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Abstract

THIS ARTICLE USES WORDS OR LANGUAGE THAT IS CONSIDERED PROFANE,

VULGAR, OR OFFENSIVE BY SOME READERS. The presence of a significant amount of

harassment in user-generated content and its negative impact calls for robust automatic

detection approaches. This requires the identification of different types of harassment. Ear-

lier work has classified harassing language in terms of hurtfulness, abusiveness, sentiment,

and profanity. However, to identify and understand harassment more accurately, it is essen-

tial to determine the contextual type that captures the interrelated conditions in which

harassing language occurs. In this paper we introduce the notion of contextual type in

harassment by distinguishing between five contextual types: (i) sexual, (ii) racial, (iii) appear-

ance-related, (iv) intellectual and (v) political. We utilize an annotated corpus from Twitter

distinguishing these types of harassment. We study the context of each kind to shed light on

the linguistic meaning, interpretation, and distribution, with results from two lines of investi-

gation: an extensive linguistic analysis, and the statistical distribution of uni-grams. We then

build type- aware classifiers to automate the identification of type-specific harassment. Our

experiments demonstrate that these classifiers provide competitive accuracy for identifying

and analyzing harassment on social media. We present extensive discussion and significant

observations about the effectiveness of type-aware classifiers using a detailed comparison

setup, providing insight into the role of type-dependent features.

Introduction

Disclaimer: This article uses words or language that is considered profane, vulgar, or offensive by
some readers. Owing to the topic studied in this article, quoting offensive language is academi-
cally justified but neither we nor PLOS in any way endorse the use of these words or the content
of the quotes. Likewise, the quotes do not represent our opinions or the opinions of PLOS, and we
condemn online harassment and offensive language.

Although social media has enabled people to connect and interact with each other, it has

also made people vulnerable to insults, humiliation, hate, bullying–facing threats from
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individuals who are either known (e.g., colleagues, friends) or unknown (e.g., fans, clients,

anonymous entities). Please note that in this work, cyberbullying and harassment are used

interchangeably. A Pew research study reports [1] that one-in-five (18%) victims of cyberbully-

ing characterized their exposure as severe. The resulting negative impact from emotional dis-

tress, privacy concerns and threats to physical safety and mental health, affect individuals

online and offline. This calls for tool-based, automatic detection, monitoring, and analysis of

hurtful language to protect online users. The prior state-of-the-art is limited to detecting spe-

cific hurtful language such as hate speech [2], abusive language [3], and profanity [4], collec-

tively termed Negative Affective Language (NAL). In the following, we present the definitions

and terms for variants of harassing language:

• Hate speech is “speech that denigrates a person because of their innate and protected char-

acteristics” [5]. Furthermore, it is divided into two categories: directed and generalized,

depending upon whether there is an explicit target or not.

• Abusive Language is “the collection and misuse of private user information, cyberbullying

and the distribution of offensive, misleading, false or malicious information” [6].

• Offensive Language employs profanity, is strongly impolite, rude or vulgar red expressed

with fighting or hurtful words to insult a targeted individual or group [7–10].

• Aggressive Language shows overt, angry and often violent social interaction with the inten-

tion of inflicting damage or other unpleasantness upon another individual or group of peo-

ple [11, 12].

• Harassing (Cyberbullying) Language is the use of force, threat, or coercion to abuse,

embarrass, intimidate, or aggressively dominate others. It typically denotes repeated and

hostile behavior performed by a group or an individual [11–13].

These definitions are highly subjective and overlap, making them hard to differentiate. For

example, the definition of harassing language is similar to aggressive language. We posit that

all of these NALs are hurtful and thus harassing. But they might vary in their level of severity,

presence or absence of target (victim), contextual interpretation and purpose. In this paper, we

frame harassing language as offensive language where a given post/message contains “profanity,
strongly impolite, rude, vulgar or threatening language”.

State-of-the-art harassment detection fails to exploit the contextual type of harassing lan-

guage. Webster’s dictionary [14] provides the following definition for context: “the parts of

a discourse that surround a word or passage and can throw light on its meaning”. Here, we

describe the notion of contextual type as the linguistic or statistical conditions that help in dif-

ferentiating the type of harassment. For example, the circumstance of a student who has been

subjected to sexual harassment by her ex-partner differs from a student racially harassed

because of her/his color. We suggest that contextual type influences the linguistic characteris-

tics of harassment. We propose five contextual types of harassment in online communication

on social media: (i) sexual harassment, (ii) racial harassment, (iii) appearance-related harass-

ment, (iv) intellectual harassment, and (v) political harassment. This categorization is repre-

sented in Fig 1. Below, we define each type of harassment using illustrative examples from the

Twitter corpus we have created.

1. Sexual harassment is offensive sexual speech that usually targets females. E.g., the harasser

might comment on the victim’s body in a vulgar manner or mention sexual relationships in

an aggressive way. Note that using sexually profane words is not sufficient to indicate offen-

sive sexual harassment [15, 16].
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2. Racial harassment targets race and ethnicity characteristics of a victim such as skin color,

country of origin, culture, or religion, in an offensive manner [17].

3. Appearance-related harassment uses embarrassing language referring to body appearance.

Fat shaming [18] and body shaming are key subtypes of this type of harassment.

4. Intellectual harassment offends the intellectual power or opinions of individuals [19].

5. Political harassment is related to someone’s political views [20]. Typical targets are politi-

cians and politically inclined individuals who receive threatening messages [21].

