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Abstract
Neuropathic pain (NP) is a common symptom in many diseases of the somatosensory nervous system, which severely affects
the patient’s quality of life. Epigenetics are heritable alterations in gene expression that do not cause permanent changes in the
DNA sequence. Epigenetic modifications can affect gene expression and function and can also mediate crosstalk between genes
and the environment. Increasing evidence shows that epigenetic modifications, including DNA methylation, histone modifi-
cation, non-coding RNA, and RNA modification, are involved in the development and maintenance of NP. In this review, we
focus on the current knowledge of epigenetic modifications in the development and maintenance of NP. Then, we illustrate
different facets of epigenetic modifications that regulate gene expression and their crosstalk. Finally, we discuss the burgeoning
evidence supporting the potential of emerging epigenetic therapies, which has been valuable in understanding mechanisms and
offers novel and potent targets for NP therapy.
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Introduction

Neuropathic pain (NP) is defined as pain caused by a lesion
or disease of the somatosensory nervous system, including
unpleasant feelings, such as allodynia and hyperalgesia.
These symptoms severely impair the patients’ quality of life,
such as sleep disturbances, anxiety, and even depressive
symptoms.1,2 Furthermore, NP severely influences ap-
proximately 7%–8% of the European population and causes
a tremendous medical burden worldwide.3 Because the
pathogenetic mechanisms of NP have not been sufficiently
elucidated, clinical treatments are not satisfactory. There-
fore, it is meaningful to explore the molecular mechanisms
of NP.

Epigenetic modifications regulate gene expression without
changing the DNA sequence and have a long-lasting influence
on the individual when responding to environmental stimuli.
The mechanisms are dynamic and reversible by repressing or
activating gene expression at gene promoters.4 A few years ago,
several reviews have summarized the role of epigenetic mod-
ifications in the pathogenesis of NP.5–12 However, knowledge of
the epigenetic mechanisms of NP has grown substantially in

recent years. Therefore, a more comprehensive review is re-
quired to provide new insights to understand the etiology and
pathophysiology of NP by summarizing the updated evidence.

In this review, we summarize the latest developments in
epigenetic modifications in NP. These findings highlight epige-
netic alterations in the development and maintenance of NP,
including neuroinflammatory responses, ion channels, unbal-
anced inhibitory effects, and activation of glial cells. Moreover,
we also discuss epigenetic alterations including chemical
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modifications to the DNA itself or to DNA-associated proteins
(e.g., histones) or noncoding RNAs (ncRNAs) expression or
chemical modifications to the RNA and their potential crosstalk.
Finally, we suggest that specific epigenetic modifications may
provide a novel therapeutic approach for treating refractory
diseases.

General background of epigenetics

Waddington first put forward the term “epigenetic” in 1942,13

it refers to heritable changes in phenotype without alteration
of the DNA sequence when an organism responds to the
environment.14,15 Epigenetic modifications are chemical mod-
ifications that influence the structure and function of chromatin.
Chromatin comprises DNA and histone proteins and provides a
scaffold for the packaging of our entire genome, including the
heritable material of eukaryotic cells. As the basic critical unit of
chromatin, the nucleosome has 147 base pairs of DNAwrapped
around a histone octamer, which consist of two dimers each of
H2A, H2B, H3, and H4.16 Epigenetic modifications include
DNAmethylation, histone modifications, the regulation of non-
coding RNA (ncRNA), and RNA modifications.

DNA methylation is the most widely studied epigenetic
modification and refers to the covalent binding of a methyl
group to the fifth carbon of a cytosine residue, known as 5-
methylcytosine (5mC). This process can influence genome
stability and repress gene expression. DNA methylation is cat-
alyzed by a family of DNA methyltransferases (DNMTs), which
are divided into two categories according to their function:
maintenance methyltransferases (DNMT1) and de novo meth-
yltransferases (DNMT3). The primary location of DNA meth-
ylation is cytosine-phosphate-guanine (CpG) islands, which are
located in the gene promoter.17 Increased methylation of CpG
islands in the gene promoter can influence the stability of
chromatin, therefore silencing gene expression. In contrast, DNA
demethylation leads to the upregulation of gene expression.18

Histone modifications are post-transcriptional modifica-
tions (PTMs) to the N-terminal histone tails of nucleosomes
that regulate chromatin structure and function. These epi-
genetic modifications include acetylation, ubiquitination,
methylation, phosphorylation, and ADP-ribosylation.19–22

Distinct PTM on histones or their combinations play a vi-
tal role in gene expression by modulating the access of
transcription machinery to DNA. For example, histone
acetylation leads to a loose structure that induces gene ac-
tivation, while histone deacetylation results in gene repres-
sion. Histone methylation patterns and their effects on
transcription are more complex than acetylation and may
induce gene activation and repression depending on the
residue that is methylated.23

With regard to epigenetic modifications of gene expres-
sion, much attention has recently been devoted to ncRNAs
that play critical roles in gene regulation. With the rapid
development of detection technology in recent years, RNAs
have also been epigenetically modified. To date, more than

100 kinds of chemical modifications of RNA have been
reported.24 Of the post-transcriptional gene regulations, the
mRNA N6-methyl-adenosine (m6A) is the most studied
among RNA modifications. Similar to DNA methylation and
histone modifications, m6A methylation is related to the
translation and degradation of RNAs25 (Figure 1).

