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ARTICLE

A Novel Physiologically Based Model of Creatinine Renal 
Disposition to Integrate Current Knowledge of Systems 
Parameters and Clinical Observations

Daniel Scotcher1 , Vikram Arya2 , Xinning Yang2, Ping Zhao2,5, Lei Zhang3 , Shiew-Mei Huang2 ,  
Amin Rostami-Hodjegan1,4  and Aleksandra Galetin1,*

Creatinine is the most common clinical biomarker of renal function. As a substrate for renal transporters, its secretion is 
susceptible to inhibition by drugs, resulting in transient increase in serum creatinine and false impression of damage to 
kidney. Novel physiologically based models for creatinine were developed here and (dis)qualified in a stepwise manner until 
consistency with clinical data. Data from a matrix of studies were integrated, including systems data (common to all models), 
proteomics-informed in vitro–in vivo extrapolation of all relevant transporter clearances, exogenous administration of creati-
nine (to estimate endogenous synthesis rate), and inhibition of different renal transporters (11 perpetrator drugs considered 
for qualification during creatinine model development and verification on independent data sets). The proteomics-informed 
bottom-up approach resulted in the underprediction of creatinine renal secretion. Subsequently, creatinine-trimethoprim 
clinical data were used to inform key model parameters in a reverse translation manner, highlighting best practices and 
challenges for middle-out optimization of mechanistic models.

Creatinine is an endogenous metabolite and substrate for 
multiple transporters expressed in the proximal tubule cells 
of the kidney.1 Creatinine plasma concentration can be 
transiently elevated through transporter inhibition by partic-
ular drugs and raise concerns in clinical practice and drug 
development if misinterpreted as a decline in actual renal 
function, e.g., drug-induced kidney injury.2 Although roles 
for specific transporters have been elucidated at a qualita-
tive level, quantitative understanding of the contribution of 

individual transporters to creatinine renal disposition is still 
incomplete. As such, attempts at in vitro–in vivo extrapola-
tion (IVIVE)–based prediction of creatinine–drug interactions 
had limited success2–5 despite extending our knowledge on 
this matter.

Physiologically-based pharmacokinetic (PBPK) mod-
eling is a useful approach to simulate pharmacokinetics 
in untested scenarios.6,7 In particular, PBPK modeling is 
increasingly used to inform drug labeling on drug–drug 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  Administration of certain drugs can cause inhibition 
of renal transporters, leading to transient elevated serum 
creatinine in the absence of declining renal function. 
Candidate transporters for mediating such effects have 
been proposed. However, a unique mechanistic model for 
creatinine clearance with ability to predict all interactions 
is currently lacking.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  Can a mechanistic creatinine model predict its renal 
disposition and transporter interactions?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  Quantitative translation of in vitro data generated 
in transporter-transfected cell lines, accounting for 

transporter protein abundance differences between sys-
tems, led to the underprediction of creatinine secretion 
using the novel mechanistic creatinine model. Parameters 
were subsequently informed by reverse translation using 
clinical data; existing knowledge gaps in creatinine renal 
disposition have been identified.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,  
DEVELOPMENT, AND/OR THERAPEUTICS?
✔  A novel mechanistic kidney model for creatinine, de-
scribing roles of transporters and passive permeability, 
was developed. The process outlined here provides a 
framework for the further refinement of a creatinine physi-
ologically based model involving complex transporter in-
teractions and their interplay.
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interactions mediated by cytochrome P450 enzymes.8 
However, confidence in PBPK predictions of trans-
porter-mediated disposition/drug–drug interactions,9,10 
particularly kidney related, is not as high, in part because 
of the deficiencies of IVIVE methodology.11–13 Further 
work is therefore needed to improve availability of pro-
tein abundance data and account for the rate-determining 
steps in transporter disposition.13–16 Both “top-down” 
and “middle-out” approaches, in which clinical data are 
used to inform some model parameters, are applied to re-
fine PBPK models when IVIVE is not feasible or performs 
poorly.9,17–19 A potential limitation is that conventional 
plasma concentration-time data may not always provide 
sufficient information to distinguish effects of particular 
transporters.13,20