Determining the real intent behind a tweet regarding the type of harassment can have seri-

ous implications for public perception. Reliable assessment of the type of harassment can have

significant repercussions. We are unaware of any prior work on studying harassment concern-

ing these five types. We summarize our contributions as follows: (i) We introduce five contex-

tual types of harassment. Then, we provide a systematic, and comparative analysis to assess

offensive language from linguistic and statistical perspectives for each contextual type. This

allows us to exploit relevant features for developing classifiers to identify these critical types of

harassment on social media. (ii) We develop type-aware classifiers and capture their effective-

ness using a detailed comparative study. This paper is organized as follows. The next section

reviews the related literature. We then present the type-aware corpus that we have developed.

Subsequently, we analyze our compiled corpus linguistically as well as statistically, which

shows us the significant type-specific features for various types of harassment. We then discuss

supervised learning approaches and classifiers for detecting the harassing language in compar-

ative settings. We also provide an error analysis study regarding the pitfalls and challenges of

our strategy. We close with the conclusions and our future plans.

Fig 1. Five contextual types of harassment.

https://doi.org/10.1371/journal.pone.0227330.g001
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State-of-the-art in harassment research

The previous research studies targeted various social media sources such as Twitter, Instagram,

and Facebook. In Table 1, we summarize the prior literature with their corresponding goals,

conclusions, and underlying data sets. Here, we specifically note particularly prominent related

work. In [13], the authors seek to predict cyberbullying incidents on Instagram. They built a

predictive model for the incidence of cyberbullying using features from initially posted data,

a social graph, and temporal properties. The work in [22] proposed an approach for detecting

harassment features based on the content, sentiment, and context. Using Slashdot and

MySpace data, they showed significant improvement using TFIDF supplemented with

Table 1. Summery of the related research.

Paper Goal Data Conclusions

[7] Detecting offensive and hateful speech

language

85.4 Million Tweets Collected from 33458 twitter user using

profane words. 25000 tweets are selected.

Collected discriminating terms for hate speech

and offensive language

[11] Detecting aggressors and their behavior on

social media

1.6 million tweets collected in 3 months, using crowd

sourcing for annotation.

Determined that posts of aggressor profiles are

more negative

[8] Detecting offensive language and identifying

its sender.

The data set includes comments from 2,175,474 Youtube

users in reaction to the top 18 videos on different Topics.

(i) Conceptualized offensive content, and (ii)

enhanced features using lexical, style, structural,

and context-specific features.

[13] Predicting cyberbullying incidents on

Instagram social media

41K users that are cyber bullied according to the random

seed nodes. 3165K tweets collected from 25K public users

while 697K Tweets labeled as profane tweets

Classifier designed, trained, and applied for

collecting data. Logistic regression classifier

[22] Detecting harassment based wrt. content,

sentiment, and context

*11K tweets used in experiments Fundacio’n Barcelona

Media (FBM): Kongregate, Slashdot and MySpace. Totally

10,951 tweets collected and nearly 167 labeled offensive.

Improving accuracy in detecting harassing

language using discussion-style and chat-style

language

[23] Detecting harassers and victims in

cyberbullying incidents

Collected twitter data using profane words Twitter data

contains 180,355 users and 296,308 tweets.

Accuracy improved wrt. network features.

[24] Detecting instigators and victims of bullying 180K profile on Twitter and *300K tweets using profane

words as seed

scoring level of cyber bully and victim.

[25] Detecting cyber bullying in the Japanese

community.

Data from Japanese secondary schools Automatically extract new vulgarities from the

Internet to keep their offensive lexicon up to

date.

[9] Understanding behavior and actions of

individuals using emotion detection

*2.5M tweets tweets dataset using harassment-related and

emotion hashtags

[35] Detecting bullying incident on social

networks

*2M tweets collected in 4 weeks Developed a practical method of text mining,

clustering, dimensionality reduction and

classification.

[26] Classifying cyberbullying activities on social

network

Collected data from 18,554 users data from Formspring.Me

and MySpace.

predicting cyber bullying using fuzzy logic

[31] investigating the correlation of harassment

on Facebook

555 Facebook users in the United States (59% female;

Mage = 30.90, SDage = 9.19)

Results show most of the updating posts related

to the intellect people, children, and who they

are in the romantic relation.

[32] Identifying narcissism, activities on

Facebook social media

256 Facebook users from locations around the world. Text mining for narcissistic using on the

comment likes

[36] Automatic cyber bulling detection on social

media text

English and Dutch corpora from ASKfmsocial media sites. detecting signals of cyber bulling on social

media, about bullies, victims, and bystanders.

[37] Decompose the overall detection problem

into detection of sensitive topics, lending

itself into text classification.

corpus contain 4500 YouTube comments. Concluded binary classifier for individual labels

outperform multiclass classifier.

[38] Cyberbulling detection with in multi modal

content.

*K entries from Instagram and Vine Dataset proposed cyberbulling detection framwork

XBully based on network representation

leaning.

