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Intra-tumor heterogeneity is a vivid problem of molecular oncology that could be addressed by
imaging mass spectrometry. Here we aimed to assess molecular heterogeneity of oral squa-
mous cell carcinoma and to detect signatures discriminating normal and cancerous epithelium.
Tryptic peptides were analyzed by MALDI-IMS in tissue specimens from five patients with oral
cancer. Novel algorithm of IMS data analysis was developed and implemented, which included
Gaussian mixture modeling for detection of spectral components and iterative k-means algo-
rithm for unsupervised spectra clustering performed in domain reduced to a subset of the
most dispersed components. About 4% of the detected peptides showed significantly different
abundances between normal epithelium and tumor, and could be considered as a molecular
signature of oral cancer. Moreover, unsupervised clustering revealed two major sub-regions
within expert-defined tumor areas. One of them showed molecular similarity with histolog-
ically normal epithelium. The other one showed similarity with connective tissue, yet was
markedly different from normal epithelium. Pathologist’s re-inspection of tissue specimens
confirmed distinct features in both tumor sub-regions: foci of actual cancer cells or cancer
microenvironment-related cells prevailed in corresponding areas. Hence, molecular differ-
ences detected during automated segmentation of IMS data had an apparent reflection in real
structures present in tumor.
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1 Introduction

Imaging mass spectrometry (IMS) is a powerful approach
allowing unique combination of molecular and morphologi-
cal information. Mass profiles of different molecular species
(proteins, lipids, metabolites, etc.) revealed by IMS can be
spatially resolved and annotated with morphological and his-
tological structures which makes this method complemen-
tary and superior to classical pathology [1–5]. The idea of IMS
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Significance of the study

Due to high dimensionality of IMS data, proper informa-
tion processing is crucial for knowledge discovery. The ma-
jority of existing algorithms focus on image segmentation
performed in PCA component domain. The algorithm devel-
oped by us transforms a spectrum into a mixture of Gaussian

components and performs step-down k-means clustering in
a domain reduced to the subset of the most dispersed compo-
nents. The implemented algorithm allowed to detect molec-
ular sub-regions of oral squamous cell carcinoma which re-
flected real structures present in a cancerous tissue.

based on MALDI (MALDI-IMS) was introduced about two
decades ago and since then this approach has been applied
to visualize distribution of proteins and other molecules in
different types of tissues. Among many applications of IMS
there is molecular characterization of different types of can-
cer, including lung [6], breast [7], prostate [8], gastric [9], larynx
[10] cancers and brain tumors [11]. The particular advantage
of IMS in cancer research is allocation of molecular profiles
to specific cell types, such as cancerous, preneoplastic or in-
flammatory [12–14]. Moreover, IMS can be used in studies
aimed at interfacing tumor and normal tissue (tumor niche)
and intra-tumor heterogeneity [10, 14–18]. It is noteworthy
that automated (unsupervised) methods of clustering of IMS
data, particularly based on component analysis and spatial
segmentation, appeared to be a particularly suitable approach
in studies of intra-tumor heterogeneity and classification of
tumor sub-regions [19]. Hence, IMS proved its role as a pow-
erful tool in clinical proteomics, with obvious applicability in
biomarker research and molecular tissue classification. This
approach revealed its exceptional value in studies of complex
heterogeneous systems exemplified by many tumors.

Cancer located in head and neck region (HNC) is the
sixth most common cancer worldwide accounting for over
550 000 new cases and about 300 000 deaths per annum.
The vast majority of HNC (>95%) are squamous cell car-
cinomas located in the upper-aerodigestive tract (including
the mouth, pharynx and larynx), and are derived from strat-
ified squamous epithelium lining mucosa of a target organ.
HNC has various etiologic factors (including tobacco smok-
ing with alcohol consumption and HPV infection), heteroge-
neous pathologic and clinical features, and diverse outcome.
Despite recent improvements in treatment, HNC prognosis
remains rather poor, with less than 40–50% of patients stay-
ing alive after 5 years. Therapeutic decisions are solely based
on tumor localization and traditional staging, yet HNC is a
heterogeneous disease and cases with similar pathologic fea-
tures can differ in clinical outcome [20–22]. Moreover, since
surgery is the primary treatment in most HNC cases, un-
completed resection of a primary tumor can be a reason for
local recurrence and treatment failure. Adequacy of surgical
resection of a tumor is conventionally determined by classi-
cal histopathological examination which can miss out sub-
microscopic and/or pre-cancerous spots, therefore determi-
nation of cancer-specific molecular factor(s) for proper delin-
eation of tumor area remains a vivid issue in this malignancy

[23]. Studies on molecular profiling of HNC, mainly based on
gene mutations and expression profiles, have been conducted
worldwide in recent years [24–26]. However, HNC remains a
relatively under-researched cancer - there is a lack of robust
molecular biomarkers to guide HNC patient management
and the majority of questions related to potential “molecular
subtypes” of this malignancy remain unanswered yet.

