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Abstract: Cancer is a complex ailment orchestrated by numerous intrinsic and extrinsic pathways.
Recent research has displayed a deep interest in developing plant-based cancer therapeutics for
better management of the disease and limited side effects. A wide range of plant-derived compounds
have been reported for their anticancer potential in the quest of finding an effective therapeutic
approach. Rutin (vitamin P) is a low-molecular weight flavonoid glycoside (polyphenolic com-
pound), abundantly present in various vegetables, fruits (especially berries and citrus fruits), and
medicinal herbs. Numerous studies have delineated several pharmacological properties of rutin such
as its antiprotozoal, antibacterial, anti-inflammatory, antitumor, antiviral, antiallergic, vasoactive,
cytoprotective, antispasmodic, hypolipidemic, antihypertensive, and antiplatelet properties. Specifi-
cally, rutin-mediated anticancerous activities have been reported in several cancerous cell lines, but
the most common scientific evidence, encompassing several molecular processes and interactions,
including apoptosis pathway regulation, aberrant cell signaling pathways, and oncogenic genes, has
not been thoroughly studied. In this direction, we attempted to project rutin-mediated oncogenic
pathway regulation in various carcinomas. Additionally, we also incorporated advanced research that
has uncovered the notable potential of rutin in the modulation of several key cellular functions via
interaction with mRNAs, with major emphasis on elucidating direct miRNA targets of rutin as well
as the process needed to transform these approaches for developing novel therapeutic interventions
for the treatment of several cancers.

Keywords: rutin; therapeutic potential; cancer; cell signaling pathways; miRNA

1. Introduction

Cancer is a multifactorial ailment with an entangled cell landscape highlighted by a
chain of complex molecular mechanisms and interactions. Advancements in proteomic-
and genomic-based approaches have made it possible to unveil the tumor microenviron-
ment in order to gain a better insight into key mechanisms such as overexpression, gene
suppression, altered cellular signaling pathways, genomic instability, and mutations at the
genetic/epigenetic level within the genetic framework involved in cancer progression [1,2].

Accumulating evidence has led to plant extract-based formulations and compounds
gaining special attention in the management of several malignancies including cancer, neu-
rodegenerative disorders, cardiovascular diseases, and diabetes [3,4]. Further, they have
displayed significant potential in modulating the expression of chief signaling pathways
associated with cancer progression [5–8]. Numerous plant-based chemotherapeutic drugs
have displayed significant increases in the anticancer efficacies of numerous chemother-
apeutic agents, including vinblastine, doxorubicin, camptothecin, and paclitaxel [9–11].
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Plant metabolites have displayed pleiotropic efficacies, and they target numerous can-
cer hallmarks such as inflammation, angiogenesis, cancer cell growth and proliferation,
invasion, migration, and metastasis [12–14].

The name rutin (green-yellow-colored, needle-shaped crystal) originates from Ruta
graveolens L., a plant that is rich in rutin. Rutin has also been named rutoside, vitamin
P, quercetin-3-O-rutinoside, and sophorin, with the chemical formula, C27H30O16 and a
molecular weight of 610.53. The natural sources of rutin are fruits, medicinal herbs, and
plants (Figure 1A,B).
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Rutin can be considered a safe anticancerous agent with very few or limited side
effects (such as MDR (multiple drug resistance)) and limitations (high cost) in com-
parison to other cancer therapies including surgery, stem cell therapy, radiotherapy,
chemo/immunotherapies, and photodynamic therapy [15–19]. This has further moti-
vated us to comprehensively cover the therapeutic potential of rutin in tumor proliferation
and invasiveness leading to apoptotic induction in cancerous cells. Rutin is a naturally
occurring bioflavonoid abundantly reported in medicinal herbs, fruits, vegetables, and
plant-based beverages. Research has further presented the in vitro potential of rutin in the
suppression of numerous human cancers such as lung cancer, prostate cancer, colorectal
cancer, breast cancer, liver cancer, glioblastoma, melanoma, osteosarcoma, ovarian can-
cer, leukemia, cervical cancer, and pancreatic cancer via apoptosis induction, immunity
enhancement, or cell migration knockdown, which leads to a significant reduction in the
motility rate of cancerous cells [20–24].

