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Investigating quantum metrology 
in noisy channels
B. J. Falaye  1, A. G. Adepoju2, A. S. Aliyu1, M. M. Melchor2, M. S. Liman1, O. J. Oluwadare3,  
M. D. González-Ramírez2 & K. J. Oyewumi4

Quantum entanglement lies at the heart of quantum information and quantum metrology. In quantum 
metrology, with a colossal amount of quantum Fisher information (QFI), entangled systems can be 
ameliorated to be a better resource scheme. However, noisy channels affect the QFI substantially. This 
research work seeks to investigate how QFI of N-qubit Greenberger-Horne-Zeilinger (GHZ) state is 
affected when subjected to decoherence channels: bit-phase flip (BPF) and generalize amplitude 
damping (GAD) channels, which can be induced experimentally. We determine the evolution under 
these channels, deduce the eigenvalues, and then derive the QFI. We found that when there is no 
interaction with the environment, the Heisenberg limit can be achieved via rotations along the z 
direction. It has been shown that in BPF channel, the maximal mean QFI of the N-qubit GHZ state (Fmax) 
dwindles as decoherence rate (pB) increases due to flow of information from the system to the 
environment, until pB = 0.5, then revives to form a symmetric around pB = 0.5. Thus, pB > 0.5 leads to a 
situation where more noise yields more efficiency. We found that in GAD channel, at finite temperature, 
QFIs decay more rapidly than at zero temperature. Our results also reveal that QFI can be enhanced by 
adjusting the temperature of the environment.

Quantum entanglement and decoherence have been identified as two intertwined phenomena that form the 
cornerstone of quantum physics1. Quantum entanglement, which is the unique feature of quantum mechanics, 
has been a subject of active research during the past few decades2–7. It is not only an indispensable concept of 
quantum mechanics but also a new resource as real as energy8,9. It opens a way for conceptual understanding of 
classical microscopic world’s origin from the point of view of quantum mechanics. It is also an important resource 
for quantum metrology.

Quantum metrology plays a crucial role in science and engineering. Its applications include optical phase 
estimation10, quantum imaging11,12, optimal quantum clocks13, Quantum-enhanced positioning and clock syn-
chronization14. It deals with the highest obtainable precision in various parameter estimation tasks, utilizes quan-
tum entanglement to ameliorates the precision of parameter estimation via quantum measurements beyond the 
limit of its classical counterpart, and with finding measurement schemes that reach that precision15. The error, in 
this case, is limited by Cramér-Rao inequality, which is a function of Fisher information. The QFI is obtained by 
maximizing Fisher information over all possible positive operator value measurements. QFI is usually affected by 
the entanglement dynamics such as decoherence.

Decoherence is a phenomenon which arises as a consequence of the interaction between quantum systems 
and their environments. Naturally, closed or controlled quantum systems are difficult to find. Quantum systems 
unavoidably interact with the environment. This unwanted interaction results in suppression or loss of some 
quantum features of the quantum system2. For instance, the entanglement among composite system decays as it 
undergoes decoherence. Since this decay could hinder the development of quantum technologies, a great number 
of erudite scholars have developed keen interest on this subject3,6,7. This decay could be an asymptotic or disap-
pearance of entanglement at a finite time (entanglement sudden death), depending upon the environment in 
which the quantum state is situated.

The concept of open quantum systems provides a way of exploring damping and dephasing. In most cases, the 
effects of such systems can be expressed via a Kraus or operator-sum representation. This representation is useful 
due to the fact that it provides an essential description of the principal system without considering intricate details 
of the environment’s properties. In this paper, we have considered two models of decoherence: the BPF and GAD 

1Department of Physics, Federal University Lafia, PMB 146, Lafia, Nigeria. 2CIDETEC, Instituto Politécnico Nacional, 
UPALM, CDMX 07700, Mexico. 3Department of Physics, Federal University Oye-Ekiti, PMB 373, Ekiti State, Nigeria. 
4Theoretical Physics Section, Department of Physics, University of Ilorin, PMB 1515, Ilorin, Nigeria. Correspondence 
and requests for materials should be addressed to B.J.F. (email: babatunde.falaye@gmail.com)

Received: 20 July 2017

Accepted: 14 November 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-7921-8912
mailto:babatunde.falaye@gmail.com


www.nature.com/scientificreports/

2Scientific RepORtS | 7: 16622  | DOI:10.1038/s41598-017-16710-w

channels. These two models encapsulate physics of decoherence and they can be induced experimentally. Their 
importance and effects have been noted down in many works of literature16–25.