[39] Identification of fake content in online news. 980 entries from fakeNewsAMT and celebrity Dataset Linguistic analysis shows the importance of the

lexical, syntactic, and semantic of content.

https://doi.org/10.1371/journal.pone.0227330.t001
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sentiment and contextual features. The authors of [23] proposed an approach to spotting

harassers as well as victims on social media. They considered the social structure and infer

which user is a likely instigator and which user is expected to be a victim. This model is based

on social interactions and the language of users in social media. Similarly, [24] proposes a

method that simultaneously discovers instigators and victims of bullying incidents. It extends

an initial bullying vocabulary using twitter and ask.fm. In [25], the authors proposed a super-

vised learning method for detecting cyberbullying in Japan. In [26], the authors propose a

supervised learning method based on fuzzy logic and genetic algorithm to identify the presence

of cyberbullying terms and classify activities, such as flaming, harassment, racism, and terror-

ism on social media. Fuzzy rules were used to classify data, and a genetic algorithm was used

for optimizing the parameters.

[9] explores the correlation of behaviors and actions of people and their emotions. The

authors developed a large emotion-labeled dataset of harassing tweets. They applied 131 emo-

tion hashtag keywords categorized into seven groups and collected 5 million tweets. To find

useful features for emotion identification, they applied LIBLINEAR [27] and Multinomial

Naive Bayes [28] algorithms. They extracted n-gram features [29] to analyze the emotion, and

they applied Linguistic Inquiry and Word Count (LIWC) to expand the feature set with related

emotional words. Interestingly, the authors of [12] target cyber-aggression and cyberbullying

in a multi-modal context with text comments and media objects on Instagram. They con-

cluded that non-text features are not able to substantially improve the performance of cyber-

bullying detection compared to text-based features.

Different from the previous work, some literature examines the psychological implications

of harassment incidents [30]. The authors in [31] sought the reasons behind the updates of posts

on Facebook. They noticed that: (i) the majority of posts are about social activities and everyday

life, (ii) people with low self-esteem updated their status on relationship whereas those with high

self-esteem update their status with respect to their children. Moreover, people with narcissistic

personality disorder updated their status through their achievements. Furthermore, they

observed a correlation between the number of likes and comments with esteem level of people

(e.g., the people with the low self-esteem receive fewer likes and comments because their status

expresses greater negative affect). Similarly, the authors of [32] discuss narcissism personality

disorder in Facebook users and its implications in harassing incidents. Our own past work [33,

34] focused on (i) using a conversation between a sender and a receiver to better capture its nor-

mal linguistic nature (e.g., base rates for curse word usage) and the nature of the relationship

between participants (e.g., friends vs. strangers), and (ii) analyze comments/review threads to

better identify offensive content in non-text media such as YouTube videos [34], to reliably

detect harassment between participants.

Type-aware harassment corpus

We published a type-aware annotated corpus and lexicon in [40]. Our corpus consists of

25,000 annotated tweets for the five types of harassment content and is available on the Git

repository [41]. In the following, we discuss our strategies for corpus compilation and annota-

tion. The identification of cyberbullying typically begins with a lexicon of potentially profane

or offensive words. We created a lexicon (compiled from online resources [42] [43] [44] [45]

[46]) containing offensive words covering five different types of harassment context. The

resulting compiled lexicon includes six categories: (i) sexual, (ii) racial, (iii) appearance-

related, (iv) intellectual, (v) political, and (vi) a generic category that contains profane words

not exclusively attributed to the five specific types of harassment. A native English speaker

conducted this categorization.
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Corpus development and annotation

We employ Twitter as the social media data source because of its extensive public footprint.

Twitter reports 313 million monthly active users that generate over 500 million tweets per day

[47]. Although the size of a tweet is restricted (140 characters at the time of corpus collection),

once we consider a more extensive aggregation of tweets on a specific topic, mining approaches

reveal valuable insights. We utilized the first five categories of our lexicon as seed terms for col-

lecting tweets from Twitter API between December 18th, 2016 to January 10th 2017 [47] (This

date was close to the US presidential election. Then our political sub-corpus has many tweets

with the subject of Trump). Requiring the presence of at least one lexicon item, we collected

10,000 tweets for each contextual type for a total of 50,000 tweets. As shown in Table 2, nearly

half of these tweets were annotated. However, the mere presence of a lexicon item in a tweet

does not assure that the tweet is harassing because the individuals might utilize these words

with a different intention, e.g., in a friendly manner or as a quote. Therefore, human judges

annotated the corpus to discriminate harassing tweets from non-harassing tweets. Three native

English speaking annotators who were the undergraduate students with a major in computer

science and minor in psychology or sociology were employed for our annotation task. The

annotators determined whether or not a given tweet was harassing with respect to the type of

harassment content and assigned one of three labels yes, no, and other. The last label indicates

that the given tweet either does not belong to the current context or cannot be decided. Ulti-

mately, we acquired�24,000 annotated tweets represented in Table 2. Note that the annotation

task was done on a per tweet basis although it can be improved using the entire conversation

history.

Agreement rate

Although the annotators employed three labels, i.e., yes, no, and other, the eventual corpus

excluded all tweets without a consensus label of “yes” or “no”. That is, the corpus contains only

those tweets that received at least two “yes” or two “no” labels. Cohen’s kappa coefficient [35]

measures the quality of annotation by category in Table 3. The appearance-related context

shows the highest agreement rate whereas political and sexual contexts have the lowest, indi-

cating that they are more challenging to judge due to higher ambiguity.

Annotating Golbeck corpus

The public state-of-the-art harassment-related corpus is the Golbeck corpus [40] that only

provides generic annotation, i.e., (i) harassing and (ii) non-harassing. This corpus contains

20,428 non-redundant annotated tweets of which only 5,277 are labeled as harassing. Since

we require context-aware annotations, we re-annotated the harassing tweets of Golbeck. The

agreement rate (Cohen’s kappa) between the two annotators is 86%. As shown in Table 4,

Table 2. Annotation statistics of our categorized corpus.