2. Anticancerous Therapeutic Potential of Rutin

Rutin has been reported to counteract numerous cancers via several mechanisms
such as cell cycle arrest, inflammation, malignant cell growth inhibition, oxidative stress,
apoptosis induction, and angiogenesis modulation, and all of these are mediated through
the regulation of cellular signaling pathways. Several in vitro studies have reported the
significant anticancerous potential of rutin via its inhibition of the proliferation of several
cancer types including glioma, breast, liver, pancreas, colon, lung, prostate, skin, ovarian,
and cervical cancer (Table 1).
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Table 1. In vitro antitumor efficacy of rutin and its mechanisms of action.

Cancer Cell Lines Doses Anticancer Mechanism Molecular Targets References

Lung cancer
A549 20–560 µM

Cell growth, invasion,
and adhesion inhibition;

apoptosis and autophagy
induction

p38, NF-κB, TNF-α,
GSK-3b, Beclin-1 [25–29]

GLC4 cells 4 µM Cell growth inhibition [30]

Breast Cancer

MDA-MB-231 cells 80.0–640 µg/mL

Cell growth, invasion,
metastasis, and adhesion
inhibition; apoptosis and

induction

c-Met kinase [31,32]

MCF-7 cells 19.4–46.1 µM Cell growth inhibition via
apoptotic induction

p53, PTEN, p21;
Cyclin B, caspase 3/7,

ROS
[33–36]

Cervical cancer
HeLa cells 30–265 µg/mL Cell growth inhibition via

apoptotic induction
ROS, caspase-3, E6,

E7 [37–39]

C33A cells 120 µM Cell growth inhibition via
apoptotic induction ROS mediated [40]

Colorectal cancer

HT-29 cells 100–300 µM Cell growth inhibition via
apoptotic induction

Bax, Bcl2, p53
caspases-3, -8, and-9,
PARP, NF-κB, IKK-a
and IKK-b, p38, and

MK-2

[27,41,42]

Caco-2 cells 711 µM Cell growth inhibition Superoxide [27]

LoVo cells 29 µM
Cell growth inhibition via
apoptotic induction and

cell cycle arrest
ROS [35]

HCT 116 cells Cell growth inhibition via
apoptotic induction Caspase-3 [43]

SW480 cells 600 mM Cell growth inhibition Cancer cell
metabolism [37,44]

Prostate cancer
LNCaP cells 75.0 mM Cell growth inhibition via

apoptotic induction - [45]

PC-3 cells 91 µg/mL Cell growth inhibition - [46]

Pancreatic cancer PANC-1 cells 26 µg/mL Cell growth inhibition via
apoptotic induction Caspase-3/7 [47]

Liver cancer
Hep G2 cells 10–200 µM Cell growth inhibition via

apoptotic induction - [36,47–51]

Murine HTC cells 810 µM Cell growth inhibition - [52]

Neuroblastoma

LAN-5 cells 25–100 µg/mL Cell growth, invasion,
and adhesion inhibition

MYCN, Bax, Bcl2,
TNFa [53]

Neuro-2a cells 24 µM Cell growth inhibition - [54]

SK-N-SH cells 36 µM Cell growth inhibition - [54]

Melanoma SK-MEL-28 40 µM Cell growth inhibition via
apoptotic induction GSH, ROS, MMP [55]

Nasopharyngeal
carcinoma CNE-2 cells 5–80 mg/L Cell growth inhibition - [56]

Oral cancer
CA9-22 cells 20–40 µM Autophagy induction

NF-κB, ATG5/12
conjugation, LC3-II,
Beclin-1, TNF-alpha

[57]

KB cells 167 µg/mL Cell growth inhibition - [58]

Ovarian cancer OVCAR-3 - Cell growth and VEGF
inhibition - [59]

Renal cancer 786-O 45.2 µM Cell growth inhibition - [60]

Gastric cancer SGC-7901 300 µM Cell growth inhibition via
apoptotic induction p38 MAPK pathway [61]
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Table 1. Cont.