Epigenetic modifications in the mechanism of NP

It is generally accepted that NP is involved in the dysfunction
of peripheral and central mechanisms, wherein inflammatory
cascades trigger, neuronal firing deregulation, ion channel
imbalance, glial activation, and synaptic plasticity, which
lead to a lowered pain threshold.26 For example, epigenetic
modifications are involved in synaptic plasticity.27 Here, we
provide an overview of the relationship between epigenetic
modification and a common mechanism of NP (Figure 2).

Neuroinflammatory response

In the development and maintenance of NP, immune cells, such
as mast cells, neutrophils, macrophages, and T lymphocytes,
are activated, which release numerous pro-inflammatory
mediators, including cytokines, histamine, serotonin, pro-
teases, tumor necrosis factor α (TNFα), interleukins, and
chemokines.28,29 These mediators trigger an inflammatory
cascade and lead to NP.30 Furthermore, the peripheral im-
mune response may cause ongoing activity associated with
central neuroinflammation. Recently, epigenetic modifica-
tions have been found to take part in neuroinflammation
during NP. Neutrophils and macrophages mediate chemo-
kine that recruit to the injured sciatic nerve (SCN) after
partial sciatic nerve ligation. The expression of macrophage
inflammatory protein 2 (MIP-2)] and C-X-C chemokine
receptor type 2 (CXCR2) were epigenetically up-regulated
and localized on accumulated neutrophils and macro-
phages.31 In the following years, the same research team
also showed that epigenetic modification of CC-chemokine
ligand (CCL) 2 and CCL3 mediate infiltration of immune
cells to elicit NP.32 They also indicated that vascular en-
dothelial growth factor-A (VEGFA) is epigenetically up-
regulated in infiltrating macrophages and neutrophils in
injured peripheral nerves.33 However, neuroinflammation is
a defense response that limits tissue damage and restores
homeostasis, and anti-inflammatory cytokines also regulate
these pain states.34 There are few studies on epigenetic
modification involved in anti-inflammatory cytokines in the
pathogenesis of NP. Epigenetic modification of pro-inflammatory
and anti-inflammatory factors adds to our understanding of the
mechanism of NP.

Activation of Glial cells

As the intrinsic immune cells in the CNS, microglia serve
protective functions under normal conditions. However,
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microglia can be activated to trigger an inflammatory cascade
to promote the development of NP.35 Epigenetic modification
also participates in microglial activation. The regulator of
G-protein signaling 10 (RGS10) is one of the critical anti-
inflammatory regulators involved in dose-dependent sup-
pression in response to lipopolysaccharide (LPS)-induced
microglial activation. Applying HDACi trichostatin A
(TSA) and HDAC1 recruitment and H3 histone deacetylation
led to gene silencing.36 Yadav et al. also showed that epi-
genetic modification–induced microglia activation contrib-
utes to the development of NP. They found that enhancer of

zeste homolog-2 (EZH2), a subunit of the polycomb re-
pressive complex 2, leads to gene silencing. After nerve
injury, upregulation of the expression of EZH2 leads to an
increase in activated microglia, and tri-methylated H3K27
(H3K27me3) is temporally associated with neuro-
inflammation in the spinal cord of a NP rat model.37 Pacli-
taxel may cause NP, which may continue years after the
therapy is stopped,38 and is associated with microglia dys-
regulation. Wu et al.39 showed that epigenetics regulates the
expression of the purinergic receptor P2X4 in microglia,
which causes sensitization of neurons in the dorsal horn to

Figure 1. The effects of epigenetic modifications on chromatin structure. Chromatin is primarily composed of nucleosomes, each of which
consists of ∼147 base pairs of DNA wrapped around a histone octamer. The DNA sequence can be methylated at cytosine residues in a
CpG context, termed DNA methylation which represses gene transcription. Histone acetylation (Ac) lead to relaxed chromatin which
activate gene expression. While histone methylation facilitate activating or repressing of gene transcription depending on the location of
specific lysine in histone. RNA methylation is a form of epigenetic regulation related to the translation and degradation of RNAs.

Figure 2. Epigenetic modification in the mechanism of NP. After injury, immune cells, such as mast cells, macrophages and neutrophils are
activated and released cytokines (e.g., IL-6, IL-1β, TNF-α) and proinflammatory mediators, which triggers inflammatory cascade. Under
epigenetic modifications, the expression of ion channels are downregulated and lead to a lower pain threshold.
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induce mechanical allodynia in rats. These studies provided
valuable insights into the role of epigenetic modification in
microglial activation associated with different models of NP.