Contextual Type Annotated Tweets Harassing ✔ Non-Harassing ✘
Sexual 3,855 230 3,619

Racial 4,976 701 4,275

Appearance-related 4,828 678 4,150

Intellectual 4,867 811 4,056

Political 5,663 699 4,964

Combined 24,189 3,119 21,070

https://doi.org/10.1371/journal.pone.0227330.t002
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more than 75% of the harassing tweets are racial. This statistic confirms Golbeck’s observation.

While this may be an accurate reflection of the base rate, our view is that different harassment

contexts may have different consequence. An imbalanced corpus at the foundation of our

research effort could result in misses of particular practical import to teenage mental health,

concerning sexuality, appearance and intellect.

LIWC analysis for different types of harassment

Linguistic analysis of our corpus sheds light on the differences between the harassing corpus

versus non-harassing corpus for each type. Furthermore, it provides a comparison between

various types of harassment. We divided our corpus into 12 sub-corpora: (i) one generic corpus
containing all harassing tweets regardless of their type, called the combined harassing corpus,

(ii) one generic corpus containing all non-harassing tweets irrespective of the type called the

combined non-harassing corpus, (iii) five contextual type-aware corpora including only

harassing tweets per type, (iv) five contextual type-aware corpora including only non-harassing

tweets per type. For linguistic analysis, we utilized LIWC [48] [49]. This tool tallies 96 linguistic

features using a multiword lexicon for each feature. We individually analyzed each of the 12

sub-corpora using LIWC. An effect size, statistic estimates the magnitude of an effect (e.g.,

mean difference, regression coefficient, Cohen’s d, and correlation coefficient) [50] metric was

used to determine significant discriminators [51]. Conventionally, a proportion (feature) fi is

considered moderately discriminating when its effect size is more than 0.5 (i.e., jefi j > 0:5),

and is considered unhelpful if jefi j � 0. The effect size for each feature is calculated as follows:

efi ¼
experimentalgroup � controlgroup

std
ð1Þ

where, experimentalgroup is the mean of the experimental group on the given feature fi,
controlgroup is the mean of the control group wrt. the given feature fi and std is the standard

deviation. For each content corpus as well as for the combined corpus, we consider the

Table 3. Agreement rate.

Content Type Agreement Rate

Sexual 0.70

Racial 0.84

Appearance-related 1.00

Intellectual 0.80

Political 0.69

https://doi.org/10.1371/journal.pone.0227330.t003

Table 4. Statistics for the Golbeck corpus after our annotation wrt. contextual type.

Contextual Type #of Tweets

Sexual 380

Racial 4148

Appearance-related 145

Intellectual 381

Political 163

Non Harassing 41

Total 5277

https://doi.org/10.1371/journal.pone.0227330.t004
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harassing corpus as the experimental group and the non-harassing corpus as the control

group. We compared the prevalence of the 96 LIWC features in the harassing corpus to their

prevalence in the corresponding non-harassing corpus. Out of the 96 original features, we

removed features that were not significant in any of the contextual types and retained 38 of the

most discriminating features as shown in Fig 2. The extreme red (green) color represents sig-

nificance (regarding effect size) of the corresponding feature in the harassing (non-harassing)

corpus. In the following, we highlight specific significant features to make three points. First, a

feature is often diagnostic of the non-harassing corpus. Second, feature significance is type

dependent. The third is related to both points: a given feature, such as “you”, can be a positive

indication of harassment for one type and a negative indication of harassment for another. In

the following, we indicate highly significant linguistic features derived from Fig 2 for each

individual type. Note that our corpus is already biased towards curse words because curse

words are present as seeds for crawling. Thus, our observations on discriminatory features are

conditional on a “high recall curse word-laden corpus”.

Sexual corpus

The pronoun “I” is prevalent in the sexually non-harassing corpus with e = −1.2, which is

highly significant, e.g., i’m le���an kiss. Furthermore, the feature “MONEY” is prevalent

in the harassing corpus with e = 2.9. E.g., send me free money b��ch h�es i won’t
give you anything to dance to you h�e a�s industry b�t�h
d�cks��king p�r�star people.

Racial corpus

The pronoun “YOU” is prevalent in the harassing corpus with e = 0.9, e.g., Vishalp
sikanda, Quideazam hahahaha u p��i can block u cant debat u p��i
I���an. The “COMPARATIVE” feature is prevalent in racial non-harassing corpus with e =

−0.84, e.g., save block p��i like po yung comment ni richard fronda (the

word ‘like’ is an indicator of comparison in LIWC). Thus, these features can be used to dis-

criminate between harassing and non-harassing tweets.

Political corpus

The pronoun “SHE” and “HE” with e = −0.9 and the pronoun “WE” with e = −0.8 are prevalent

in the non-harassing corpus, e.g., realdonaldtrump putin a��hat just like
word can express displeasure leader god help us (us indicates the pro-

noun ‘WE’). The “RISK” feature is significant in non-harassing with e = −1.9, e.g., f���

wrong democratic senators. The word ‘wrong’ represents a risk feature in LIWC dic-

tionary. Other sample risk related words are ‘danger’, ‘doubt’, etc. Furthermore, the “ANXI-
ETY” feature with e = −0.92 is significant in the non-harassing corpus. E.g., well i’m true
dumb f��� democrat wouldn’t doubt.

