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Background: Language recovery is limited in moderate to severe post-stroke aphasia
patients. Repetitive transcranial magnetic stimulation (rTMS) has emerged as a
promising tool in improving language dysfunctions caused by post-stroke aphasia, but
the treatment outcome is as yet mixed. Considerable evidence has demonstrated the
essential involvement of the cerebellum in a variety of language functions, suggesting
that it may be a potential stimulation target of TMS for the treatment of post-stroke
aphasia. Theta burst stimulation (TBS) is a specific pattern of rTMS with shorter
stimulation times and better therapeutic effects. The effect of continuous TBS (cTBS)
on the cerebellum in patients with aphasia with chronic stroke needs further exploration.

Methods: In this randomized, sham-controlled clinical trial, patients (n = 40) with
chronic post-stroke aphasia received 10 sessions of real cTBS (n = 20) or sham
cTBS (n = 20) over the right cerebellar Crus I+ a 30-min speech-language therapy.
The Western Aphasia Battery (WAB) serves as the primary measure of the treatment
outcome. The secondary outcome measures include the Boston Diagnostic Aphasia
Examination, Boston Naming Test and speech acoustic parameters. Resting-state
fMRI data were also obtained to examine treatment-induced changes in functional
connectivity of the cerebro-cerebellar network. These outcome measures are assessed
before, immediately after, and 12 weeks after cerebellar cTBS intervention.

Discussion: This protocol holds promise that cerebellar cTBS is a potential strategy to
improve language functions in chronic post-stroke aphasia. The resting-state fMRI may
explore the neural mechanism underlying the aphasia rehabilitation with cerebellar cTBS.

Keywords: study protocol, aphasia, continuous theta burst stimulation, cerebellum, randomized controlled trial
(RCT)
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INTRODUCTION

Aphasia is an acquired language disorder caused by ischemic
or hemorrhagic stroke (Engelter et al., 2006), characterized
by impairments in verbal fluency, language comprehension,
word repetition, and picture naming as well as reading/writing
skills. Approximately, one-third of post-stroke patients develops
aphasia (Engelter et al., 2006), which persists in approximate
20% of long-term stroke survivors (Berthier, 2005). Patients with
post-stroke aphasia suffer from decreased quality of life, limited
independence, and substantial long-term disability (Cruice et al.,
2011; Ellis et al., 2012). To date, speech-language therapy (SLT)
is considered as the standard protocol for the treatment of
post-stroke aphasia and produce beneficial effects on language
functions, but the effect size is somewhat small that results
in modest improvements (Brady et al., 2012). Therefore, it is
important to develop other therapeutic approaches to improve
the effectiveness of SLT for aphasia treatment.

In recent years, repetitive transcranial magnetic
stimulation (rTMS) has emerged as a promising non-invasive
neuromodulation method to augment the treatment of post-
stroke non-fluent aphasia (Hartwigsen and Saur, 2017; Fisicaro
et al., 2019; Ren et al., 2019). Generally, low-frequency rTMS
(≤1 Hz) is considered to decrease cortical excitability, while
high-frequency rTMS (≥5 Hz) produces the opposite effect
(Chen and Seitz, 2001). The majority of recent studies have
shown naming improvements in post-stroke non-fluent
aphasia by delivering inhibitory low-frequency rTMS over the
intact right inferior frontal gyrus (IFG) (the right hemisphere
homolog of Broca’s area) (Hara et al., 2015; Harvey et al., 2017;
Ren et al., 2019; Kim et al., 2020). Similar beneficial effects
on post-stroke aphasia were also observed when excitatory
high-frequency rTMS was applied over the left perilesional
cortex (Broca’s area) or right intact IFG (Hara et al., 2017;
Hu et al., 2018). Alternatively, applying rTMS over other
cortical regions is also beneficial for post-stroke aphasia, as
evidenced by improvement in speech perception and auditory
comprehension following low-frequency rTMS over the right
posterior superior temporal gyrus (pSTG) (Kawamura et al.,
2019; Ren et al., 2019). Nevertheless, it is noteworthy that the
evidence for beneficial effects of rTMS on post-stroke aphasia
is not unequivocal (Breining and Sebastian, 2020). Some studies
reported null results when low-frequency rTMS was applied
over the right hemisphere, showing that rTMS did not add to
the effect of SLT on post-stroke aphasia (Santos et al., 2017;
Heikkinen et al., 2018). Among many possible resources of the
inconsistencies across the studies investigating the efficacy of
rTMS for post-stroke aphasia are type of stimulation modality
(inhibitory or excitatory), laterality of brain hemisphere (left or
right), and choice of stimulation target (Broca’s area, STG, etc.)
(Breining and Sebastian, 2020). Particularly, the optimal protocol
of rTMS over the right hemisphere remains controversial for
aphasia rehabilitation (Anglade et al., 2014), which is due to
the limited knowledge about the causal links between cortical
brain regions and language functions. Accordingly, developing
a novel stimulation protocol with other potential targets that are
significantly involved in language processing is important for