Compared with the microglial response, the astrocytic
response is delayed, but is sustained for a more extended
period.40 Astrocytes also release pro-inflammatory cytokines
and chemokines to respond to harmful stimuli. There is some
research showing that epigenetics mediates the activation of
astrocytes in NP. CXCR3 is a chemokine receptor. Cxcr3
mRNA and protein expression are significantly epigenetically
upregulated in the neurons of the spinal cord in spared nerve
injury (SNI) models. In addition, the expression of chemo-
kines, such as CXCL10, one of the ligands of CXCR3, was
also increased in both neurons and astrocytes. The epigenetic
modification of Cxcr3 gene causes mechanical allodynia and
heat hyperalgesia.41 In addition, Xu et al. showed that the
phosphorylation of signal transducers and activators of
transcription factor 3 (STAT3) and the acetylation of histone H4
in CXCL12-expressing cells are increased after microtubule-
targeted agents–induced NP. The phosphorylation of the
transcription factor STAT3 and the acetylation of histone H4 in
CXCL12-expressing cells was increased, accompanied by
mechanical allodynia.42 Sanna et al. also found that HDAC1 is
associated with the expression of c-Jun N-terminal kinase
(JNK) and c-Jun in astrocytes in the spinal dorsal horn; pain
symptoms are ameliorated by administration of a selective
HDAC1 inhibitor (LG325).43

These results have shown that noxious stimuli drive ac-
tivation of glial cells in epigenetic modifications of NP
regulation, and that these changes are associated with pain
hypersensitivity under NP conditions.

Ion channel imbalance

Ion channel imbalance is usually accompanied by sponta-
neous ectopic firing and hyperexcitability in the dorsal root
ganglion (DRG) and spinal neurons. In addition, ion channel
transcriptional and translational changes in gene expression
contribute to NP occurrence by increasing neuronal
excitability.26,44,45 Accumulating evidence suggests that
epigenetic modification involves in ion channel changes after
peripheral nerve injury.

Sodium channels play a significant role in the generation
and transmission of hypoesthesia and hypoalgesia. The
family of sodium channels has five isoforms (Nav1.3,
Nav1.6, Nav1.7, Nav1.8, and Nav1.9), all of which have been
shown to regulate nociceptive responses.46–49 Epigenetic
modification was found to participate in NP mechanism.
Epigenetic silencing of the Nav1.8 gene in the DRG results in
hypoesthesia after nerve injury.50 It has also been reported
that administration of histone deacetylase inhibitors (HDACi)
can rescue the downregulation of Nav1.8 in the DRG and
ameliorate negative symptoms.51 However, a previous study
indicated that the expression of Nav1.6 is decreased in the
early stages of diabetic neuropathic pain (DNP) in rat models

induced by streptozotocin, but increases in later periods.52

Ding et al.53 also reported that epigenetic upregulation of
Nav1.6 gene after lumbar five ventral root transection–
induced NP via TNF-α/STAT3 pathway. These studies pro-
vide promising evidence of epigenetic modification in
sodium channels expressional changes under pain conditions.
However, different models of NP may drive different ex-
pressional changes in the development and maintenance of
NP. So, more studies are needed to verify the expressional
changes in sodium channels in the long run for NP models.
These could indicate some potential treatment value for NP.

Nerve injury–induced downregulation of voltage-gated
potassium channel in the DRG is another critical factor for
neuronal excitability and pain hypersensitivity.54,55 Uchida
et al.56 showed that nerve injury leads to gene-mediated
epigenetic silencing of Kv4.3 gene through the transcrip-
tional suppressor NRSF in the DRG. Furthermore, Laumet
et al.57 demonstrated that euchromatic histone-lysine N-meth-
yltransferase-2 (G9a) induces the transcriptional repression
of K+ channels. G9a and DNMT participate in the down-
regulation of voltage-gated potassium (Kv) channel subunit
Kcna2 (encoding Kv1.2) in the DRG.58–61 In paclitaxel-
induced NP models, decreased expression of K2p1.1 is
associated with DNMT3a.62 Considering that Kv1.2
downregulation contributes to NP genesis; Wu et al.63

microinjected herpes simplex virus (HSV) to overexpress
the Ten-eleven translocation 1 (TET1) protein to help rescue
Kv1.2 expression in the ipsilateral DRG. Thus, down-
regulation of voltage-gated potassium channel may be an
endogenous trigger in NP development and maintenance. In
this sense, developing methods for reducing NP symptoms
with selective epigenetic inhibitors could be a more effective
approach.

Voltage-gated calcium channels (Cav) also play a crucial
role in transmitting pro-nociceptive neurotransmitters, such
as glutamate and substance P, to the spinothalamic tract in the
occurrence of peripheral sensitization.64 Among them, N-
type, P-/Q-type, and T-type Cav are mainly expressed in C
fibers and are up-regulated in inflammatory or pathological
conditions, which are also involved in transmitting pain
signals.65,66 Evidence has indicated that the expression of
voltage-dependent T-type calcium channel 3.2 subunit was
regulated by the epigenetic mechanism in pain-related re-
gions in the DRG and dorsal horn of spinal nerve ligation
(SNL) model mice. Increasing expression of the voltage-
dependent T-type calcium channel 3.2 subunit directly
contributes to neuropathic allodynia.67 However, more pro-
found researches are relatively scarce, and the validation of
their functions is not powerful enough.