The main objective of this paper is to scrutinize the effects of aforementioned decoherence channels on QFI 
of N-qubit GHZ maximally entangled state. A general method to deduce the maximal QFI for a given state has 
been investigated in ref.26. From a geometrical point of view, the dynamics of two variants of QFI of an arbitrary 
single particle state under decoherence have been reported in27. Within the framework of the non-Markovian dis-
sipative process, Li et al.28 have scrutinized the dynamics of QFI of phase parameter in a driven two-level system.

It has been found that QFI gives a sufficient condition to discern multipartite entanglement. For instance, if 
mean QFI of a state exceeds shot-noise limit, then it’s multipartite entangled29,30. Within a symmetric double well, 
QFI has been used to distinguish and characterize behaviours of the evolved state for Bose-Einstein condensates, 
which shows a classical bifurcation and a transition from Josephson oscillation to self-trapping31. QFI has also 
been used to distinguish and characterize behaviours of the ground state of the Lipkin-Meskhov-Glick model. In 
fact, it gives a useful approach to quantum phase transition32.

The incessant avidity33–40 in studying QFI is due to the fact that it has emerged as salient quantity for quantum 
information theory and parameter estimation theory. QFI describes the distinctive sensitivity of a particular 
state with respect to perturbation of the parameter. It gives a limit to discern the family members of probability 
distributions. It also plays a significant role in quantum metrology14,41 and quantum geometry of state spaces42. 
In line with this unending interest, the current work seeks to investigate QFI of N-qubit GHZ entangled state in 
noisy channels.

Quantum Fisher information
To deduce the precise estimation of a parameter φ, Quantum Cramér-Rao Bound (QRCB), which is a function of 
QFI, has been found as an indispensable tool. It adds a lower bound on the sensitivity. Basically, QFI is an exten-
sion of Fisher information within a quantum framework. The maximal mean QFI is expressed as =F C N/max max , 
where Cmax denotes the largest eigenvalue of the elements in symmetric matrix given as
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Formulation and derivation of Eq. (1) has been shown in the Method. For a pure state, the matrix element 
becomes = + −J J J J J J2 4mn m n n m m n . It should be noted that the condition for a state of N particle to be 
entangled is, if it cannot be written as ρ ψ ψ= ∑ ⊗ = p{ }sep k i

N
k k

i
k

i
1

( ) ( )  (i.e., as separable state), where {pk} forms a 
probability distribution. For a separable state, the QFI has been found to be ρ ≤→F J N[ , ]Q sep n

29,30.

The noisy channels
In this section, we scrutinize the QFI for N-qubit GHZ state under decoherence. Two models of decoherence 
would be considered and these are, the BPF and GAD channels. Our assumption is that the same decoherence 
process affects all the qubits. The master equation, which governs the dynamics of each of these qubits, gives a 
map ε (i.e., a quantum channel which maps the input state into the output state), whose approximation can be 
described via Kraus representation2,43–45
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j, which contains all the information about the dynamics of the system, are called Kraus operators. M denotes 
the number of operators needed to characterize a particular noisy channel and ch represents a particular noisy 
channel that acts on the system. Any j

ch  would maps pure states onto pure states, but, a pure state will be trans-
formed to a mixed state upon being acted on by the collective operation of several j’s.

Evolution of N-qubit system can be described by Kraus operators formalism:
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where ρN is the density matrix of the N-qubit system. In this study, we focus on N-qubit GHZ state whose density 
matrix can be written as

ρ = + + + .⊗ ⊗ ⊗ ⊗1
2

( 0 0 1 1 0 1 1 0 ) (4)
N N N N N

GHZ

Bit-phase flip channel. The BPF is a combination of a phase flip and a bit flip. The bit flip transforms 0  to 
1 , and vice versa. Its operation is the same as phase damping channel. The phase flip leaves 0  invariant, and 
maps 1  to − 1 , substantiating the name phase flip. In this subsection, we study the effect of BPF on QFI of 
N-qubit GHZ state. The general behaviours of this channel is characterized by the following Kraus operators43–45
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where pB, which appears frequently in theory of quantum error-correction, represents a certain probability with 
which a state is unchanged while = −p p1B B, represents the probability of the occurrence of a BPF error. The 
evolution under BPF channel is given as E � �ρ = ⊕[ ]N a bBPF
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It can be seen that a
1
( )  is in a diagonal form already. Thus, the eigenvalues can be easily obtained as 
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With Eq. (7), the maximal mean QFI of the N-qubit GHZ state can be obtain as  = × ⊥F N1/ max[ , ]max , 
where   = =⊥ xx yy and = zz  . The subscripts xx, yy and zz refer to the →n . In Fig. 1, we examine the variation 
of QFI as a function of decoherence rate of BPF channel. The (−1)N and (−1)N−1 appearing in Eq. (7), lead to 
disparity between odd and even N s. The two shapes have been depicted in Fig. 1(a) and (b). As it can be seen, 
when there is no interaction with the environment, the Heisenberg limit can be achieved via rotations along 
z-direction. Surprisingly, in Fig. 1(a), ⊥F  and ||F  increase rapidly in a concave-down manner as pB increases until 
it varnishes at pB = 0.5. For p > 0.5, it revives and proliferates in a concave-up manner as pB increases. It can be 
seen from Fig. 1(b) that Fmax dwindles as pB increases due to flow of information from the system to the environ-
ment, until pB = 0.5, then revives to form a symmetric around pB = 0.5. Thus, pB > 0.5 leads to a situation where 
more noise yields more efficiency.