improving effectiveness of TMS in augmenting the treatment of
post-stroke aphasia.

The present study protocol proposes a research protocol that
stimulates the right cerebellum with TMS to augment SLT for
patients with post-stroke aphasia. Multiple lines of evidence have
demonstrated significant contributions of the right cerebellum
to a variety of language functions, including word retrieval
and generation, verbal working memory, language learning, and
semantic processing (Gordon, 1996; Desmond and Fiez, 1998;
Murdoch, 2010; Stoodley, 2012; Mariën and Borgatti, 2018).
Clinical evidence has shown deficits in a variety of language tasks
as a result of damage to the right cerebellum (Marien et al., 1996,
2001; Silveri et al., 1998). Moreover, a growing body of empirical
and clinical studies using transcranial direct current stimulation
(tDCS) has established a causal link between the right cerebellum
and language functions. For example, applying tDCS over the
right cerebellum in healthy individuals exerts modulatory effects
on various speech/language tasks, such as verbal generation
(Pope and Miall, 2012), verbal fluency (Turkeltaub et al., 2016),
semantic prediction (D’Mello et al., 2017), and speech motor
learning (Lametti et al., 2018). Clinically, several recent studies
showed augmentation of SLT in post-stroke aphasia with tDCS
over the right cerebellum (Sebastian et al., 2016, 2020; Marangolo
et al., 2018). For example, one randomized, double-blind,
sham-controlled study found significant improvement in verbal
generation in patients with post-stroke aphasia following 4-
week cathodal tDCS over the right cerebellum coupled with SLT
(Marangolo et al., 2018). In another randomized, double-blind,
sham-controlled study (Sebastian et al., 2020), both cathodal
and anodal tDCS over the right cerebellum led to improved
picture naming in chronic post-stroke aphasia, while greater
gains were noted for patients receiving cathodal cerebellar tDCS.
Taken together, these studies provide evidence suggesting that the
cerebellum may be an optimal site of neuromodulation for the
treatment of post-stroke aphasia.

On the other hand, continuous theta burst stimulation
(cTBS) is applied over the right cerebellum in the present
study protocol. As a specific form of rTMS, cTBS produces an
inhibitory effect on cortical excitability for up to 60 min after
less than 1-min of stimulation (Huang et al., 2005). In addition
to modulating cerebellar activity (Koch, 2010), cTBS over the
right cerebellum exerts modulatory effects on speech/language
production (Arasanz et al., 2012; Sheu et al., 2019). Cerebellar
TBS is safe and tolerable and has reported no serious adverse
effects (Hurtado-Puerto et al., 2020). The previous studies
have shown that the cerebellar cTBS modulates motor cortical
excitability and improves motor symptoms (e.g., gait ataxia
and dyskinesia) in a variety of neurodegenerative diseases, such
as Parkinson’s disease (PD) and spinocerebellar ataxia (SCA)
(Koch et al., 2009, 2014; Benussi et al., 2020; Maas et al.,
2020). Moreover, one recent study on patients with SCA showed
that single-session c-TBS over the right cerebellum produces
facilitatory effects on their abnormalities in auditory-motor
integration for vocal pitch regulation (Lin et al., 2022). Therefore,
it is plausible to assume that stimulating the right cerebellum with
inhibitory cTBS coupled with SLT leads to beneficial effects on
chronic post-stroke aphasia, which is yet to be answered.
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To this end, the purpose of the present study is to investigate
the short- and long-term effectiveness of cTBS over the right
cerebellum in augmenting language recovery in chronic post-
stroke aphasia in a randomized, sham-controlled design. In
addition to aphasia test batteries and speech acoustic analyses
for evaluation of treatment outcome, the resting-state functional
magnetic resonance (RS-fMRI) is also used to explore the neural
mechanisms underlying aphasia rehabilitation. The previous
studies have shown associations between improved spelling
or phonemic fluency and increased resting-state functional
connectivity between the cerebellum and language-related
cortical regions for patients with chronic post-stroke aphasia or
healthy individuals following tDCS over the right cerebellum
(Sebastian et al., 2016; Turkeltaub et al., 2016). Accordingly,
we hypothesize that, following cTBS over the right cerebellum,
patients with chronic post-stroke aphasia will exhibit improved
language functions and increased functional connectivity within
the cerebro-cerebellar language network. This randomized,
sham-controlled study provides significant new insights into
the therapeutic efficacy of cTBS over the right cerebellum
to augment SLT for post-stroke aphasia and the underlying
neuroplastic mechanisms.