Transient receptor potential (TRP) channels are non-
selective cation channels, and their downregulation also
plays an essential role in the NP mechanism. TRPV1,
TRPM8, and TRPA1 are the TRP channels that mainly in-
volved in peripheral sensitization68–70; the TRPA1 promoter
has been differentially methylated to mediate pain
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sensitivity.71 Norihiko et al. also found that epigenetically
increase expression of TRPA1 is associated with burning
sensation symptoms in NP.72

G protein-coupled receptor (GPCR) is the largest trans-
membrane receptor superfamily, which regulates ligand-
gated and voltage-gated ion channels. Furthermore, they
transmit extracellular signals into cells. GPCR and its ligands
play an essential role in NP, mainly including gamma-
aminobutyric acid (GABA) receptors, bradykinin receptors,
opioid receptors, amine receptors, prostaglandin receptors,
and chemokine receptors.73 Emerging studies have shown
that epigenetic modification inhibits opioid receptors in pain
signal transduction during the development of NP. The an-
algesic effects of opioid drugs are highly unsatisfactory, in part
because opioid receptors are down-regulated by epigenetic
silencing of opioid receptor genes in the first-order sensory
neurons of DRG, as described below58,74–76 (Figure 4). Al-
together, these data indicate that epigenetic modification is a
major determinant of pain response in induction and main-
tenance in NP.

These insights improved our understanding of epigenetic
modification in the alteration of ion channel expression
during NP pathophysiology. Future studies focused on the
detailed mechanisms and functional roles of epigenetic
modification are required to develop targeted therapies for
NP.

GABA inhibitory effects

GABA plays a crucial role in the balance between excitatory
and inhibitory signals in the central nervous system (CNS).
The release of GABA is diminished in the spinal dorsal horn
after nerve injury, contributing to the progression of NP.77,78

Glutamate decarboxylase 67 (GAD 67) is a pivotal synthetic
enzyme for GABA. Moreover, GAD1 encodes the tran-
scription of GAD 67. Epigenetic modification may participate
in NP. The expression of DNMT3a, DNMT3b, and methyl-
CpG binding protein 2 (MeCP2) are upregulated at theGAD1
promoter 14 days after chronic constriction injury (CCI). In
contrast, MBD2 expression is decreased, leading to decreased
expression of GAD 67 in the lumbar spinal cord of rat and
decreased expression of GABA.79 However, few studies have
been conducted to investigate the role of epigenetic modi-
fication with GABA. Therefore, more studies are needed to
better understand the underlying mechanisms between epi-
genetic alteration and GABA reduction.

Different epigenetic modifications in NP

Different epigenetic modifications in NP have been found in
many studies. Here, we expound on the epigenetic mecha-
nisms including DNA methylation, histone modification,
ncRNAs and RNA modification.

DNA methylation

DNAmethylation is a crucial epigenetic process that modifies
DNA accessibility and regulates gene expression. In recent
years, increasing studies have shown that aberrant DNA
methylation is associated with the pain mechanism in the
brain structure, as well as cortical function.80 DNA meth-
ylation of gene promoters is generally associated with gene
silencing. Upregulation of DNMT is associated with in-
creased methylation of the MOR gene promoter in the DRG
and spinal cord, leading to downregulated opioid receptor
expression. This reduced expression usually leads to unde-
sirable opioid analgesic effects in NP.76,81 In addition, DNA
methylation represses gene transcription by serving as
docking sites for transcription repressors, such as the family
of methyl-CpG-binding domain (MBD) proteins, including
MBD1-4 and MeCP2.82 It was reported that MBD1 represses
gene expression of Oprm1 [encoding mu opioid receptor
(MOR)] and Kcna2 (encoding Kv1.2) in the DRG neurons by
recruiting DNMT3a to these two gene promoters.60(Figure 3)
Decreased expression of DNMTs causes DNA demethyla-
tion. Emerging studies have shown that the downregulation
of DNMT3b and decreased binding of DNMT3b to gene
promoters causes hypomethylation. In turn, the transcription
factor increased the binding of the specific gene promoter to
activate gene expression.83 It was confirmed that hypo-
methylation leads to the increased expression of the puri-
nergic receptor P2X ligand-gated ion channel 3 (P2X3R)
plasticity in DRG neurons, which contribute to NP.84 Jiang
et al.41 also found that chemokine receptor CXCR3 is up-
regulated by DNA demethylation and its interaction with
CCAAT/enhancer-binding protein α (C/EBPα) aggravates
NP. DNA demethylation is either a passive or indirect process
in mammalian cells. It is usually mediated by ten-eleven
translocation (TET) proteins, including TET1, TET2 and
TET3. Accumulating evidence has shown that TET1-triggered
transcriptional activation at CpG sites in the promoter con-
tributes to neuron plasticity causing NP.85 Furthermore,
TET1-triggered demethylation possibly inhibits DNMT3a
from binding to the promoter regions of the gene, exposing a
transcription factor binding site, and allowing the tran-
scription factor to bind.83,85 Changes of DNA methylation in
the Oprm1 gene and Kcna2 gene promoter are reversed by
TET1-mediated hydroxymethylation, with a concomitant
reduction in pain relief.63

These data demonstrate that DNA methylation is critical
for the development and/or maintenance of hypersensitivity
to pain and this mechanism involves both MBD and re-
versible DNA methylation. DNA methylation is likely a
potential target in neuropathic pain management.

Histone modifications

PTM of histone proteins is another significant facet of
chromatin structure regulation. Histone modifications are
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generally associated with gene expression depending on the
target residues. The most common histone modifications are
acetylation and methylation.