Cancer Cell Lines Doses Anticancer Mechanism Molecular Targets References

Glioma

GL-15 cells 50–100 µM Cell growth inhibition via
apoptotic induction p-ERK1/2 [62]

CHME cells 15 µM Cell growth inhibition via
apoptotic induction

p53, Bax, Bcl2,
caspase-3/-9 [54]

LN-229 cells 22 µM Cell growth inhibition - [54]

Leukemia

U-937 cells 9.6 µg/mL Cell growth inhibition - [63]

K562 cells 98.56 µg/mL Cell growth inhibition via
apoptotic induction - [64,65]

ARH-77 cells 50–200 µM
Cell growth inhibition via

mitochondrial and
lysosomal activities

- [66]

Leukocytes 1.50 µg/mL Cell growth inhibition - [67]

U937 cells 80 µg/mL Cell growth inhibition via
apoptotic induction GSK-3β [68]

THP-1 cell-derived
macrophages 20–40 µM Autophagy induction

NF-κB, ATG5/12
conjugation, LC3-II,

Beclin-1
[69]

Leukemia stem
cells (CD123+/

CD34+/CD38+)
160 µg/mL Cell growth inhibition via

apoptotic induction GSK-3β [68]

Abbreviations: Atg5/12, autophagy related 5/12; Bax, Bcl-2 associated X protein; Bcl-2, B cell lymphoma 2; GSK-3β, glycogen synthase
kinase 3 beta; LC3-II, light chain 3; PARP, poly (ADP ribose) polymerase; IKK, IκB kinase; MAPK, mitogen-activated protein kinase; MMP,
mitochondrial membrane potential; N-myc proto-oncogene protein; NF-κB, nuclear factor kappa; B ROS, reactive oxygen species; TNF-α,
tumor necrosis factor alpha.

Apoptosis has been recognized as a crucial phenomenon for the maintenance of
balanced cell growth [68]. However, altered cell signaling has been widely reported with
a distressed apoptotic balance, leading to cancer proliferation and invasiveness. DDR
(death receptor pathway) initiation has been linked with TRAIL (TNF-related apoptosis
inducing ligand) and FasL (Fas ligand) binding with transmembrane receptors. This
interaction ultimately results in caspase activation that subsequently promotes apoptosis
pathway (intrinsic or extrinsic) activation. In addition, apoptosome formation (associated
with caspase-9, cytochrome-C, and apoptotic protease-activating factor) triggers caspase-3
activation, leading to cell death. Several in vitro and in vivo studies have elaborated the
chemopreventive potential of rutin against several cancer types (Table 2).

Table 2. In vivo antitumor efficacy of rutin and its mechanisms of action.

Cancer Model Cell Lines Doses/Treatment Anticancer
Mechanism Molecular Targets References

Cervical cancer

Human papillomavirus
type 16 (HPV16)-transgenic

mice
24 weeks Tumor growth

inhibition COX-2 [70]

HeLa cells induced cervical
cancer

(i.p.) in female Wistar
albino rats

50 mg/kg and 70
mg/kg rutin
for 45 days

Tumor growth
inhibition

Modulation of
hematological

parameters and lipid
peroxidation

[71]
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Table 2. Cont.