Here we implemented IMS approach to characterize intra-
tumor heterogeneity of HNC, and to identify molecular com-
ponents discriminating normal and cancerous epithelium.
Proteins were imaged using MALDI-IMS in material resected
from five patients with oral cancer. A novel method of spectra
processing and unsupervised clustering was used to identify
regions corresponding to normal oral mucosa and different
sub-regions of cancer, and then components critical for seg-
mentation of tissue regions were detected.ptpt

2 Materials and methods

2.1 Clinical material

Tissue material was collected from five patients (36–59 years
old; four males) who underwent surgery due to oral cav-
ity squamous cell carcinoma. Tumor was located in tongue
(four patients) and in floor of the mouth (one patient):
Preparation_1 – cancer stage T4N2M0, Preparation_2 – stage
T4N2bM0, Preparation_3 – stage T1N0M0, Preparation_4 –
stage T2N0M0, Preparation_5 – stage T2N0M0. Surgery was
the primary treatment in all cases (no pre-surgery chemo-
or radiotherapy was involved). Tissue specimens containing
tumor and surrounding tissues were evaluated by an experi-
enced pathologist in fresh post-operative material, then im-
mediately frozen and stored at –80�C. Each sample was cut
into 10 �m sections using a cryostat, then H&E stained and
analyzed by a pathologist; both sections used for IMS and
the corresponding fresh serial sections were analyzed. The
study was approved by the appropriate Bioethical Committee,
and performed in accordance with national and institutional
guidelines.

2.2 Preparation of samples for IMS

Frozen 10-�m thick tissue sections were placed onto indium
tin oxide-coated conductive slides (Bruker Daltonik, Bremen),
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dried under vacuum for 40 min, then washed twice in 70%
ethanol and once in 100% ethanol (1 min each), followed by
1 h drying. Subsequently samples were coated with a solution
of trypsin (Promega, 20 �g in 200 �L of 50 mM NH4HCO3)
using an automatic spraying device (ImagePrep, Bruker Dal-
tonik), and then incubated in a humid chamber for 18 h at
37�C. Next, methanolic solution of 2,5-dihydroxybenzoic acid
(50% methanol, 30 mg/mL DHB, 0.2% TFA) was deposited
onto the surface of tissues with the use of ImagePrep device
(using Bruker’s standard matrix coating program with dou-
bled phase 5); optical images were registered before matrix
deposition.

2.3 MALDI analysis

Tissue sections were subjected to peptide imaging with
the use of a MALDI-TOF ultrafleXtreme mass spectrome-
ter (Bruker Daltonik) equipped with a smartbeam IITM laser
operating at 1 kHz repetition rate. Ions were accelerated at
25 kV with PIE time of 100 ns. Spectra were acquired in
positive reflectron mode within 800–4000 m/z and externally
calibrated with Bruker’s Peptide Calibration Standard II. A
raster width of 100 �m was applied, 400 spectra were col-
lected from each ablation point. Compass 1.4 for FLEX series
(Bruker Daltonik) was employed for spectra acquisition, pro-
cessing and creation of primary images. After analysis slides
were rinsed twice with 100% ethanol to remove the matrix,
stained with H&E, and scanned for co-registration with the
MALDI images using flexImaging 4.1 software (Bruker Dal-
tonik). Original spectra were converted into .txt files using
flexAnalysis 3.4 software (Bruker Daltonik) for further analy-
ses. The obtained dataset consisted of 45 738 raw spectra with
109 568 mass channels.