Histone acetylation leads to gene transcriptional activa-
tion, whereas histone deacetylation causes gene repression,
catalyzed by histone acetyltransferases (HATs) and reversed
by the activity of histone deacetylases (HDACs). Emerging
evidence has indicated that enhanced histone acetylation at
promoters is associated with increased expression of pain-
related genes in NP.33,86,87 The NRSF acts as a transcriptional
repressor of genes. Uchida et al. found that hyperacetylation
of histone H4, but not of H3, at the NRSF promoter II in-
creases the expression of NRSF, and thus causes increased
binding to the neuron-restrictive silencer the element within
MOR and Nav1.8 genes that negatively influence the ex-
pression of MOR and Nav1.8.50 (Figure 3) However, in-
creasing histone H4 acetylation in the Scn8a promoter
(encoding Nav1.6) upregulates Nav1.6 expression in DRG.53

These results suggest that acetylation at different promoters
mediates the ion channel mechanism of NP. Moreover, hy-
peracetylation of H3K9ac in the promoter region of in-
flammatory factors and chemokine ligands positively
regulates their expression to induce NP.31–33 Increasing
acetylation in histone H3 and H4 at brain-derived neuro-
trophic factor (BDNF) promoter may influence the balance of
the GABA ergic and glutamatergic neurotransmissions in the
spinal dorsal horn. Therefore, these dysfunctions contribute
to thermal hyperalgesia and mechanical allodynia.88 Con-
versely, increasing acetylation could alleviate the symptoms
of NP when administrated with HDACi.36,51,89 Therefore,
these studies provided valuable insights into the role of
histone modification in the pathophysiological process of NP.
Therefore, histone modification may be potential targets for
the prevention and/or treatment of NP.

Methyl groups are added to lysine and arginine residues
in histone tails in a very specific manner, including mono-,
di-, and tri-methylation. Histone methylation and deme-
thylation are catalyzed by histone methyltransferases and

histone demethylases, respectively. Histone methylation
plays a crucial role in the development of NP.90 Di-
methylation of Lys9 on histone H3 (H3K9me2), which is
mediated by G9a, blocks K+ channel gene promoters.57, 91

In addition, another histone methyltransferase, the suppressor
of variegation 3-9 homologs 1 (SUV39H1, H3K9me3), also
contributes to nerve injury-induced nociceptive hypersensi-
tivity by inhibiting MOR expression in the DRG.92 Macro-
phage migration inhibitory factor (MIF) is a proinflammatory
cytokine regulating neuropathic hypersensitivity by interacting
with and suppressing the descending dopaminergic system.
Wang et al. revealed that the recruitment of G9a and SUV39H1
leads to repression of dopamine levels, which may be asso-
ciated with central sensitization.93,94 Furthermore, EZH2, a
histone methyltransferase, catalyzes the methylation of histone
H3 on K27 (H3K27), resulting in gene silencing. Yadav et al.
showed that global levels of EZH2 andH3K27me3 in the L4–5
spinal dorsal horn are upregulated in SNL models. These
upregulations may play key roles in the activation of microglia
and astrocytes, and the over-production of pro-inflammatory
cytokines.37 Although previous studies have discovered the
role of histone H3 lysine methylation, the functional conse-
quences of histone H4 lysine methylation are not well un-
derstood. Future studies are needed to explore histone
methylation in NP.

NcRNAs

NcRNAs are a cluster of RNAs that do not encode functional
proteins and were initially considered to merely regulate gene
expression at the posttranscriptional level. Generally, they
can be divided into housekeeping ncRNAs and regulatory
ncRNAs. RNA that has a regulatory role is mainly divided into
two categories based on size: short-chain ncRNAs (including
siRNAs, miRNAs, and piRNAs) and long non-coding RNA
(lncRNAs).95,96 Numerous studies have shown that the epi-
genetic modification role of miRNAs and lncRNAs regulate
the expression of specific pain-related genes in NP.

Figure 3. Epigenetic modification of neuropathic pain. After nerve injured, the enzymes of epigenetic modification increased and stabilized
binding to pain-related genes promoters, which epigenetically regulated the expression of pro-inflammatory neuromodulators. These changes
led to neuroinflammation, the activation of glial and ion channels unbalanced, which contributed to pain hypersensitivity and allodynia.
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MiRNAs can negatively regulate gene expression by
canonical binding to their target mRNAs or directly interact
with proteins. MiRNAs mainly control gene expression by
binding to the 30-untranslated regions (3’ UTR), causing
either mRNA degradation or inhibition of protein translation.
(Figure 3) For example, Pan et al. found that CXCR4 ex-
pression was increased in spinal glial cells of mice with SNL-
induced NP. MiR-23a was significantly downregulated by
directly bounding to 3’ UTR of CXCR4 mRNA. Moreover,
overexpression of miR-23a by intrathecal injection of miR-
23a mimics or lentivirus reduced spinal CXCR4 attenuated
SNL-induced pain hypersensitivity. They also revealed that
associated with induction of NOD-like receptor protein 3
(NLRP3) inflammasome, was inhibiting of thioredoxin-
interacting protein (TXNIP) reversed pain behavior elicited
by SNL, miR-23a knockdown, or CXCR4 overexpression.97

Also, DNA methylation play epigenetic modification role by
regulating the transcription levels of miRNAs. Liu et al.98

revealed that DNMT3a-mediated epigenetic suppression of
miR-214-3p promoter enhanced colony-stimulating factor-
1(CSF1) expression in astrocytes to aggravate neuro-
inflammation and neuronal hyperexcitability in SNL model
rats. These results suggested that miRNAmay potentially serve
as novel therapeutic avenues through epigenetic modification
in treating NP. In addition, Zhang et al. showed that N6-
methyladenosine (m6A) modification took part in miRNA
metabolism. In CFA-induced inflammatory pain model,
methyltransferase-like 3 (METTL3) regulate pri-miR-365-3p
processing by manipulating the binding of microprocessor
protein DiGeorge critical region 8 (DGCR8)-dependent
manner.99 This study presents a novel direction that non-
coding RNAs are regulated by RNA modification of NP.