METHODS

Study Design
This is a prospective, randomized, sham-controlled, single-center
study (Registration number: ChiCTR210049828) that will be
conducted in the Department of Neurorehabilitation, Wuxi
Tongren Rehabilitation Hospital, China. Hospitalized patients
with chronic post-stroke aphasia are recruited to participate in
the study. They are randomly assigned with a ratio of 1:1 to a real
or sham stimulation group. Details about the study design and
data collection are shown in Figure 1 and Table 1. On the day
of enrollment (T0), after the end of cerebellar cTBS intervention
(T1), and 12 weeks post-treatment completion (T2), aphasia test
batteries and speech acoustic analyses are performed to evaluate
language functions in post-stroke aphasia. Also, RS-fMRI data
are collected before and after the end of the intervention. This
study has been approved by the Ethics Committee of Wuxi
Mental Health Center and Wuxi Tongren Rehabilitation Hospital
(WXMHCIRB2021LLky078).

Participants
The inclusion and exclusion criteria of the present study
correspond to the guidelines for using rTMS in clinics and
research (Wassermann, 1998; Rossi et al., 2009; Rossini et al.,
2015). Participant inclusion criteria are: (1) patients aged 40–
80 years; (2) first-ever unilateral ischemic stroke on the left
hemisphere; (3) longer than 6 months post-stroke; (4) non-
fluent aphasia as confirmed by the Western Aphasia Battery
(WAB); (5) right-handed, native-Chinese speakers without
experience of professional vocal or instrumental training; (6)
Boston Diagnostic Aphasia Examination (BDAE) Grades I–III;
and (7) elementary education level and above, with normal or
corrected to normal vision. Participant exclusion criteria are:

(1) history of substance or alcohol abuse, premorbid seizures,
or neuropsychiatric diseases; (2) contraindications involving
TMS and fMRI (e.g., skull defect or skin damage at the
stimulation site, intracranial implant, cardiac pacemaker, and
implanted drug pumps); (3) history of neurosurgical treatment;
(4) unable to cooperate with assessment and treatment due to
severe cognitive impairment; and (5) other neurological disease.
All participants provide written informed consent prior to
participating in the study.

Sample Size
The sample size was calculated using PASS software (v.15.0) on
the basis of previous studies. With an effect size of 0.5 based on
the WAB-AQ (Hu et al., 2018), we expect that the target effect
size had 80% of power with a type I error of 5% (α = 0.05). Thus,
the sample size of each group is at least 16. With an assumption
of 20% dropout rate, a sample size of 20 participants will be
targeted for each group.

Randomization and Blinding
Once the inclusion criteria are satisfied, the participant is
allocated to one real or sham cTBS group using the network-
based random sequence generator to receive real or sham cTBS
over the right cerebellum coupled with SLT. Based on the
previous studies, patients will receive a 10-day cerebellar cTBS
within 2 weeks (Thiel et al., 2013; Wang et al., 2014; Hara and
Abo, 2021). The concealment of allocation is performed using
sealed envelopes with numbers. The participants and physicians
performing the SLT or the data collection/processing are blinded
to the grouping. Note that physicians conducting the cTBS
intervention cannot be blinded due to the nature of the cTBS
intervention and are thus not involved in the research process.
The designer and the staff responsible for allocation concealment
will not participate in the whole intervention.