Appearance-related corpus

“NEGATION” with e = 2.3 is prevalent in the harassing corpus (probably because of the nega-

tive language used for referring to the body and appearance-related subjects). E.g., Taylor
swift cant shake c��el toe. The other significant feature in the harassing corpus

is the “PAST TENSE”. E.g., Ugli a�� didn’t go run yesterday get work
f�t��s. Furthermore, the “COMPARATIVE” feature is prevalent in appearance-related
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Fig 2. Significant LIWC features in comparing harassing corpus to non-harassing corpus for six categories. The

extreme red (green) color indicates the significance of a given feature in the harassing corpus (non-harassing corpus).

E.g. the negation feature with the value 2.34 in the appearance harassing corpus is significantly higher than non-

harassing corpus. The white color indicates a lack of difference for a given feature when comparing two corpora.

https://doi.org/10.1371/journal.pone.0227330.g002
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harassing corpus with e = 0.63. E.g., hey lardass notice your look pizza per-
haps like f��� salad a��hole. The word ‘like’ indicates a comparative feature.

Intellectual corpus

The “FEMALE REFERENCE” feature with e = 2.3 is highly significant in intellectual harassing

corpus (perhaps because girls are harassed more wrt. intellectual issues.) E.g., She is dumb
f���.

Combined corpus

“DISCREPANCY” with e = −1.5 is prevalent in the non-harassing corpus e.g., boss
brought drunken sugar cook explain there alcohol just sh��face.

Statistical analysis of different types

We investigate the relationship between the offensive words employed in collecting our cor-

pora and the specific lexical items in the crawled corpora. We determine Q1: whether or not

offensive words are observed as frequent words, Q2: whether or not the frequent words in

harassing corpora differ from those in non-harassing corpora, and Q3: whether or not fre-

quent words are type-sensitive, in other words, whether the frequent words vary with type of

context. Fig 3 shows the 2D visualization of the word embeddings of the top-25 most frequent

words for the harassing corpora, whereas Fig 4 represents a similar display for the top-25 most

frequent words for the non-harassing corpora (the following section presents the details of

word embedding). The prevalence of curse words in the non-harassing corpora is comparable

to the harassing corpora. This confirms that the presence of curse words is not a sufficient

indicator of harassment. In the following, we mention our key observations.

Key observations

Regarding Q1, as expected, we observed that offensive words are commonplace in both harass-

ing and non-harassing corpora across types (cf. Figs 3 and 4). In addition, we observed some

emerging, frequent offensive words, such as “grab” and “camel” that can now be added to our

initial offensive lexicon [41]. Furthermore, there are frequent words that are not necessarily

offensive. E.g., consider “look” or “eat” in the appearance-related type where they are implicitly

related to the associated type, applicable to the appearance of a subject. Regarding Q2, we

observe that the frequent words in the harassing corpora are different from those in the non-

harassing corpora. The particular words in the harassing corpora also can be added to the ini-

tial lexicon of seed words. The result of this analysis can be utilized for weighting the severity

of offensiveness for every single word included in our lexicon.

To reply quantitatively to Q3, we ran an annotation task on the top-15 most frequent words

for each type of harassing corpus as well as the corresponding non-harassing corpus. The

description of this task is as follows: we asked the human annotators (i.e., graduate students) to

determine whether or not a given frequent word is related to the associated type either explic-

itly or implicitly. E.g., the words “eat” or “food” are implicitly related to appearance while they

seem far from the type racial. The results of this exercise appear in Table 5. In the harassing

corpora, the percentage of relatedness of words to the associated type is higher than 67% and

in sexual and racial types, it even reaches 80%. This percentage fluctuates for non-harassing

corpora. E.g., in appearance-related type, it is higher than 93% while in racial it reaches 53%.

In sum, we conclude that the frequent words are mostly type-sensitive. Moreover, the
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prevalence of apparently offensive language in the non-harassing corpus reinforces our claim

that offensive language per se is not necessarily harassing.

One caveat is that the most frequent words appearing in the sub-corpus associated with

each type are predominantly stop-words or curse words, as our initial seed terms are biased

to an offensive lexicon. Ignoring these words, whose presence cuts across different types of

harassment, revealed that the following prominent word groups are associated with various

harassment types, shedding light on the possible features that may elicit harassment: (i) In the

appearance-related harassment corpus, target words such as “eat”, “ugly”, “fat”, “gym”, and

“weight”, are present. (ii) In the intellectual harassment corpus, target words such as “dumb”,

“stupid”, “work”, and “head”, are present. (iii) In the political harassment corpus, the target

words such as “realdonaldtrump”, “libtard”, “dumb”, “touch bag”, “stupid”, and “cnn”, are

Fig 3. Top-25 frequent words within each harassing corpora.

https://doi.org/10.1371/journal.pone.0227330.g003
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present. (iv) In the racial harassment corpus, target words such as “m�ki”, “n��ger”, “b��ner”,

“ch��k”, “muslim”, “i��ian”, “moron”, and “jew”, are present. (iv) In the sexual harassment

corpus, target words such as “hump”, “hussy”, “l��k”, and “grab”, are present.

Predicting different types of harassing posts

We aim to develop effective supervised learning methods to detect harassing language auto-

matically and distinguish it from non-harassing language for each contextual type. The state-

of-the-art contains various approaches for detecting harassing content from non-harassing

content but not for discriminating the type of harassment. We approach this gap in two ways.