2.4 Spectra processing and identification of spectral

components

Data processing was performed using MATLAB-based tools
(MathWorks, Natick, USA); a complete library of MATLAB
commands together with an exemplary dataset was pub-
lished at our webpage: http://zaed.aei.polsl.pl/index.php/pl/
oprogramowanie-zaed. Standard preprocessing steps were
applied to average spectra: spectrum resampling (to unify
mass channels across a dataset), baseline removal (ms-
backadj() procedure), TIC normalization, and Fast Fourier
Transform-based spectral alignment [27]. The Gaussian mix-
ture model (GMM) approach [28] was used for spectra model-
ing and peak detection. To ensure independence of resuls val-
idation for Preparations_2-5, the average spectrum for Prepa-
ration_1 was used for model construction. Peptide abundance
was estimated by pairwise convolution of the GMM compo-
nents and individual spectra, followed by calculating the area
below the obtained curve. Neighboring peaks resulting from
right-skewness of spectral peaks were identified and merged
by summing their estimated abundance. Location of the dom-

inant component was set as m/z value of a peptide ion; the
resulting dataset featuring 3714 components (45 738 spectra)
was used for further analyses.

2.5 Unsupervised clustering

Looking at complex composition of a tissue specimen, one
can imagine that only a small subset of hundreds of mea-
sured molecular species might be specific for the observed
sub-regions. The signal obtained from these species is over-
powered by the remaining less informative ones and standard
clustering approaches may not give satisfactory results. Fur-
thermore, heterogeneity of tissue sub-regions can be hidden
behind predominant main tissue structure. Hence, we have
developed a novel iterative k-means algorithm, with feature
domain optimization at every step of clustering. A flowchart
of the proposed algorithm of spectra processing and cluster-
ing is presented schematically in Fig. 1. The elements of the
procedure are: (i) step-down recursive sub-region splitting;
(ii) independent unsupervised feature selection during ev-
ery sub-region splitting; (iii) k-means initial condition setting
based on the maximum distance criterion.

The recursive nature of the developed algorithm allows
sub-region detection in spite of the driving character of
the main tissue structures. After the first sample split, the
k-means algorithm is applied independently to each sub-
region obtained in the antecedent split. The splitting is then
continued until a specified number of recursions is reached.
After having tested several distance metrics, Pearson’s cor-
relation coefficient was chosen due to its best performance
in capturing spectral similarity. The number of clusters at
each splitting was not predefined, k-means clustering was
performed for two to ten clusters and Dunn index was used
for selection of the optimal number of clusters [29, 30].

At the beginning of the segmentation process, components
with relatively low abundance were filtered out; the data-
driven abundance threshold was found through modeling
abundance distribution as a sum of Gaussian-shaped func-
tions, with the smallest mean component treated as noise-
related [31]. This reduced the number of components to 3671.
During each sub-region splitting step, independent of the re-
cursion step, the most informative features (i.e. the ones with
the highest variance within an individual sub-region of inter-
est) were selected out of the set of 3671. In uninformative
peak filtering procedure, the Gaussian mixture component
with the highest mean value (top right) was chosen from the
model of signal variance distribution and variance threshold
was calculated.

Since the final result of k-means partitioning strongly de-
pends on the initial configuration, we developed a novel pro-
cedure for setting highly effective initial partitions. Rigorous
numerical evaluation (data not included) demonstrated its
predominance over standard approaches. The procedure does
not require repetitions to protect against hitting local optima.
First, a linear regression model is built using the most locally
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Figure 1. Flowchart of the pro-
posed algorithm of IMS data
analysis.

informative features for a given subset of spectra from a sub-
region. The most distant data point, defined as a spectrum
with the highest residuum, is chosen as the initial center of
the first cluster. The remaining K-1 initial centers are chosen
sequentially in such a way that the minimal distance from
the new center to all of the centers found so far has to be
maximal.

2.6 Statistical analyses

The permutation ANOVA-type test with the Games-Howell
post hoc testing was applied to identify molecular signatures
of specific sub-regions. The effect size was estimated by Co-
hen’s d statistics. For comparison of expert-defined regions,
henceforth referred to as a supervised analysis, the testing
was performed for every preparation independently. In order
to be a part of this analysis the components had to be clas-
sified as differentially expressed among at least four out of
five preparations whilst maintaining a clear regulatory trend
(i.e., always significantly upregulated or always significantly
downregulated). For comparison of superclusters detected

with the use of our novel algorithm, the statistical analysis
was performed for all preparations together. Components
were assigned as differentially expressed if: (i) the ANOVA
p-value was less than the significance threshold, Bonferroni
corrected for multiple testing, (ii) the p-value from the Games-
Howell test was less than the significance level with Bonfer-
roni correction, and (iii) the effect size was bigger than 0.5
(for supervised analysis) or 0.8 (for unsupervised analysis).