Cancer Model Cell Lines Doses/Treatment Anticancer
Mechanism Molecular Targets References

Leukemia

Human leukemia HL-60
cells (s.c.) inboth flanks of

female BALB/
cnu/nu mice

120 mg/kg rutin once
every

four days

Tumor growth
inhibition - [72]

Murine leukemia WEHI-3
cells (i.p.)

in male BALB/c mice

6 mg/kg and 12 mg/kg
rutin for up to 3 weeks

orally

Tumor growth
inhibition

Modulation of whole
blood cell surface

markers
[73]

Human leukemic U-937
cells in

male CD1 nu/nu nude
mice and

CD-1 mice

5, 10, and 15 mg/kg for
9 days orally

Tumor growth
inhibition - [74]

Breast cancer

MDA-MB-231/GFP cells
induced breast cancer in

female
athymic Foxn1nu/Foxn1þ

mice

30.0 mg/kg rutin three
times a week

Reduction in tumor
growth

ROS, caspase-3, E6,
E7 [75]

Prostate cancer
PC-3-luc cells induced
prostate cancer in male

nude BALB/c mice

100 mg/kg rutin
daily for 4 weeks orally

Tumor growth
inhibition - [76]

Lung cancer
B16F10 melanoma cells
induced lung cancer in

female Swiss albino mice

0.2% w/v rutin for 21
days orally

Lung metastasis
inhibition

Decrease in lung
tumor nodules and

invasion index
[77]

Colon cancer
SW480 colon cancer cells
induced colon cancer in

nu/nu mice

1, 10, and 20 mg/kg
rutin daily for 32 days

i.p.

Tumor growth and
angiogenesis inhibition VEGF [37]

Glioblastoma
U87 glioblastoma cells

induced cancer in BALB/c
athymic mice

20 mg/kg rutin thrice a
week for two weeks

Tumor growth
inhibition via apoptotic

induction

Decrease in
autophagy and JNK

expression
[78]

Liver cancer

DEN induced
hepatocellular carcinoma in

Wistar rats

50 mg/kg rutin for 16
weeks orally

Inhibition of cell
proliferation

Decrease in
hepatocellular

marker enzymes and
tumor invasion

[79]

Aflatoxin B1 and
N-nitrosodimethylamine
induced hepatocellular

carcinoma in Wistar rats

1 and 10 mg/100 g
rutin for 2 weeks orally

Protection from
carcinogenesis by

enzyme modulation

Decrease in PARP,
DNA ligase, and
polymerase beta

[80]

Abbreviations: HPV, human papilloma virus; COX-2, cyclooxygenase-2; I.P., intraperitoneal; JNK, c-Jun N-terminal kinase; PARP, poly-ADP
ribose polymerase; VEGF, vascular endothelial growth factor; ROS, reactive oxygen species.

3. Interaction of Rutin with Numerous Molecular Signaling Pathways

Cancer cells rapidly develop drug resistance against various therapeutic approaches
which presents a major hindrance in the cancer management research of several pharmacol-
ogists and molecular biologists. This has further motivated researchers to develop drugs
with limited cytotoxicity and high specificity. The following subsection explains rutin’s
interactions with various molecular pathways.