Interventions
The application of cerebellar cTBS is administered using
Magneuro 100 (Vishee Medical Technology Co., Ltd., Nanjing,
China) equipped with a figure 8-shaped coil (7 cm out diameter).
Before intervention, a single-pulse TMS will be applied over the
right primary motor cortex to determine active motor threshold
(AMT). The AMT is defined as the lowest stimulus intensity that
produces a motor evoked potential (MEP) of >200 µV in at least
5–10 consecutive trials with 10% maximal voluntary contraction
of the first dorsal interosseous muscle of the non-paretic hand
(Koch et al., 2020). Each participant receives real or sham cTBS
over the Crus I of the right lateral cerebellum (3 cm right and
1 cm inferior to the inion) at 80% of AMT (Lin et al., 2022).
A standard cTBS protocol consists of bursts of 3 pulses at 50 Hz
that are repeatedly presented at 5 Hz, resulting in a total of 600
pulses in 40 s. The coil is oriented vertically to the target with
the handle pointing superiorly during real stimulation; while the
stimulation face of the coil is turned 90◦, so that the side of the
coil is placed on the target during sham stimulation (Rastogi
et al., 2017). Immediately following real or sham cerebellar cTBS,
all participants receive a 30-min SLT that includes training on
comprehension, expression of spoken language, semantic, and
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FIGURE 1 | Flow chart of study procedure. cTBS, continuous theta burst stimulation.
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TABLE 1 | Overview of data collection and study timings.

Study period visits Pre-enrollment T0 T1 T2

Relative start of treatment days −1 week Day 0 ±3 days after intervention ±3 days after 12 weeks of intervention

Screening (in-/exclusion criteria) ×

Written informed consent ×

Medical history ×

Randomization ×

NIHSS ×

WAB × × ×

BDAE × × ×

BNT × × ×

Acoustic evaluation × × ×

RS-fMRI × ×

phonological processing. The content of SLT will be modified
based evaluation of language function on an individual level.
Totally, each participant receives 10 sessions of cerebellar cTBS
coupled with SLT (5 sessions per week) within 2 weeks.

Outcome Measures
The primary outcome measure is the WAB assessment that
is divided into four subitems including spontaneous speech,
auditory verbal comprehension, repetition, and naming. The
original scores of the four items are 20, 200, 100, and 100,
respectively. An aphasia quotient (AQ) is calculated using the
following formula: AQ = (spontaneous speech + auditory verbal
comprehension/20 + repetition/10 + naming/10) × 2. The AQ
indicates the severity of aphasia and can be used as an index for
evaluating the improvement and deterioration of aphasia. The
highest AQ score is 100, and the normal range is 98.4–99.6. AQ
<93.8 is considered as aphasia.

In addition to the WAB scores, there are several secondary
measures of treatment outcome including BDAE, Boston Naming
Test (BNT), speech acoustic parameters, and RS-fMRI. BDAE
is used to measure the severity of impaired language function
that can be divided into five grades from severe to mild. The
BNT is an assessment tool to measure the confrontational
word naming of 30 object pictures. The speech acoustic
parameters include fundamental frequency, intensity, speaking
rate, maximum phonation time, range of voice features, and
speech intelligibility. Speech signals are recorded using a laptop
at sampling frequency 44.1 K Hz and Praat software is used to
extract acoustic parameters.

RS-fMRI data are acquired using a 3.0 T MAGNETOM Skyra
scanner (Siemens, Germany). The participants are instructed
to lie still with their eyes closed and think of nothing.
Functional images are obtained using echo-planar imaging (EPI)
pulse sequence with the following parameters: repetition time
(TR) = 2,000 ms; echo time (TE) = 30 ms; 35 slices, field of
view (FOV) = 224 mm × 224 mm; slice thickness = 3.5 mm;
layer spacing 0.7 mm; flip angle (FA) = 90◦; acquisition matrix
64 × 64; voxel size = 3.5 mm × 3.5 mm × 3.5 mm. For
registration purposes, a set of high-resolution structural images
are acquired through a T1-weighted sequence: 192 sagittal slices;
slice thickness = 1 mm; TR = 6.6 ms; TE = 3.1 ms; FA = 12◦;

FOV = 256 mm × 256 mm. The scanning lasted for 8 min and
produced 240 brain volumes.

Data Analysis
Repeated-measures analysis of variances (RM-ANOVAs) are
performed to examine differences in the WAB, BDAE, and
BNT scores as well as speech parameters across the conditions,
with a within-subject factor of phase (pre- vs. post-treatment)
and a between-subject factor of group (real vs. sham cTBS). In
the post hoc analysis, multiple comparisons are corrected with
Bonferroni adjustment. Prior to entering the data into the RM-
ANOVAs, Kolmogorov–Smirnov test is used to verify whether
they are normally distributed. For non-normally distributed
measures, the Wilcoxon Signed Rank Test is used for comparison
across the conditions. The intention-to-treat (ITT) analysis is
used when there are missing data.