3 Results and discussion

In each of the analyzed samples, specific regions corre-
sponding to different types of tissue were identified by an
experienced pathologist based on histological features of
H&E stained sections (Fig. 2A). Each specimen included
tumor, normal epithelium, muscles and connective tissue
(moreover, Preparation_1 contained fragments of a sali-
vary gland); expert-defined areas corresponding to tumor
and normal epithelium (delineated with red and blue lines
in Fig. 2A, respectively) were used as a reference in further
analyses. During the supervised analysis peptide components
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Figure 2. MALDI-IMS analysis
of oral squamous cell cancer.
A – H&E stained tissue prepa-
rations; areas corresponding to
normal epithelium and tumor
were marked with blue and red
lines, respectively. B – Distri-
bution of an exemplary com-
ponent (2172.08 m/z) relatively
upregulated in tumor. C – Rep-
resentation of regions corre-
sponding to clusters A, B and C
(navy blue, yellow and green, re-
spectively) detected in the first
step of segmentation. D – Rep-
resentation of regions corre-
sponding to clusters detected in
the third step of segmentation.
E – Illustration of “superclus-
ters” corresponding to normal
epithelium (Normal A, blue) and
tumor (Tumor A, red, and Tumor
B, orange) regions.

with significantly different abundance between the regions of
normal epithelium and tumor were detected (Supporting In-
formation Table S1). There were 108 peptides significantly
upregulated and 26 peptides significantly downregulated in
tumor area compared to histologically normal epithelium.
It is noteworthy that when all peptide components detected
during IMS were hypothetically annotated as tryptic peptides
identified by LC-MS/MS in the same tissue preparations, GO
terms related to negative regulation of apoptosis, cell motil-
ity and protein folding were associated with proteins whose
fragments were putatively upregulated in tumor area, while
GO terms related to canonical glucose metabolism were as-
sociated with the downregulated ones (data not shown in this
work). Peptides upregulated in tumor are exemplified by the
component 2172.08 m/z (putatively a fragment of pyruvate
kinase, an enzyme involved in the Warburg effect), whose
distribution is shown in Fig. 2B.

Our original algorithm of unsupervised clustering was im-
plemented to define segmentation maps of tissue regions
basing on similarity of their molecular profiles. In contrast
to many other unsupervised approaches, the clustering pro-
cedure proposed in this work took into consideration only
selected components that showed the highest variance in the
analyzed area (therefore, the results of clustering were not
confounded by components with low discrimination poten-
tial). Moreover, pixels corresponding to all five tissue prepa-
rations (i.e., more than 45 000 spectra) were subjected to
segmentation simultaneously, hence the identified clusters
could be used directly to describe similarities among ana-
lyzed specimens. As a result, only a minority of the identified
components (usually 20–30%) were used for cluster discrim-
ination; 1697 components (46%) showed generally low vari-
ance and were not used in any step of clustering, while 492
components (13%) showed high variance and were used in
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Figure 3. Description of clusters de-
tected in three steps of concomitant
unsupervised clustering of all tis-
sue preparations. Shown is an over-
lap between each cluster and re-
gions corresponding to tumor and
normal epithelium. Contribution of
each cluster detected in the third
step of segmentation (clusters 01 to
23) to expert-defined areas is pre-
sented on the right.

all steps of clustering (for details see Supporting Informa-
tion Table S2). At the first step of segmentation four major
clusters were detected. All analyzed tissues consisted of three
clusters, namely A, B and C, while the fourth one (cluster 0)
corresponded to “empty” areas adjacent to the actual tissue
and was excluded from further analysis; tissue regions cor-
responding to Cluster A, B and C are depicted in Fig. 2C
(importantly, these three major clusters were detected in all
five tissue preparations). We performed two additional steps
of segmentation to discover heterogeneous structure of the
primarily detected clusters (Fig. 3). Clusters generated during
the third step are depicted in Fig. 2D; further steps of segmen-
tation were not presented and analyzed because the resulting
clusters consisted of rather few spectra in most cases. Con-
tribution of each cluster to expert-defined region (i.e., what
percentage of a region was filled by a cluster) and the overlap
(coverage) between clusters and regions (i.e., what percent-
age of a cluster was enclosed in a region) was assessed to
allow unbiased detection of clusters corresponding to normal
epithelium and cancerous tissue (Supporting Information
Table S3). The majority of tissue areas defined as normal
epithelium were found primarily in Cluster A: almost 50%