The first is to build individual binary classifiers that identify a particular type of harassment,

Fig 4. Top-25 frequent words within each non-harassing corpora.

https://doi.org/10.1371/journal.pone.0227330.g004
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e.g., a binary classifier that identifies only racial content or a binary classifier that classifies just

offensive political content. The second approach uses the state-of-the-art methods to detect

harassing language; after such recognition, we can employ a type-aware classifier to predict the

associated type for that harassment incident. We implemented both approaches. Initially, we

trained the individual classifiers for each type. In another approach, we built up a binary classi-

fier that differentiates harassing content from non-harassing content regardless of their type.

Note that any classifier from the state-of-the-art can substitute for this part. Then, we built up

a multi-class classifier that predicts the type of harassment incident. The results of our experi-

ments for both approaches reveal high accuracy. Furthermore, to verify the effectiveness of our

classifier, we apply transfer learning by running our classifier on the Golbeck corpus and assess

its performance for how successfully it predicts the type of harassment. In the following, we

present the details of our experiments.

Transforming tweets to vectors

We utilized four approaches for transforming tweets to numerical representations (i.e., vec-

tors): (i) the conventional vectorization approach TFIDF, (ii) word2vec, (iii) fastText and (iv) a

LIWC vector. We feed our classifiers with each of these individual vectors or a combination of

them.

The Term Frequency and Inverse Document Frequency (TFIDF). We use this approach

[52] to transform each given tweet into a weighted vector T.

Distributional semantics (i.e., word2vec and fastText). Distributional semantics (so-

called embedding models) [53] play a vital role in many Natural Language Processing (NLP)

applications. They capture the semantics of text units (e.g., words, characters, tweets, para-

graphs or documents) from the underlying corpus and represent them in a low dimensional

vector space. We use two major embedding models for representing each tweet. The first one

is word2vec [54] and the second one is fastText [55] [56]. The first one learns a dense represen-

tation at the unigram level and the second one learns at the character level. Both of these

approaches have two models, i.e., skip-gram model and CBOW model [53, 57] that are roughly

similar. The skip-gram model (CBOW model) computes the probability of the target word wk

(i.e. context word) appearing in the neighborhood of the context word wi (i.e. target word),

PðwkjwiÞ. In this work, the vector representation of a tweet is computed as the concatenation

of the vector of all tokens within the tweet. In the rest of this paper we rely on the following

notations to specify a vector. W(S) and W(C) denote the low dimensional vector obtained

Table 5. Percentage of type-dependent of top-15 frequent words within each sub-corpus. H stands for the harassing

corpus and NH stands for the non-harassing corpus.

Category Type Percentage

Appearance-related H 66.6%

NH 93.3%

Intellectual H 73.3%

NH 73.3%

Political H 80%

NH 73.3%

Racial H 80%

NH 53.3%

Sexual H 80%

NH 60%

https://doi.org/10.1371/journal.pone.0227330.t005
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respectively by the skip-gram model and CBOW model of the word2vec approach. F(S) and F

(C) denote the low dimensional vector obtained respectively by the skip-gram model and the

CBOW model of the fastText approach. We compiled a corpus containing 15,999,557 sen-

tences from the Twitter and Leipzig Collection Corpora [58] leveraging our offensive lexicon

presented in [59] as the underlying seed words. Then, we trained the embedding models on

this accumulated corpus using the learning parameters reported in [53, 57]. Our dimension

size equals 300, the window size is 3, and the minimum count equals 10.

LIWC vector. The vector obtained by running the LIWC tool is denoted by L.

Evaluation of the harassment classifiers

Preparing training datasets. As the number of harassing tweets is not equal to the num-

ber of non-harassing ones in our corpus—in fact, it varies for each type—we prepared bal-

anced datasets for training the classifier. We prepared five type-aware training data sets using

an under-sampling approach taking all of the harassing tweets with an equal number of non-

harassing (randomly sampled). Also, we prepared a combined training data set considering all

of the harassing tweets regardless of their type and an equal number of non-harassing tweets.

Table 6 shows the size of the training data sets for each type. Each data set contains an equal

number of harassing tweets versus non-harassing tweets. Later, we employ the remaining

tweets to test the robustness of the classifiers against unseen data.

Training binary classifiers. In our experimental study, we trained four types of classifiers,

using (i) Support Vector Machine (SVM) [60], (ii) K-Nearest Neighbors (KNN) [60], (iii) Gradi-
ent Boosting Machine (GBM) [61], and (iv) Naive Bayes (NB) [60]. We rely on the following

settings for the GBM classifier: the learning rate is 0.1, loss function is logistic regression, the

number of trees is 100, sub-sample is 1.0, the criteria function is Friedman MSE, the minimum

sample is 2, the minimum number of samples required to be at a leaf node is 1, and the maxi-

mum depth of the individual regression estimators is 3. We ran 10-fold cross-validation with

re-sampling and iteration strategies (repeated five times). Fig 5 shows the performance of the

classifiers based on an F-score measure using a TFIDF vector. Generally, the results of the NB

classifier in all of the cases were inferior whereas the GBM classifier outperforms others in the

majority of settings except for a few instances comparable to the SVM classifier. Thus, in the

following experiments, we rely on the GBM classifier.