3.1. Rutin’s Involvement in Modulation of Akt/PI3K/mTOR Signaling Pathway

Gene expression, translation, and transcription, and cell growth and proliferation are
some of the major roles controlled by the Akt/PI3K/mTOR signaling pathway. Several
reports have established the association between abrogation in this signaling cascade and
the progression of numerous carcinomas by triggering tumor growth, invasion, and metas-
tasis [81,82]. In brief, PI3K is found downstream of tyrosine kinase growth receptors, due to
which mutations in the Akt protein can inversely affect effector proteins and downstream
signaling, thereby stimulating cancer cell growth and development [83]. Rutin has been
found to employ its effect on the AkT/PI3K/mTOR pathway by modulating the expression
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of several key proteins, including AkT, PTEN, ERK, and others [84–86]. Later, it was
further reported that rutin blocks the cross-talk between AkT and PI3K by blocking PI3K
activity. Rutin treatment has also resulted in the attenuation of H2O2-induced oxidative
damage and in apoptotic induction in Leydig cells via PI3K/Akt signaling pathways [87].
In addition, rutin prevents AkT phosphorylation by disturbing the PI3K-ATP binding
domain and mTORC2 complex. Rutin mediated apoptotic induction via modulating Bcl-2,
Bax, and caspase expression levels and also induced antioxidant activity by increasing
antioxidants levels [88]. Rutin also deregulated the expression of numerous molecules,
including GSK-3 (Glycogen synthase kinase-3). Further, rutin promoted TNF-α-induced
apoptosis in A549 human lung cancer cells by modulating the expression level of the
GSK-3β protein [89]. Rutin has also prevented GSK-3β phosphorylation by regulating PI3K
expression and has displayed protection against γ-radiation or acrylamide-induced neuro-
toxicity through activation of the PI3K/AKT pathway by deregulating phosphorylation.
Rutin prevents GSK-3β (AkT target) phosphorylation via PI3K inhibition [90]. Additionally,
rutin has also been reported to increase the expression level of tumor suppressor proteins
including FOXO3a, p21, KIP1, and CIP/WAF. The increased expression levels of these
reported tumor suppressor proteins further promoted growth arrest in cancer cells. Rutin
treatment prevented cisplatin (CP)-induced ovarian damage by regulating FOXO3a and
PTEN phosphorylation and antioxidant activity in a mouse model [91]. Rutin has also
been associated with the regulation of mTOR activity by modulating TSC2 expression [92].
Rutin-mediated protein kinase β activation promotes AMPK activation which results in
TSC2 phosphorylation and inhibition of mTOR activity [93–95]. Altogether, these findings
strongly suggest a reciprocal feedback mechanism which involves mTOR and AMPK in
cancer cells and could be targeted for elucidating and developing potent therapeutics.

3.2. Rutin’s Involvement in Modulation of STAT Signaling

The STAT pathway is an evolutionarily conserved signaling pathway that is involved
in the regulation of numerous cell processes including inflammation, immune cell develop-
ment, migration, cell survival, apoptosis, cell homeostasis, and cell proliferation. Aberrant
STAT signaling has been recognized as a hallmark of numerous cancers [96–99]. Rutin
has been exploited for its potential role in inhibiting cancer cell growth and metastasis by
inhibiting this signaling pathway. Rutin modulates this cellular pathway via the repression
of SRC (kinases) phosphorylation, thereby inhibiting STAT 3 (signal transducers and acti-
vators of transcription 3) activation which further blocks the translocation of STAT to the
nucleus [100,101]. STAT 3 has also been associated with the regulation of MMPs (membrane
metalloproteases), VEGF, and TWIST1 which are crucial for cancer cell migration, prolif-
eration, invasion, and angiogenesis. Rutin blocks the activation of TWIST1, MMPs, and
VEGF via the inhibition of STAT3 phosphorylation [102,103]. Another study also reported
that rutin treatment blocked UVB-induced STAT 3 activation via the inhibition of Tyr705
phosphorylation which explains the usefulness of rutin in preventing skin cancer [103].
Several studies have evidenced its potential anticancerous role in regulating the expression
of key signaling components (STAT5, STAT3, and JAK2) in numerous carcinomas, thereby
preventing cancer cell growth and differentiation (Figure 2).
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3.3. Rutin’s Involvement in Modulation of Wnt/β Catenin Signaling

Wnt/β catenin signaling contributes a crucial role in differentiation, organogenesis,
cell migration, tissue homeostasis, and neuronal patterning. Modulated Wnt/β catenin
signaling has been associated with the invasiveness and progression of several carcino-
mas [104–106]. Rutin has also been reported to induce variation in the expression level of
downstream effectors of Wnt/β catenin signaling, including AXIN2, c-MYC, and cyclin
D1 [107]. Further research studies have also revealed that rutin prevents the stabilization
and accumulation of β-catenin in the cytoplasm and also blocks its translocation in the
nucleus via the repression of the PI3K/AkT/mTOR pathway [68]. From these research
findings, it can be concluded that rutin can be considered a potent therapeutic option for
the management of numerous carcinomas.