of Cluster A overlapped with expert-defined epithelium, and
almost 70% of this region consisted of Cluster A. In marked
contrast, expert-defined tumor region was much more het-
erogeneous and substantially overlapped with all three major
clusters. Twenty-three clusters were identified in the third
step of segmentation (Fig. 3): 01–10, 11–19 and 20–23 within
Cluster A, B and C, respectively (cluster 23 corresponded to
minor “gaps” inside tissue detected mostly in Preparation_2).
We found five clusters (namely 01, 02, 03, 04 and 05) reveal-
ing high overlap with normal epithelium (more than 75%),
all of them within Cluster A. These five clusters contributed
to about 55% of normal epithelium (in the complete dataset)
and were merged as “supercluster” Normal A. Moreover, we
found eight clusters showing high overlap with tumor (more
than 50% coverage). Four clusters (namely 07, 08, 09 and 10)
within Cluster A, and four clusters (namely 12, 13, 14 and
15) within Cluster B were merged as superclusters Tumor A
and Tumor B, respectively (Fig. 3). These superclusters con-
tributed to about 10% and 60% of tumor area, respectively
(in the complete dataset). Hence, when the selected clusters
were merged basing on their high overlap with expert-defined
tumor and normal epithelium, five areas (superclusters) were
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Table 1. Number of components with abundances significantly different between superclusters corresponding to expert-defined tissue
regions

1st 2nd All changes Upregulated
(1st)

Downregulated
(1st)

Normal A Tumor A 240 135 105
Normal A Tumor B 993 350 643
Tumor A Tumor B 198 198 0
Normal A Both Tumor A and Tumor B 149 122 27
Tumor B Both Tumor A and Normal A 136 0 136
Normal A Normal B 323 296 27
Tumor A Normal B 198 198 0
Tumor B Normal B 1 1 0

established: Normal A (corresponding to normal epithelium),
Tumor A, Tumor B, Normal B (the remaining clusters within
Cluster B showing lower coverage with tumor) and Cluster
C (without cluster 23); these five superclusters were repre-
sented in each tissue preparation (Fig. 2E). It is noteworthy
that the results of primary segmentation indicated molecular
similarity between areas corresponding to histologically nor-
mal epithelium and specific sub-region of tumor (Tumor A),
and apparently discriminated between two major tumor sub-
regions (A and B). We also found differences between tumor
samples when relative contribution of superclusters Tumor A
and Tumor B was analyzed: significantly higher proportion
of Tumor A was detected in Preparations 1 and 2 represent-
ing an advanced disease (T4N2), yet this interesting obser-
vation would need further validation. We concluded that un-
supervised segmentation of tissue helped identify distinct
sub-regions of tumor characterized by different molecular
profiles. Pathologist’s re-inspection of the tissue correspond-
ing to supercluster Tumor A revealed substantial presence of
foci of squamous cell carcinoma, i.e., transformed cells de-
rived from normal epithelium. The other tumor sub-region,
corresponding to Tumor B, showed molecular similarity with
connective tissues present in Cluster B, yet was markedly dif-
ferent from epithelial cells. Re-analysis of the corresponding
tissue by a pathologist revealed substantial contribution of
inflammation-related cells and other features putatively re-
lated to cancer microenvironment. Hence, molecular differ-
ences detected during automated segmentation of IMS data
had an apparent reflection in functional structures present in
cancer area.

In the next step we searched for molecular components
with significantly different abundances between superclus-
ters identified above (Table 1 and Supporting Information
Table S4). We found that differences between superclusters
Normal A and Tumor B were the most frequent (993 dif-
ferentiating components), while relative similarity between
superclusters Normal A and Tumor A was observed (240 dif-
ferentiating components). Moreover, only 149 components
(4%) showed significantly different abundance between Nor-
mal A and both Tumor A and Tumor B. On the other
hand, there were 198 components differentiating Tumor B
from Tumor A, but only one third of them were specific for