The preprocessing of RS-fMRI data is conducted using DPABI
software (v. 6.1) on the MATLAB platform (Mathworks, Natick,
MA, United States) (Yan et al., 2016). The main steps are as
follows: (1) use MRIConvert software (v. 2.1.0, Lewis Center,
Eugene, OR, United States) to convert raw data in DICOM
format to NIFI format; (2) remove the first 10 slices and correct
the remaining 230 slices for slice timing; (3) correct head motion
exceeding 3 mm in any direction or head rotation exceeding
3◦; (4) spatially normalize the functional images to a standard
Montreal Neurological Institute (MNI) space and resample them
to a voxel size of 3 mm × 3 mm × 3 mm; (5) apply a band-pass
filter (0.01–0.08) for each voxel to reduce the influence of low
frequency fluctuation and high-frequency noise (Lv et al., 2018);
and (6) smooth the functional data with a 6-mm full width at half
maximum (FWHM) Gaussian kernel.

After the preprocessing, regional homogeneity (ReHo), degree
centrality (DC), and seed-to-voxel analyses are conducted to
measure the local and global functional connectivity within
the language networks. ReHo is calculated based on the
Kendall’s coefficient of concordance (KCC), which measures the
consistency of the time signal between a voxel and surrounding
voxels. Higher ReHo values represent better consistency between
the local voxel and the regional brain activities. DC values
reflect the network connection intensity between a certain voxel
and all of the brain, indicating the importance of this voxel as
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the network node (Zang et al., 2004). One-way ANOVAs are
conducted on the ReHo and DC values to explore differences
across the conditions within the predefined gray matter mask.
The ANOVA F maps are corrected using Gaussian random
field (GRF) correction (single voxel p < 0.001, cluster level
p < 0.05). The ReHo and DC values of the peak voxels in the
surviving clusters are extracted and entered into SPSS (v. 22)
for further analysis. Seed-to-voxel analyses are conducted with
a priori regions of interest (ROI). The ROIs consist of language-
related regions in cerebellar Crus I; IFG pars opercularis; IFG pars
triangularis; primary motor cortex (M1); anterior and posterior
STG; angular gyrus; anterior and posterior supramarginal gyrus
(SMG), which are selected from the AAL atlas (Tzourio-Mazoyer
et al., 2002). These ROI-based functional connectivity maps
are statistically compared between pre- and post-treatment and
between real cTBS and sham stimulation group. Differences
across the conditions are considered significant when p < 0.05 at
the voxel level, with a false discovery rate (FDR) cluster corrected
p < 0.05.

Safety
Adverse effects are defined as any negative experiences that
occur to the patients who underwent the cerebellar cTBS or
MRI scanning. All adverse effects will be reported by the
investigator during the treatment and within 1 week after
the end of treatment. Particularly, seizures that are the most
severe TMS-related adverse effects with a risk of approximately
0.02%, are only expected to occur during or immediately after
cerebellar cTBS. In addition, adverse effects that occur during
the MRI scanning will be reported within 24 h. Earplugs
will be provided to patients to protect their hearing against
noise. Any serious incident will be immediately reported to
the Medical Research Ethics Committee of Wuxi Tongren
Rehabilitation Hospital.

DISCUSSION

This randomized, sham-controlled clinical trial investigates the
neural and behavioral effects of cTBS over the right cerebellum
on chronic post-stroke aphasia. We hypothesize that stimulating
the right cerebellum with inhibitory cTBS can produce
beneficial effects in augmenting SLT for language recovery
in post-stroke aphasia by regulating functional connectivity
between the right cerebellum and the cerebral cortical regions
involved in language processing. These results can provide
supportive evidence that the right cerebellum may be a potential
optimal stimulation target for the treatment of chronic post-
stroke aphasia.