3.4. Rutin’s Involvement in Modulation of MAPK Signaling

The MAPK family consists of three major classes of activated kinases including
ERK/MAPK, p38 kinase, and c-JUN/SAPK that play a crucial role in cell proliferation,
invasion, homeostasis, and differentiation and cell death. Overexpression of numerous ERK
protein family members has been exclusively reported in the modulation of the MAPK-
ERK pathway [108]. In numerous carcinomas, ERK signaling is activated via mutation in
either the tyrosine kinase receptor or the kinase genes RAS and RAF. Rutin has presented
significant antiproliferative effects in numerous cancer cell lines by modulating the expres-
sion of DR4/DR5, AkT, ERK, and NF-kB. Rutin exposure has promoted TRAIL-mediated
apoptosis in numerous carcinomas such as lung cancer [109–112]. Additionally, rutin has
been utilized to suppress the growth, invasion, proliferation, and metastasis of several
melanoma cells. Specifically, in A375 and C8161 melanoma cell lines, rutin administration
promoted growth arrest via the downregulation of p-AkT, p-ERK1/2, and p-mTOR. Rutin
treatment has significantly downregulated the expression level of p-ERK1/2 (phospho-
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extracellular signal-regulated kinase 1/2) in glioma cells [113]. Other studies have also
reported that rutin treatment leads to a significant reduction in the expression level of p38
MAPK in lung cancer (A549) cells. Moreover, rutin has strong potential to activate p38
MAPK in colon cancer cells (HT-29), either alone or in combination with silibinin [112].
Conclusively, these experimental findings shed enormous light on the fact that rutin can
induce apoptosis via the suppression of the aberrant MAPK/ERK signaling pathway.

3.5. Rutin’s Targeting of Apoptotic Pathways and Autophagy Signaling Molecules

Rutin has presented potent efficacy in apoptosis induction in cancer cells. Rutin elicited
the intrinsic apoptosis pathway in neuroblastoma cells as shown by the reduced Bcl2 protein
and Bcl2/Bax ratio [114]. Likewise, in HCT (colon cancer) cells, rutin treatment induced
caspase-3 activation [43]. Furthermore, rutin has been shown to activate both the intrinsic
and extrinsic apoptotic pathways in colon cancer cells (HT-29) by upregulating caspases
and Bax, and downregulating Bcl-2 levels [110]. This evidence strongly supports the
apoptosis-inducing potential of rutin in cancer cells via the induction of both the intrinsic
(mitochondria-mediated) and extrinsic (death receptor-mediated) apoptotic pathways.

Rutin exposure to cancer cells can also induce apoptosis via p53 activation [33,54,110].
Rutin treatment can also lead to an increase in the PTEN (tumor suppressor) mRNA ex-
pression level, resulting in apoptosis-mediated growth arrest in breast cancer cells [33,115].
ER targeting has also emerged as one of the promising approaches for cancer prevention
and treatment [116]. A study conducted by Nasri Nasrabadi [44] et al. identified altered
molecular signaling pathways and differentially expressed genes in rutin-treated colorectal
cancer cell lines. ROS (reactive oxygen species), generated during metabolism, are also
associated with numerous physiological functions. The balance between ROS production
and their elimination via the antioxidant defense system is properly regulated in normal
cells, whereas ROS homeostasis is dysregulated in cancerous cells, leading to elevated
ROS levels. ROS have also been explored as a potent therapeutic tool for cancer man-
agement because elevated ROS generation could trigger apoptosis in cancer cells [117].
Rutin treatment has induced significant apoptosis by activating ROS-dependent apoptosis
pathways in numerous cancer cells including MCF-7, HepG2, LoVo, HeLa, and C33A
cancer cells [35,40].

Deregulated autophagy (catabolic process) has also been crucially associated with
several cancer types. Signaling molecules such as ATGs (autophagy-related genes), which
are mainly involved in autophagy, include ATG6, ATG5, ATG12, and LC3 (microtubule
associated protein 1 A/1B-light chain 3). Several studies have projected that autophagy
greatly contributes to the inhibition of cancer cell growth. Further, rutin treatment has
induced autophagy in several cancer cells such as A549, THP1, and CA9-22. Rutin treatment
has also resulted in an enhanced expression level of Beclin1 and has triggered the formation
of the ATG5/12 complex. LC3-II (hallmark of autophagy) activation was also observed in
rutin-treated cancer cells, thereby leading to autophagy-mediated cancer cell death [57].