LncRNA could interact with target mRNAs and partici-
pate in transcriptional silencing through transcription factor
that binds to the lncRNA gene promoter. MiRNAs can
negatively regulate gene expression by canonical binding to
their target mRNAs or directly interact with proteins.
MiRNAsmainly control gene expression by binding to the 30-
untranslated regions (3’ UTR), causing either mRNA deg-
radation or inhibition of protein translation. (Figure 3) The
expression of Kcna2 antisense RNA (Kcna2 AS RNA) was
increased by activating myeloid zinc finger protein 1 (MZF1)
after peripheral nerve injury. Upregulation of Kcna2 AS RNA
acted as cis-encoded lncRNA and suppressed the expression of
the Kcna2 gene. These changes led to downregulation of the
K+ channel increasing excitability in DRG neurons and in-
duced NP symptoms.100 Recent work revealed that a con-
served lncRNA named DRG-specifically enriched lncRNA
(DS-lncRNA), was downregulated in DRG of CCI model
mice. The expression of DS-lncRNAwas downregulated by its
transcription factor called POU domain, class 4, transcription
factor 3 (Pou4f3) to DS-lncRNA gene promoter. Down-
regulation of DS-lncRNA increased RALY-triggered Ehmt2
mRNA and its encoding G9a protein expression and corre-
spondingly decreased the expression opioid receptors and

KV1.2 channel, leading to pain hypersensitivities. Rescuing
downregulation of DS-lncRNA reverses the G9a-controlled
downregulation of opioid receptors and KV1.2 channel to
attenuate pain hypersensitivities.101(Figure 3) What’s more,
lncRNA may regulate neuroinflammation to develop or
maintain NP through sponging miRNAs.102–106 For instance,
lncRNA DGCR5 effectively becomes a miRNA sponge for
miR-330-3p to regulate PDCD4 and contributed to mechanical
and thermal hyperalgesia through the upregulation of
inflammation-correlated biomarkers including interleukin 6
(IL-6), TNF α, and IL-1β in the CCI model.105(Figure 3) The
identification of pain mechanism-related miRNAs and
lncRNAs are needed to explore a therapeutic potential.

However, research regarding this aspect is currently in its
infancy, and the mechanisms underlying their role in NP are
yet to be elucidated. Thus, future studies focused on the
detailed mechanisms, and epigenetic modification roles of
ncRNAs are required to develop targeted therapies for NP.

RNA modification

Several modifications, such as N6-methyladenosine (m6A),
have been detected in mRNA, revealing a new perspective on
epi-transcriptomics. Similar to DNAmodification and histone
modification, m6A is also dynamic and reversible. In mo-
lecular mechanisms, m6A affects almost all aspects of mRNA
metabolism, including splicing, translation, and stability, as
well as miRNA maturation, playing an essential role in a
variety of physiological processes. The enzymes involved in
RNA modification can be divided into three categories ac-
cording to their functions.107 Although accumulating evi-
dence has revealed the biological functions of m6A, which
include cell differentiation, immune homeostasis, obesity,
and cancer, few pieces of research have focused on the
function of m6A in the development and maintenance of
NP.108–111

The specific role and molecular mechanism of m6A
methylation modification in NP are full of complexity and
uncertainty, and further research in this field is still needed in
the future. For example, METTL3 is the most studied
“writer” m6A methylation enzyme in various systemic dis-
eases. However, different scholars have found that it has
opposite changes and effects in the same NP model. Zhang
et al. found that the level of spinal m6A modification was
significantly increased in Complete Freund’s adjuvant (CFA)-
induced chronic inflammatory pain model. At the same time,
the expression of methyltransferase-like 3 (METTL3) in the
spinal cord was enhanced. The CFA-induced pain behaviors
could be prevented and reversed in the conditional knock-
down of spinal METTL3 in the spinal cord.99 However, Pan
et al. recently reported the function of METTL3 in CFA-
inflammatory pain is the opposite. They found that peripheral
inflammation leads to a significant decrease of METTL3
expression in the CFA-induced chronic inflammatory pain
model. This decrease correlated with a loss of m6A sites in
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Tet1 mRNA. By knocking down or conditionally deleting
spinal METTL3 elevated the levels of m6A in Tet1 mRNA
and reduced the binding of YTHDF2 to Tet1 mRNA, sta-
bilized the increased expression of Tet1 mRNA and TET1
protein in spinal cord, resulting in pain hypersensitivity.112