Generalized amplitude damping channel. Amplitude damping (AD) channel simulates the interaction 
of a quantum system with vacuum bath. It represents one of the valuable decoherence noise which provides us 
with description of energy-dissipation effects due to loss of energy from quantum state, for instance, the sponta-
neous emission of a photon or a spin system approaching equilibrium with its environment at high temperature. 
A simple physical model of an amplitude damping channel is the scattering of a photon through a beam-splitter. 
Environment represents one of the output modes which is traced out. The unitary transformation at the 
beam-splitter can be expressed as θ= −† †B a b abexp ( ), where the creation and annihilation operators have been 
denoted as † †a b,  and a,b20–25. The Kraus operator for this channel can be written as η= 0 0AD

ad0  + 1 1  
and  η= 1 0AD

ad1 , where η η= − ∈1 [0,1]ad ad  denotes decay’s probability and η γ= − texp( )ad 0 , where γ0 
represents the spontaneous emission rate.

By taking the evolution of a two-level quantum system in a dissipative interaction into consideration, gener-
alized amplitude damping channel (GAD) channel can be described by the following Lindblad form of master 
equation20–25:
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where ρs denotes reduced density matrix operator of the system interacting with a thermal bath in the weak 
Born-Markov rotating-wave approximation, γ= +R N R[ /2( 1)]th1 0

1/2 , γ= †R N R( /2)th2 0
1/2 , =R 1 0 , 

= −ω βN e1/( 1)th
k T/( ) , ħ is reduced Planck constant, ω denotes the photonic’s frequency, kβ represents the 

Boltzmann constant and T is the temperature of the environment20–25.
When the environment is at zero-temperature, there would only exist loss of excitations which can be 

described by AD. However, practically, the environment’s temperature is always finite and to describe the dissipa-
tion effect, in this case, GAD has to be employed. To give a detail description of this system without considering 
the intrinsic properties of the environment, we can apply the Kraus operator-sum decomposition:
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= + +p N N( 1)/(2 1)th th  with ≤ ≤p(0 1) is the probability of losing the excitation and also denotes the 
temperature of the environment. For a special case T = 0, then Nth = 0, p = 1 and Eqs (9) and (10) reduce to corre-
sponding AD channel. = −p p1  denotes the probability of gaining excitation46. The decoherence rate has been 
denoted by η η= − ∈1 [0 1]gad gad  and η γ= − +t Nexp[ (2 1)]gad th0 . Operating εGAD on the density matrix of 
the N-qubit GHZ state, yields the following evolution ε ρ ς ς= ⊕[ ]N a bGAD
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Figure 1. Plots of Fmax, ⊥F  and F  as a function of decoherence rate of BPF channel. In (a), we consider odd N, 
i.e. N = 5. In (b), we consider even N, i.e. N = 8.
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In Fig. 2(a), we have plotted Fmax, ⊥F  and F  of four- and five-qubit GHZ states as a function of decoherence rate 
ηgad with p = 0.7. We observe that F  decreases monotonically to zero as the strength of ηgad increases while ⊥F  
decreases gradually and then revives. The revival insinuates there is an inflow of information from the surround-
ing to the system. In case of five-qubit GHZ states, the vanishing characteristic of F  is discernible at η > .0 68gad  

while for four-qubit GHZ states, it is at η > .0 75gad . This figure reveals the susceptibility of Fmax, ⊥F  and F  to p and 
N. For a particular ηgad, the enhancement becomes lager by reducing N. Comparing the states with higher qubit 
(N = 5) to the states with lower qubit (N = 4), the former are more susceptible to decoherence than the later.