4. Rutin and miRNA (microRNAs) Interplay: Potent Approach in Cancer Management

MicroRNAs (small molecules with a size range of 10–25 bp) have received profound
attention in cancer management therapies because of their potent involvement in gene
transcription and translation [118]. Several studies have reported that dysregulated mi-
croRNAs (miRNA) make major contributions to cancer progression and thus they can be
considered an effective target in cancer therapies. This section focuses on revealing the
interplay between rutin and miRNAs, and how rutin treatment modulates the expression
of various tumor suppressor and oncogenic miRNAs in cancer. Recently, it has come to
light that rutin restrains the proliferation of mouse breast cancer cells via the regulation of
the miR-129-1-3p/Ca2+ signaling pathway, thereby revealing its potential as a strong drug
candidate for the inhibition of tumor growth. Rutin, in combination with various miRNA
mimics and inhibitors, has aided in cell apoptosis or growth arrest in numerous cancer
cells [119,120]. Rutin has also shown significant inhibition of myocardial oxidative insults
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by adjusting ROS (reactive oxygen species) levels. This further explains the protective
effect of rutin on THP cardiotoxicity via the regulation of JunD gene expression by miR-
125b-1-3p, which reveals the protective efficacy of rutin on THP-induced cardiotoxicity
and provides a strong base for the utilization of rutin as a potent protective candidate
against THP cardiotoxicity. Thus, it may be concluded that rutin could modulate several
cancer-relevant miRNAs such as miR-155, let-7, miR-146a, and miR-21, thereby potentially
inhibiting cancer development and progression [121–124]. However, more experimental
research is still needed to study how rutin modulates this complex and broad range of both
tumor suppressor and oncogenic miRNAs. Therefore, future studies should emphasize
elucidating direct miRNA targets of rutin as well the process needed in transforming these
approaches for developing novel therapeutic interventions for numerous cancers.

5. Conclusions

In several natural products, rutin contributes to potent biological activities including
anticancerous effects. Rutin has been shown to utilize numerous mechanisms to obstruct
cancer initiation and progression by modulating several deregulated signaling pathways
involved in apoptosis, inflammation, angiogenesis, and autophagy. Specifically, the anti-
cancer potential of rutin has been linked to the regulation of multiple signaling pathways,
including NF-κB, PI3K/Akt/mTOR, Nrf2, ERK, JNK, and p38 MAPK. This bioactive
plant-derived compound significantly interferes with numerous intracellular signaling
molecules, such as TNF-α, Bax, ILs, Beclin, VEGF, Bcl-2, and caspases. Extensive in vitro
and in vivo studies have clearly revealed therapeutic targets of rutin such as Bcl-2, p53,
caspases, Bax, NF-κB, TNF-α, Akt, and GSH. Rutin has shown tremendous anticancer
potential against a range of cancer cell lines including glioblastoma, breast cancer, lung
adenocarcinoma, prostate cancer, cervical cancer, gastric cancer, leukemia, hepatocellular
carcinoma, and colon cancer cell lines. Despite several preclinical mechanistic reports on
the anticancer efficacies of rutin, the lack of well-framed clinical trials on the safety and
therapeutic potential of rutin increases the need for more potent clinical studies. Further,
more elaborative studies (concerning engineering methods) are also needed to achieve a
better targeted drug delivery approach for cancer management. Altogether, researchers
should focus their study towards elucidating the novel molecular targets of rutin and the
associated mechanism by which rutin mediates cancer cell growth arrest via molecular
cross-talks and signaling cascades. Overall, rutin has enormous medicinal potential and
could be employed as a potent therapeutic agent through extensive investigation into its
potential to modulate numerous cell signaling pathways and apoptosis pathways involved
in cancer progression.
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