These opposite findings suggested that m6A enzymes may
display distinct changes in different nervous tissues from
different types of pain models. Moreover, there may be some
m6A enzymes waiting to be unveiled. Furthermore, recent
studies have observed that METTL3 protein did not exhibit a
significant change in the NP model.113,114 These data again
indicate that the role and mechanism of METTL3 and other
m6A methylase mediated NP are pretty complex, and more
evidence is needed to clarify. Moreover, the role of other m6A
methylases in NP has also been reported. Li et al. reported that
peripheral nerve injury increases the protein expression of
FTO in the injured DRG, which likely contributes to the
mechanisms of NP. Mimicking the increased expression of
FTO correlates with a loss of m6A sites in Ehmt2 mRNA
resulting in upregulation of Ehmt2-encodingG9a protein in SNL
and CCI models. And the upregulated expression of G9a protein
led to gene silencing, resulting in NP symptoms.114,115(Figure 3)
FTO-triggered removal of toll-like receptor4 (Tlr4) mRNAm6A
sites may participate in nociceptive hypersensitivities in
hemorrhage-induced thalamic pain model. After microinjection
of type IV collagenase (Coll IV), the FTO protein levels but not
mRNA were time-dependently increased in the ipsilateral thal-
amus. The upregulation expression of FTO increase erased m6A
sites in Tlr4 mRNA in the hemorrhagic thalamus, reducing the
binding of YTH domain family protein 2 (YTHDF2, “reader” of
m6A-binding protein) to 3’-untranslated regions of Tlr4mRNA,
stabilized the increased expression of Tlr4 mRNA and upre-
gulated TLR4 receptors in the thalamus, resulting in NP

symptoms. Therefore, FTO-mediated methylation of m6A
participates in hemorrhage-induced thalamic pain by increasing
Tlr4 mRNA expression in thalamic neurons.116

These discoveries indicate that m6A modification may
play a significant role in the development of pathological
pain. Until now, the findings of m6A modification have been
mainly focused on chronic inflammatory pain. There are few
investigations concentrating on the relationship between
m6A modification and NP. More studies are needed, which
will help us better understand the molecular mechanism of
NP.

Crosstalk of epigenetic modifications

Crosstalk between different modifications of gene regulation
has been shown to play a key role in epigenetics. It has been
reported that DNA methylation and several covalent histone
protein post-translational modifications have a highly inter-
active effect rather than simply acting under harmful
stimuli.117,118 Histone modification can also positively or
negatively affect other modifications.23,119–121 Endogenous
DNMT3a could interact with histone methyltransferase
SUV39H1 enzymes, leading to gene silence. Moreover, G9a
seems to act in concert with SUV39H1.122,123 In NP models,
Oprm1 gene could be regulated by distinct epigenetic
mechanisms. It has been shown that DNMT3a is upregulated
and induces downregulation of MOR expression after pe-
ripheral nerve injury.76,81 Zhang et al.75 also report that
SUV39H1, a histone methyltransferase, is co-expressed with
MOR. In the same year, other investigators found that G9a
(encoded by Ehmt2), a histone 3 at lysine 9 methyl-
transferase, also regulates MOR expression in the develop-
ment of NP.74 However, it is unclear whether histone

Figure 4. Crosstalk between different epigenetic layers. Chromatin is typically marked by multiple modifications. Crosstalk between these
epigenetic marks may work in concert in the process of NP development and progression. (a) Crosstalk enforcing in gene activation. DNA
demethylation mediated by Ten-eleven translocation (TET) protein and histone acetylation lead to gene activation. (b) Crosstalk resulting in
gene silencing. DNA methylation and histone methylation could lead to gene silencing, and they may have multiple feedback loops to regulate
the gene transcription.
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methylation is also highly coordinated with DNA methyla-
tion through multiple feedback loops (Figure 4). Our un-
derstanding of the properties of this epigenome network in
NP is in its infancy. RNA m6A modification and epigenetic
modifications also have crosstalk in pain models. TET pro-
teins usually mediate DNA demethylation. The m6A meth-
ylase METTL3, which is responsible for the increased m6A
levels of mRNA, affects mRNA degradation and translation.
Pan et al. reported that METTL3 was downregulated, leading
to a loss of m6A site in Tet1 mRNA. And the expression
of TET1 was upregulated, which contributed to the pain
hypersensitivity symptom.112 This investigation reveals the
co-transcriptional interplay between m6A and DNA deme-
thylation. Li et al. provided the evidence that increased ex-
pression of FTO erased m6A in euchromatic histone lysine
methyltransferase 2 (Ehmt2) mRNA (encoding the histone
methyltransferase G9a) and upregulated the level of G9a in
DRG. Increasing expression of G9a negatively regulated the
transcription of MOR in SNL models.114 The two types of
demethylations are functionally correlated with significant
co-occurrences of genetic downregulation.124 However, few
studies have investigated the relationship between these
epigenetic modifications and how these marks can work in a
coordinated state under NP conditions. Further studies are
needed to explore the crosstalk occurring among these epi-
genetic modifications and help us understand of epigenetic
mechanisms in NP.

NP therapies based on epigenetic modifications

In view of the intrinsic reversibility of epigenetic modifica-
tions, chromatin modifiers are potential targets for novel
therapeutic strategies against NP.125,126 Several drugs targeting
epigeneticmodifiers are currently approved for the treatment of
various diseases by the Food and Drug Administration and
European Medicines Evaluation Agency, including HDACi
and DNMT inhibitors. However, most of these inhibitors are
being assessed in clinical trials127 (Table 1).