Feature engineering. To gain insight over the effectiveness of various features, we feed

the GBM classifier with various feature settings. The fine-grained results of our experiment are

listed in Fig 6. We employed a various combination of vectors, for example, F(S)+W(S) means

the input features were the skip-gram models of fastText and word2vec. In addition to the typ-

ical precision, recall and F-score measures, we provide specificity (True negative rates) and

accuracy rates. We offer the following observations: (i) The tweet representation using F(S)

+W(S) vector is the most effective input representation as it provides high and balanced rates

Table 6. Size of the training datasets for each type.

Category Number of tweets

Appearance-related 1,344

Intellectual 1,622

Political 1,397

Racial 1,401

Sexual 461

Combined 6,225

https://doi.org/10.1371/journal.pone.0227330.t006
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for all measures including precision, recall, F-score and specificity. Note that in multiple set-

tings such as F(S)+L+T, precision, recall, and f-score are high whereas specificity is low mean-

ing that the classifier is biased towards one of the classes and does not perform reasonably on

both classes. (ii) In the settings for which the LIWC vector L is included, typically the specific-

ity rate is low. This probably means L vector does not provide a discriminative representation

for the classifier. (iii) Generally learning the representation of tweets using the fastText

approach either with skip-gram or CBOW shows high performance. This might come from

the fact that encoding tweets at the character level is more effective for detecting harassment.

(iv) The sexual type resulted in the classifier with the highest accuracy (with F-score 96% and

specificity 94%), racial and intellectual are in the next positions (respectively with F-score 88%,

86% and specificity 83%, 79%).

Binary classifier for harassment detection. We also trained a binary classifier on our

combined corpus where it can differentiate the harassing language from non-harassing regard-

less of the contextual type. In situations that the type of harassment does not play a role, or

type detection must occur after the harassment detection, using such a generic classifier is nec-

essary. Table 7 shows the detailed results of this classifier in various settings of input features.

Generally, the vector of FastText F shows an effective role, especially when it is coupled with

the W vector; the specificity score reaches its optimum.

Type prediction using a multi-class classifier. Apart from building binary classifiers for

predicting types, we trained a multi-class classifier to predict the type of harassment incidents.

We trained several multi-class classifiers, among them the GBM classifier outperformed oth-

ers. Herein we report the result for GBM classifier only. We used W(S)+F(S) vectorization

approach as the input feature. Then, we trained this classifier on a corpus containing all of the

sub-corpora from the previous step. This corpus has samples with six various labels where five

labels indicate a particular type of harassment and the last label indicates “non-harassing”

implying there is no harassing language. Table 8 shows the details of the evaluation on the per-

formance of this classifier where the micro F-score is 0.92 and the macro F-score is 0.82. Note

that in the macro-level, we calculate the performances of each class and then average whereas,

in the micro-level, we calculate the performance for all classes, as computing contingency table

and then evaluate precision/recall and F-score [62]. Digging into fine-grained efficiency shows

that the accuracy across various classes holds similar behaviors except for a decrease in the pre-

cision and recall of the sexual type. As we will discuss in error analysis below, this type is prone

to mis-classification with the other types particularly the racial type. However, comparing the

performance of multi-class classifier and binary classifiers shows that the multi-class classifier

mostly outperforms the binary classifiers by as much as�10%. Note that the accuracy of our

classifier will improve on a generic tweet corpus because our current corpus has been crawled

Fig 5. Comparative study of the F-score from four major classifiers i.e., SVM stands for support vector machine,

KNN = K-Nearest Neighbor, GBM = Gradient Boosting Machine, NB = Naive Bayes, NN = Nueral Network).

https://doi.org/10.1371/journal.pone.0227330.g005
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Fig 6. Comparative study of the various feature settings on the performance of the GBM classifier using measures

such as precision, recall, F-score, accuracy, and specificity. The extreme colors, i.e., purple, yellow, green, olive, and

pink show the higher values versus the white color that shows a lower value.

https://doi.org/10.1371/journal.pone.0227330.g006
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using curse words with a significantly higher proportion of harassing tweets compared to that

in a generic tweets corpus, which is predominantly non-harassing and devoid of curse words.

On the downside, it will miss harassment conveyed through “clean” words. However, to dem-

onstrate the effectiveness of the current version of this classifier, in the next step we apply it on

an unseen corpus to predict the type of harassment incident.

Comparison to the state-of-the-art. Since this work was the first to introduce contextual

type for harassment, comparison to the state-of-the-art that relies only on two or three variants

of harassment, is unfair. However, to verify the effectiveness of our type-oriented multi-class

classifier, we tested it on the harassing tweets from the Golbeck corpus (an external corpus

unseen to our classifier) that is a publicly available state-of-the-art harassment-related corpus

[9]. This corpus contains 20,428 annotated tweets of which only 5,277 are labeled as harassing.

It does not distinguish the nature of the harassment. In Table 4, we represented our annota-

tions for the harassing tweets of the Golbeck corpus with respect to our types using human

judges which yielded in an agreement rate of 86%. The proportion of harassing tweets per type

is represented in the last column of Table 9. We ran our type-aware multi-class classifier (GMB

classifier) to predict the associated type of harassing tweets on Golbeck corpus. Table 9 shows

the precision, recall and F-score for each type. We observe an F-score of more than 94% for all

types except for the type appearance. In the case of the racial type, the F-score reaches 98%.

This high performance exceeds the state-of-the-art where they are mostly concerned about

detecting the general harassing language (the reported accuracy ranges between 70% and 85%)

[30, 63–65]. In addition, it shows robustness with unseen data. Note that the racial type is

Table 7. Performance of the GBM binary classifier on the combined corpus.