In Fig. 2(b), we study the dynamics of QFI under AD channel via considering a special case p = 1 in Eq. (9), 
which corresponds to zero temperature. We observe that in the absence of noise (i.e., η =0ad ), the Heisenberg limit 

= =F F Nmax  can be achieved by considering the response of the system to SU(2) rotations in the z direction. It 
can also be seen that as the decoherence increases, F  dwindles from N until it varnishes. On the contrary, a 
shot-noise is obtained by considering the susceptibility of the GHZ state to rotations along x − y planes. As it can 
be seen, ⊥F  decreases as ηA increases until η = .0 5A  where a transition occurs and then ⊥F  proliferates. In accord-
ance with the theory of quantum estimation, an increment in QFI insinuates a corresponding increase in optimal 
precision of estimation. From this figure, we can deduce that there exists a critical point ≈ − − −N1 (2 1)p

N1/ . 
This point corresponds to where = =F F 1max .

In Fig. 2(c), we make comparison between the sensitivity of QFIs to zero temperature Nth = 0 and finite tem-
perature Nth = 0.75. In both cases, the QFIs decreases monotonically with decoherence. This figure reveals that at 
finite temperature, the QFIs decay more rapidly than at zero temperature. Figure 2(d) is a contour plot which 
depicts the variation of Fmax as functions of probability (p) and decoherence rate ηgad. It is shown that the Fmax can 
be modulated by p. This figure reveals the intrinsic property of GAD channel. It is shown that for η = .0 5gad , QFIs 
are not sensitive to any variation in the temperature of the environment.

Discussion
Quantum metrology deals with parameter optimal estimation. Conceptual comprehension and enhancing the 
precision limits of quantum metrology has been of utmost necessity and it has aroused the interest of many 
researchers. The precision of the estimator is limited by the Cramér-Rao inequality which is a function of classical 
Fisher information (CFI). Maximizing the CFI over all possible measurements yields QFI. The QFI is an indis-
pensable quantity in quantum metrology. In accordance with the theory of quantum estimation, an increment in 
QFI insinuates a corresponding increase in optimal precision of estimation. Unfortunately, noisy channels affect 
the QFI greatly. In this research work, we have studied the evolution of QFI under the influence of decoherence. 
Two models (i.e., BPF and GAD channels) of decoherence have been considered. The QFI has been scrutinized 
under these channels. We found that when there is no interaction with the environment, the Heisenberg limit can 
be achieved via rotations along the z direction. As per BPF channel, the disparity between QFI of odd and even 
N is as a consequence of (−1)N and (−1)N-1 appearing in Eq. (7). This channel has revealed a situation whereby 
less noise leads to less efficiency. Also, under GAD channel, we found that QFIs are susceptible to variations in N. 
Considering a zero temperature, the GAD channel reduces to AD channel and we have examined the dynamics 
of QFI under this channel too. We have shown that under AD channel, by rotating the GHZ state along the x−y 
planes, a shot-noise can be obtained. Besides the method described in the current work (i.e. rotation of the state) 
to achieve a better precision, some other methods, such as optimal control47–49 or a carefully chosen of the initial 
state50,51 can also be used to enhance the precision of the limit.

Method
There are three steps in parameter estimation: (i) preparation of the sensor’s input state (ii) the sensor undergoes a 
parameter-dependent dynamical process which now evolves to the final state. (iii) measurement is carried out on 
the final state and unbiased estimator of the parameter is roughly calculated from the result. The experimental set-up 
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can be found in Fig. (3) below. The precision of the estimation can be determined by standard deviation, a technique 
of processing the data, the fluctuation of observable under consideration and the nature of the dynamic process.

Now, considering a phase shift parameter φ which can be obtained from SU(2) rotation ρ φ ρ= φ φ− +→ →e e( ) i J i Jn n 26, 
where the operator

∑ σ= ⋅ = ⋅
β

β β
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�� ��
�J n J n1

2
,

(13)
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x y z, ,
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three-dimensional vector) and σβ are Pauli x, y and z matrices. The phase shift is considered as the value assumed 
by an estimator function given by φ μˆ({ } )i m , where μ μ μ= …{ } { , , }i m m1  represents the results of m independent 
repeated measurements (μ) which are described by a set of non-negative Hermitian operator μÊ  with ∑ =μ μÊ 1. 
The mean value and the variance of the estimator calculated over all possible sequences μ{ }i m are denoted by φ〈 〉ˆ  
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2 2 2 2
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estimator, ϕ ϕ〈 〉 =ˆ . Thus, intuitively, the explicit value of μ φ φ φ∑ | − 〈 〉μ
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ing this expression with respect to φ, we have
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Using Cauchy-Bunyakovsky-Schwarz inequality “[Cauchy-Bunyakovsky-Schwarz inequality states that for all 
vectors a and b of an inner product space, we have | ⟨a,b⟩|2≤⟨a,a⟩⋅⟨b,b⟩|⟨a,b⟩|2≤⟨a,a⟩⋅⟨b,b⟩.]”, we have