Aberrant hypermethylation induced by the silencing of
pain-related genes is commonly associated with the devel-
opment of NP. The expression of DNMT3a is increased in the
DRG and spinal cord of NP model rats with an isoform-
nonspecific DNMT inhibitor N-Phthalyl-L-tryptophan (RG108)
that upregulates MOR expression and attenuates thermal
hyperalgesia in CCI model animals.81 HDACi inhibit the
removal of acetyl groups on histone proteins, resulting in
increased histone acetylation which provides a more ac-
cessible chromatin structure with increased transcription.
Increasing interest has been focused on developing of
HDACi for cancer treatment, as they can modulate gene
expression and the activity of numerous non-histone pro-
teins. TSA, valproic acid (VPA), sodium phenyl butyrate,
and romidepsin (LAQ-824) belong to the first generation of
HDACi and are usually administered intravenously.

In contrast to the first generation of HDACi, second-
generation agents, including entinostat (MS-275) and vor-
inostat (SAHA), can be used as oral formulations.128 A
growing number of studies have illustrated that HDACi can
be significantly useful in mitigating NP symptoms in rat
models (Table 1).43,51,74,89,129–131 Matsushita et al.51 showed
that administration of TSA, VPA, and SAHA significantly
rescues the expression of Nav1.8, thus restoring C-fiber-
related hypoesthesia. Moreover, Uchida et al.89 found that
morphine analgesia is restored when treated with HDACi
such as TSA and VPA, which are accompanied by an increase
in MOR expression.

Intriguingly, some dietary supplements such as S-
adenosylmethionine (SAM) and folic acid (FA) which act
as critical methyl donors in the CNS can attenuate SNI-
induced hypomethylation and NP symptoms.132–134 Some
traditional Chinese medicines have been found to ameliorate
allodynia and hyperalgesia by reducing the recruitment of
transcriptional factors and acetyl-histone H3/acetyl-histone
H4 on pain-related genes.135,136 These discoveries have at-
tracted renewed research attention in specific scenarios be-
cause of their potential as an analgesic adjuvant in clinical
pain management.

However, most of the available epigenetic drugs are non-
specific, and their long-term toxicity has not yet been tested.
Therefore, epigenetics-based strategies for pain therapy are
still in clinical trials. Selectivity of the epigenetic target for
treating NP is essential to reduce the risk of adverse effects.

Future directions

Despite the overwhelming evidence, the pathological process
of NP has not been linked to epigenetic changes. However,
there are many critical questions for us to further explore
epigenetic processes in NP. First, many of the experimental
pain states studied are not commonly seen in clinical practice,
while clinical studies in humans are lacking. Second, most of
the available data on epigenetics typically use tissues such as
the DRG and spinal cord in animal models. Thus, there is an
urgent need to find a non-invasive alternative strategy in
humans. Third, preclinical studies have focused for the most
part on early time points, whereas the clinical symptoms are
usually significantly prolonged. How does a primary injury
result in long-lasting epigenetic marks, and how are they
maintained? Could they be reversed at any time point after an
injury? When does interventional therapy better reverse
symptoms? However, how epigenetic marks change during
the NP process is uncertain. Finally, some epigenetic mod-
ifications are preferentially expressed in cell-type–specific
conditions.137 The epigenetic inheritance of different cell
types and even individual cells is unknown. Thus, future
single-cell epigenetic studies will be necessary to deepen our
understanding of NP.

Furthermore, neuroimaging data shows that chronic pain
corresponds with changes in the amygdala, the anterior
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cingulate cortex,138 the prefrontal cortex (PFC), the insular
cortex,139 and the nucleus accumbens (NAc).140 These re-
gions display robust interconnections with each other, and
directly or indirectly modulate the activity of other pain
modulating networks. Tajerian et al. found that global
methylation in the prefrontal cortex and amygdala, but not the
thalamus or visual cortex were decreased in SNI model after
6 months. It may reverse nerve injury-related reductions in
global DNA methylation in the PFC and attenuated hyper-
sensitivity to mechanical and cold stimuli in the environment
with higher DNA methylation.141 Further, they also reported
that differential methylation in the PFC as well as DNA
methylation changes in T cells was associated with peripheral
nerve injury, which may be “predictors” of chronic pain.82

Also, Topham et al. identified that pain-related genes had time
point-specific differential methylation of individual genes
and functional pathways in the PFC.83 Therefore, although
current studies on NP epigenetic modification mechanism
mainly focus on peripheral nervous system, the above studies
suggest that there may be more complex and important
epigenetic modification mechanism in central mechanism,
which is worthy of further exploration in the future.

Conclusion

Currently, the molecular mechanisms underlying NP and
epigenetic modifications are not fully understood. However,
evidence increasingly suggests that epigenetic modifications,
including DNAmethylation, histone modifications, and RNA
modification, play critical roles in the development and
maintenance of NP by regulating neuroinflammatory re-
sponses, activation of glial cells, ion channels, and unbal-
anced inhibitory receptors. Furthermore, communication
between different epigenetic modifiers is still elusive. For-
tunately, research into epigenetic modifications in NP is
emerging. Epigenomics significantly extends our under-
standing of NP’s pathogenesis and pathophysiology and
offers attractive potential for novel therapeutic approaches.
With increasing knowledge of epigenetic modifications and
the molecular mechanism of NP, a promising future of ef-
fective therapies for NP is not far behind.
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