Feature Precision Recall F-Score Accuracy Specificity

T 0.84 0.81 0.82

T+L 0.9 0.87 0.88

F(S)+L+T 0.94 0.92 0.90 0.88 0.37

F(C)+L+T 0.94 0.88 0.86 0.84 0.44

F(S) 0.83 0.83 0.82 0.80 0.75

F(C) 0.78 0.76 0.76 0.75 0.73

F(S)+L 0.94 0.95 0.93 0.91 0.69

W(S)+L+T 0.94 0.93 0.91 0.89 0.70

W(S)+L 0.93 0.94 0.92 0.90 0.74

F(S)+W(S) 0.90 0.89 0.88 0.87 0.83

https://doi.org/10.1371/journal.pone.0227330.t007

Table 8. Performance of our multi-class classifier for predicting type of harassment incident.

Category Precision Recall F-score

Appearance-related 0.84 0.85 0.84

Intellectual 0.87 0.85 0.86

Political 0.81 0.84 0.83

Racial 0.82 0.83 0.82

Sexual 0.58 0.62 0.60

Nonharassing 0.98 0.97 0.98

Micro Precision 0.92 Macro Precision 0.82

Micro Recall 0.92 Macro Recall 0.83

Micro F-score 0.92 Macro F-score 0.82

https://doi.org/10.1371/journal.pone.0227330.t008
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dominant in the Golbeck corpus. We also ran our classifier on a portion of 5,000 non-harassing

tweets from Golbeck corpus, which resulted in the F-score> 98% (cf. Table 9). The last three

rows of Table 9 show micro and macro precision, recall, and F-score. The closeness of the

micro and macro measures shows that the classifier is not biased towards a dominant class.

Error analysis. To make sense of classifier errors, we examined a couple of tweets classi-

fied as sexual. E.g., for @usr you deserved to be raped by a thousand Mus-
lims in your c��t a��hole, our classifier classified that as sexual harassment and

not racial because of the word ‘rape’. Similarly, the tweet @usr @usr lol it’s not
against women. It’s against f���ing feminist c���s like you. #fem-
inazi #womenagainstfeminism was classified as sexual. Such cases are ambiguous

because even manual annotation is highly subjective. In other words, categorizing harassment

is highly subjective and the boundary between types is not rigid. In majority of the overlapping

cases (racial and sexual), the tweets were classified as sexual rather than racial. We also ana-

lyzed errors in political tweets and concluded that harassment signal can be: (i) implicit, e.g.,

John Boehner blames Democrats for #shutdown. He better stop
drinking cuz a few more drinks and he starts blaming the J�ws f,

(ii) ambiguous ??? You’re a wh��� to the telecom industry, i hope your
constituents vote you out., (iii) unreliable, e.g., It’s going to be a
republican government in the US next term. Democrats can kiss
their presidency bid goodbye. Let the J�ws rule!, (iv) poorly captured

through annotation, e.g., the tweet @TrueNugget @FeministPeriod @Oregon-
State Man college is becoming more and more a mistake. in the Golbeck

corpus. Our classifier misses them as they are weak cases of harassment.

Ethics

Our project involves analysis of Twitter data that is publicly available and that has been anon-

ymized. It does not involve any direct interaction with any individuals or their personally iden-

tifiable data. So our work does not meet the Federal definition for human subjects research,

specifically, “a systematic investigation designed to contribute to generalizable knowledge”

and “research involving interaction with the individual or obtains personally identifiable pri-

vate information about an individual”. Thus, this study was reviewed by the Wright State Uni-

versity IRB and received an exemption determination.

Conclusion and future plans

In this paper, we introduced five contextual types for harassment, namely, (i) sexual, (ii) racial,

(iii) intellectual, (iv) appearance-related and (v) political. We presented experiments with a

Table 9. Performance of our classifier for predicting tweets for Golbeck corpus.

Category Precision Recall F-score Proportion Rate

Appearance-related 0.74 0.63 0.68 2.7%

Intellectual 0.91 0.92 0.91 7.2%

Political 0.90 0.95 0.92 3.0%

Racial 0.99 0.97 0.98 78.6%

Sexual 0.94 0.96 0.95 7.2%

Nonharassing 0.99 0.98 0.98

Micro Precision 0.97 Macro Precision 0.91

Micro Recall 0.97 Macro Recall 0.90

Micro F-score 0.97 Macro F-score 0.91

https://doi.org/10.1371/journal.pone.0227330.t009
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type-aware tweets corpus to analyze, learn, and understand harassing language for each type.

Our contribution lies in providing a systematic and comparative approach to assessing harass-

ing language from linguistic and statistical perspectives. Furthermore, we built type-specific

classifiers, and the results of our experiments show the importance of considering the contex-

tual type for identifying and analyzing harassment on social media.

In general, a single tweet identified as “harassing” may not provoke the same intense nega-

tive feeling that we associate with that word in the real-world scenario. However, in practice,

“conversational” exchanges containing a sequence of such tweets can rise to the level of harass-

ment causing mental and psychological anguish, and fear of physical harm. Nevertheless, our

current Twitter dataset is limited to annotating single tweets in isolation for harassment. Fur-

thermore, the reliable assessment of the type of harassment is a difficult problem because it

requires significant knowledge of current events and common-sense. We plan to extend this

work by learning the language of harassers as well as victims, and further study the contribu-

tion of non-verbal cues (i.e., conversational features, network features, and community fea-

tures) for identifying online harassment activities, particularly on social media.
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