Figure 2. Plots of Fmax, ⊥F  and F  as a function of decoherence rate of GAD channel (a) and amplitude damping 
channel (b). The initial state are 4-body and 5-body GHZ state. In (c), we make comparison between (a) and (b) 
via four-qubit GHZ state. In (d), we show the variation of Fmax as functions of probability (p) and decoherence 
rate ηgad in contour plots.
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1

1

where   denotes the classical Fisher information. Moreover, Eq. (16) could simply be written as φ∆ ≥ −ˆ( )2 1 . 
Also, the explicitly form of   becomes

 ∑ ∑
μ φ

μ φ

ρ φ

ρ φ
=

∂ |

|
=

∂

μ

φ

μ

μ φ

μ

ˆ

ˆ
P
P

Tr E

Tr E

[ ( )]
( )

[ ( )]

[ ( )] (17)

2
2

Repeating the experiment m-times ameliorates this precision and consequently, we obtain


φ∆ ≥ .ˆ

m
1

(18)

The Fisher information quantifies the asymptotic usefulness of a quantum state for phase estimation. Now, let 
us determine the QFI (F) via maximizing   over all possible positive operator value measurements. In order to 
achieve this aim, it is necessary to remove μÊ  from   since F is independent of the measurement procedure. 
Consequently, let us consider the following definitions of logarithmic derivative Lφ

52:
1. Left Logarithmic Derivative (LLD): ρ φ ρ φ∂ =φ φL( ) ( ) ,
2. Symmetric Logarithmic Derivative (SLD): ρ φ ρ φ ρ φ∂ = +φ φ φ( )L L( ) ( ) ( )1

2
.

Using the LLD, Eq. (17) becomes

ˆ ˆ

ˆ∑
ρ φ ρ φ

ρ φ
=
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( ) ( ) ]

[ ( )
,
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2

where we have used the cyclic property of the trace. Now, with the help of Schwarz inequality ≤ ≤† †Tr A B Tr A A[ ] [ ]
2

, 
≤ † †Tr A A Tr B B[ ] [ ]Eq. (19) becomes

∑

∑

ρ φ ρ φ

ρ φ ρ φ

ρ φ ρ φ
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µ
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µ
µ φ ϕ
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ˆ

F Tr E L L E

Tr E L Tr L

Tr L L L L

( ) ( )

( ) ( )

1
2

( ) ( ) ,
(20)

2 2

which is independent of the measurement procedure μÊ  and the results μ. Thus, with Eqs (18) and (20), the fol-
lowing relation

∆φ ∆φ≥ ≡ˆ
mF
1 ,

(21)CRQ

Figure 3. A setup for parameter estimation. A sensor prepared in a known state is sent through a φ-dependent 
dynamical process. The output state undergoes a measurement and from the outcome, an unbiased estimator φ̂  
can be produced.



www.nature.com/scientificreports/

8Scientific RepORtS | 7: 16622  | DOI:10.1038/s41598-017-16710-w

can be established, which is the so called quantum Cramér-Rao bound (QCR). For a mixed input state, 
ρ φ λ ψ ψ= ∑( ) k k k k , where λ ≥ 0k  (with λ∑ = 1k k ) denotes the eigenvalues and ψk  represents the eigenstate. 
Now, in the eigenbasis of ρ φ( ), the parameter ρ φ∂φ ( ) appearing in Eq. (20) becomes

ψ ρ φ ψ ψ ρ φ ρ φ ψ

λ λ
ψ ψ

λ λ

∂ = +

=
+

=
+

φ φ φ

φ

φ

( )L L

L

L

( ) 1
2

( ) ( )

2

2
,

(22)

i j i j

i j
i j

i j
ij

where we have used SLD. Thus, F becomes
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∑

∑
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= | + |
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=
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=
−
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φ φ φ φ

φ φ
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≠

→

F L L L L
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1
2

2
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(23)

i j
j i i i j j j j

i j

i j
j i i j

i j

i j

i j

i j

i j

i j
i n j

T

,

,

,

2

2 2

Now, we can write the matrix element as Eq. (1). A more rigorous form of Eq. (23) has been presented in 
refs53–57.
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