrothermal 
factors may influence the distribution of P. stenoptera by influenc-
ing the photosynthesis, respiration, transpiration, seed germination, 
growth and reproduction of P. stenoptera.

4.3 | Impact of climate change on the distribution of 
P. stenoptera and associated forest ecosystems

Most global climate models estimate the global warming at a rate of 
0.2°C per decade (Stocker et al., 2013). An increase in temperature 
will accelerate many physiological processes. For example, photo-
synthesis will reach an upper limit in plants with increased tempera-
ture although the response will vary based on the plant species. As a 
consequence, it can lead to local or regional species disappearance, 

TA B L E  2   Percentage contributions of the bioclimatic variables 
included in the Maxent models for Pterocarya stenoptera

Variable
Percent 
contribution (%)

Precipitation of driest month (Bio14) 29.2

Annual precipitation (Bio12) 23.2

Mean temperature of warmest quarter (Bio10) 14.1

Min temperature of coldest month (Bio6) 9.6

Soil pH (SpH) 8.7

Soil class (SCl) 7.9

Soil organic carbon (SC) 3.7

Mean temperature of wettest quarter (Bio8) 1.9

Precipitation of wettest month (Bio13) 0.5

Mean diurnal range (Bio2) 0.3

Isothermality (Bio3) 0.3

Temperature seasonality (Bio4) 0.2

Precipitation of warmest quarter (Bio18) 0.2

Precipitation of wettest quarter (Bio16) 0.1

Precipitation seasonality (Bio15) 0.1
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as well as the loss of entire ecosystems or other substituents by 
other ecosystems (Deb et al., 2017a; Zhang et al., 2018). The models 
employed here demonstrate that the spatial extent of suitable cli-
mate available for P. stenoptera is expected to expand geographically, 
especially in a northerly direction. As for both emissions scenarios 
and algorithms in our study, the projection of our models to future 
climate predicted similar distributional shift trends of P. stenoptera. 
As discussed above, mean temperature of warmest quarter and tem-
perature of coldest month were two of the most important factors 
affecting P.  stenoptera distribution. A continuous rise in tempera-
ture would be beyond the temperature tolerance of P.  stenoptera. 
Moreover, alterations in the temperature and precipitation regime 
potentially give rise to the shifts of P. stenoptera species phenologi-
cally, which may also indirectly affect the dependent faunal and flo-
ral species. Moreover, those changes may also have adverse effects 
on a number of terrestrial insects, mammals, and birds that are indi-
rectly or directly dependent on the seeds, fruits, and flowers from 
P. stenoptera (Butt et al., 2015; Deb et al., 2017a).

4.4 | Implications for conservation planning

As detected by our models, the potential suitable habitat of P. stenop-
tera shifted northward and to higher elevations under future climate 

scenarios. The plantation of P. stenoptera into those potential suit-
able habitats may serve as a preservation strategy in the presence 
of future climate changes (Deb, Phinn, Butt, & McAlpin, 2017b). 
Additionally, our results can be utilized for categorizing the P. stenop-
tera natural habitats from a lower risk to a higher one in response to 
the climate change, for the sake of conservation planning. For ex-
ample, the P. stenoptera plantations can be introduced preferentially 
into those climatically appropriate areas; in addition, more efforts 
should be made to conserve their natural regeneration among the 
high-risk areas in the case of future climates. The unchanged suit-
able habitat can be considered as an underlying refugium of cli-
mate change, which is a vital choice for conserving and protecting 
P. stenoptera forests ex situ and in situ. Moreover, P. stenoptera is of 
vital importance for ecosystem functioning. Therefore, plantation of 
P. stenoptera represents a vital management mechanism that can be 
used to create secondary growth forests.

4.5 | Limitations of the modeling approach and 
future research directions

Ecological niche modellings have been recognized as the effi-
cient and extensively used approach to offer related guidelines 
for managing forest in the presence of global climate change 

F I G U R E  4   Response curves for important environmental predictors in the species distribution model for Pterocarya stenoptera
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(Deb et al., 2017b). Nonetheless, uncertainties in using vari-
ous GCMs in projecting the potential distribution exist (Wiens, 
Stralberg, Jongsomjit, Howell, & Snyder, 2009). In this study, the 
BCC-CSM1.1 was adopted. Although this GCM has been recom-
mended to be used in studies investigating the climate changes 
across China, the nature of climate change is uncertain, and hence, 
the projected distribution/suitability of habitat is also uncer-
tain. Therefore, different GCMs should be used in future stud-
ies. Additionally, although GARP and Maxent models are widely 
used, some limitations should also be noted (Elith et al., 2006). In 
the present study, presence-only data are compiled based on a 
variety of sources. Consequently, a greater number of species oc-
currence records may have been included within those relatively 

well-known areas in comparison with other native ranges (Deb 
et al., 2017a). However, the sampling bias layer adopted within 
our models only represents a close estimation for actual species 
distribution. Current ENMs hypothesize that the species distri-
bution observed is not impacted by the source–sink dynamics or 
dispersal limitations; besides, the complex transient dynamics are 
also ignored during the range shifting process. Therefore, species 
dispersal constraints should be added to models, not only see how 
climate change will shift the species' niche, but to see how much 
the species could actually shift given species dispersal limitations. 
However, the quantitative descriptions of dispersal constraints for 
the studied species were not included in the models due to the 
lack of dispersal and demographic parameters. Moreover, various 

F I G U R E  5   Predicted potential 
distribution map of Pterocarya stenoptera 
using Maxent (a, c, e, d, and i) and GARP 
(b, d, f, h, and j). a and b, current climate 
scenario; c and d, future climate scenario 
RCP 2.6 in 2050; e and f, future climate 
scenario RCP 2.6 in 2070; g and h, future 
climate scenario RCP 8.5 in 2050; i and j, 
future climate scenario RCP 8.5 in 2070 
(nine-dashed line in South China Sea not 
shown)
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variables that are recognized to be vital parameters (such as, soils, 
logging pressure, dispersal capabilities, competition, and human 
activities) were not incorporated within distribution modeling as a 
result of the insufficient robust data. Nevertheless, future studies 
should incorporate them for analysis.

5  | CONCLUSIONS

Under the climate change scenario, high-quality distributional data 
play an important role in setting priorities and implementing effec-
tive protection actions. Our results indicate that the areas of suitable 
habitat for P.  stenoptera are projected to increase, and its climatic 
niche expands geographically to the north and higher elevation. 
Minimum temperature of coldest month (Bio6), mean temperature 
of warmest quarter (Bio10), annual precipitation (Bio12), and pre-
cipitation of driest month (Bio14) were the most important envi-
ronmental variables influencing the distribution of this species. The 
projected spatial and temporal patterns of P. stenoptera can provide 
reference for the development of forest management and protec-
tion strategies.
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