Tumor A (the others similarly differentiated Tumor B from
both Tumor A and Normal A). Furthermore, high degree
of similarity was observed between Tumor B and Normal
B, which possibly reflected some overlap of clusters form-
ing Normal B and tumor area. We observed that unsuper-
vised segmentation of tissue apparently facilitated detection
of components characteristic for cancer, since several species
differentiating Normal A from Tumor A and/or Tumor B
(Supporting Information Table S4) were not revealed in pri-
mary supervised comparison between normal epithelium and
tumor (Supporting Information Table S1). Moreover, cluster-
ing of spectra helped reveal quantitative features of specific
cancer-related species, which could be exemplified by com-
ponent 2172.08 m/z (putatively fragment of pyruvate kinase).
Upregulation of this peptide in tumor region of each tis-
sue preparation, as well as in corresponding superclusters
is shown in Fig. 4A and B, respectively. Abundance of this

Figure 4. Abundance of a spectral component 2172.08 m/z char-
acteristic for cancer. A – Comparison of areas corresponding to
normal epithelium (N) and tumor (T) regions defined in each tis-
sue preparation. B – Comparison of superclusters Normal A (NA),
Tumor A (TA), Tumor B (TB), Normal B (NB) and cluster C (C).
C – Comparison of the major cluster detected in the first step of
segmentation (A, B and C), and selected clusters detected in the
second (A1, A2, A3 and A4) and the third (05, 06, 07 and 08) step
of segmentation.
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component was similar among major clusters A, B and C,
yet segmentation of Cluster A revealed differences between
clusters corresponding to normal epithelium (clusters A1 and
A2) and “epithelium-like” tumor (cluster A4). Moreover, fur-
ther segmentation of ambiguous cluster A3 allowed detection
of differences between areas considered as tumor (cluster 07
and 08) and normal epithelium (cluster 05) (Fig. 4C). We con-
cluded that unsupervised segmentation of sample could fa-
cilitate detection of “cancer markers” differentiating between
tumor and normal epithelium, which might be complemen-
tary to supervised comparison between expert-defined tissue
regions.

It was already documented in several works that unsu-
pervised segmentation (or clusterization) of IMS data en-
abled classification of complex human tissues and opened
new ways for in situ identification of cancer-related biomark-
ers. Combination of PCA and hierarchical clustering allowed
separation of gastric cancer foci from non-malignant gastric
mucosa [9]. Six different methods of unsupervised analysis
were tested in dataset generated by MALDI-IMS for myxofi-
brosarcoma samples and all of them allowed identification
of intra-tumor heterogeneity showing relatively good con-
cordance [32]. Moreover, semi-supervised segmentation of
MALDI-IMS data based on spatial k-means clustering on
PCA component heat maps allowed to reveal distinct sub-
regions of laryngeal cancer that could be annotated to dif-
ferent stages of tissue dysplasia and neoplasia [10]. More re-
cently, unsupervised segmentation was performed for HNC
lipidome imaging by MALDI FT-ICR IMS [33]. The authors
used the SCiLS Lab pipeline for OMP based peak picking
and bisecting k-means segmentation of spectra processed
by spatial denoising. However, in contrast to their previous
works, peak detection was done on the mean spectrum in-
stead of each spectrum individually. Our approach uses in-
formation preserving GMM-based dimension reduction tech-
nique, where a full model of a mean spectrum is constructed
and data-driven amplitude threshold is estimated for noise
level detection. Fully automated filtration of uninformative
components done individually per every cluster allows for
identification of hidden structure in tissue samples. The ob-
tained significant reduction of the data dimension enables
simultaneous analysis of many samples. Complete interpre-
tation of several tissue samples does not require comparison
of various PCA component or mass channel images. Thanks
to the developed step-down spectra clusterization, uniquely
performed in a variable data-driven component domain, done
together with unsupervised choice of the number of clusters,
molecular complexity of the analyzed tissue specimens could
be revealed.

4 Concluding remarks

The novel idea of performing iterative k-means clustering
in the Gaussian mixture model-transformed mass spectrum
domain, combined with adaptive feature selection and data-

driven tuning of the total cluster count, allowed for stepwise
discovery of tissue segments exhibiting molecular similar-
ity across specimens. Two sub-regions of cancerous tissues
demonstrating different molecular signatures were discov-
ered within expert-defined tumor areas across five indepen-
dent specimens. Our study proved that application of ad-
vanced data mining algorithms and artificial intelligence tech-
niques was crucial for discovery of knowledge based on IMS
data.
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