Variability in lesion location and size in brain reorganization
for post-stroke aphasia complicate efforts to determine the
optimal stimulation strategy at the cortical level (Breining and
Sebastian, 2020). Right cerebellar stimulation, in contrast, can
potentially serve as a single target site that can be used across
patients with post-stroke aphasia with varying site and size of
lesion in the left hemisphere (Turkeltaub et al., 2016). The present
study proposes a new stimulation protocol for language recovery

in chronic post-stroke aphasia by applying inhibitory cTBS over
the right cerebellum, since this region has been demonstrated to
be essentially involved in a variety of language functions (Gordon,
1996; Desmond and Fiez, 1998; Murdoch, 2010; Stoodley, 2012;
Mariën and Borgatti, 2018) and damage to this region leads to
impaired language performance (Marien et al., 1996, 2001; Silveri
et al., 1998). More importantly, several clinical studies reported
improvement in verbal generation or naming functions in the
patients with chronic post-stroke aphasia following anodal or
cathodal tDCS over the right cerebellum (Sebastian et al., 2016,
2020; Marangolo et al., 2018), providing further evidence in
support of the right cerebellum as an optimal stimulation site
for neuromodulation in aphasia. On the other hand, Sebastian
et al. (2020) found greater beneficial effects on naming functions
(relative to sham) when chronic post-stroke patients received
cathodal tDCS over the right cerebellum than when they received
anodal cerebellar tDCS. And applying inhibitory cTBS over the
right cerebellum led to facilitatory effects on impaired vocal
motor control in patients with SCA (Lin et al., 2022). As
compared to rTMS, cTBS induces robust, long-lasting changes
in activation in much shorter periods. Therefore, cTBS over the
right cerebellum proposed in the present study protocol may be
a promising technique to augment SLT for language recovery in
chronic post-stroke aphasia.

The present study protocol also investigates the neural
effects of cTBS over the right cerebellum on chronic post-
stroke aphasia with RS-fMRI. The majority of previous studies
reported behavioral performance assessed by aphasia test
batteries following stimulation with rTMS or tDCS (Sebastian
et al., 2020), but little is known about the underlying neural
mechanisms (Sebastian et al., 2016). In a case report study that
combined tDCS and RS-fMRI, Sebastian et al. (2016) found
that improvement in spelling induced by anodal tDCS over
the right cerebellum was accompanied by increased functional
connectivity of the cerebro-cerebellar network. In another study
on healthy individuals (Turkeltaub et al., 2016), in addition to
improved phonemic fluency, increased resting-state functional
connectivity between the cerebellum and speech-motor areas
and within the left-lateralized network involved in cognitive
aspects of language and motor aspect of speech production were
found following tDCS over the right posterolateral cerebellum.
Moreover, cerebellar cTBS can modulate activity in the neural
pathway that reciprocally links the cerebellum and prefrontal and
parietal regions involved in language production (O’Reilly et al.,
2010; Stoodley, 2012) by altering short- and long-intracortical
inhibition (Koch et al., 2008). Therefore, it is possible that c-TBS
over the right cerebellum is effective in an augmenting chronic
post-stroke aphasia by altering functional connectivity of the
cerebro-cerebellar network.

The present study applies a figure-of-8 coil to the cerebellum.
This coil has been shown to be a flat coil model with increased
trial tolerances (Hardwick et al., 2014) that can stimulate the
superficial layers of the cerebellar cortex (Li et al., 2019). The
reported average depth of the lateral cerebellar gray matter is
approximately 14.6–14.7 mm from the scalp surface, which is
within a range of∼30 mm at 100% peak output of the figure-of-8
coil (Hardwick et al., 2014). Several studies have successfully
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applied rTMS or TBS over the cerebellum with a figure-of-8 coil
to change motor or speech performance (Theoret et al., 2001;
Koch et al., 2008; Popa et al., 2010; Demirtas-Tatlidede et al., 2011;
Lin et al., 2022). On the other hand, the present study protocol
performs acoustic signal analysis to extract speech parameters for
the evaluation of language function with the WAB, BDAE, and
BNT scores. The previous research has shown impaired abilities
of speech production and motor control in patients with non-
fluent aphasia (e.g., Broca’s aphasia) (Hillis, 2007; Behroozmand
et al., 2018). Therefore, performing speech acoustic analysis
has the potential to comprehensively elucidate the mechanisms
underlying the treatment of post-stroke aphasia with cTBS over
the right cerebellum coupled with SLT.

CONCLUSION

In conclusion, the present study protocol proposes a randomized,
sham-controlled clinical trial to investigate the efficacy of cTBS
over the right cerebellum in augmenting language recovery
in chronic post-stroke aphasia and the neural mechanisms
underlying the treatment outcome. If this intervention study
produces a significant positive effect as expected, the findings will
provide valuable evidence for establishing a novel and feasible
stimulation protocol to promote language recovery from chronic
post-stroke aphasia.
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