The current study aimed to develop a physiologi-
cally  based kidney model for creatinine, accounting 
for multiple processes occurring in the proximal tu-
bule. Multiple transporters involved in creatinine renal 
elimination were considered in the model, assum-
ing either unidirectional or bidirectional transport via 
organic cation transporter 2 (OCT2; driven by electro-
chemical gradient). The present article focuses on the 
stepwise development of the mechanistic creatinine 
model, including the exploration of model variants, and 
the parameterization of models using bottom-up and 
middle-out approaches. Challenges related to the iden-
tifiability of parameters and multiobjective optimization 
are highlighted. Furthermore, pharmacokinetic models 
describing plasma concentration-time profiles of 11 
drugs inhibiting renal transporters relevant for creati-
nine renal elimination are included. A companion article 
evaluates the performance of the developed creatinine 
models in predicting elevated serum creatinine concen-
tration (SCr) resulting from renal transporter inhibition 
and highlights the current status in the understanding of 
creatinine renal disposition.21

METHODS
Clinical data collection
The SCr time data, drug plasma concentration-time data, 
and fraction unbound in plasma (fu,p) data for 11 selected 
transporter inhibitor drugs were collated from the lit-
erature and US Food and Drug Administration Clinical 
Pharmacology and Biopharmaceutics Review documents 
for approved drugs (www.fda.gov/drugs​atfda). In cases 
where precise sampling time information was missing, it 
was assumed that samples for creatinine measurements 
were taken 2 hours after drug administration. Where nec-
essary, graphical data were extracted using the GetData 
Graph-Digitizer version 2.26.0.20 (http://getda​ta-graph​
-digit​izer.com/). Only data obtained for subjects with nor-
mal baseline renal function were collated, as evaluated by 
measured or estimated22,23 glomerular filtration rate or cre-
atinine renal excretory clearance (CLR) >80 mL/minute. The 
cut-off of > 80 mL/minute, rather than the currently used 
>  90  mL/minute threshold, enabled inclusion of studies 
using the former.24 The percent of changes in SCr in clinical 
studies were calculated using measurements taken before 
drug administration as baseline values.

Development of mechanistic creatinine models
The creatinine models were developed in a stepwise  
manner (Figure  1), beginning with a one-compartment 
turnover model to evaluate the synthesis rate. The model 
was expanded to describe the processes involved in cre-
atinine renal disposition mechanistically, which was not 
considered in previous modeling studies.3,4 Two alternative 
model structures were initially evaluated, one assuming 
that OCT2 acts as an uptake only transporter, and the other 
model considered OCT2 as a bidirectional transporter  
(details provided in “Structure of physiologically based kidney 
models for creatinine”, below). In addition to OCT2, organic 
anion transporter 2 (OAT2), multidrug and toxin extrusion 
transporter 1 (MATE1) and  multidrug and toxin extrusion 
transporter 1 (MATE2-K) were incorporated in the model.

Initial parameter verification using one-compartment 
turnover model
The one-compartment turnover model was expanded to 
describe first-order absorption following the exogenous 
oral administration of creatinine (Eqs. 1 and 2). Parameter 
values are in Table S1 and were verified by comparison 
with creatinine concentration-time profile data following the 
oral administration of creatinine tablets or a cooked meat 
meal. Complete bioavailability was assumed. Simulations 
were performed for a nominal duration (96 hours) to ensure 
steady-state SCr in simulation before administration of ex-
ogenous creatinine.

Parameter descriptions are listed in Table 1. Creatinine CLR 
for subjects with normal renal function was calculated as the 
sum of glomerular filtration rate (7.5 L/hour) and net creat-
inine tubular secretion (0.7 L/hour) for this population.25,26

Structure of physiologically based kidney models for 
creatinine
The mechanistic kidney model for creatinine (Figure 2) aimed 
to integrate available physiological (system) information and 
describe the specific processes relevant to creatinine tu-
bular secretion. The proximal tubule of the nephron was 
represented by compartments for (i) the blood/interstitium, (ii) 
epithelial cells, and (iii) tubular filtrate. Transporter activities 
were expressed as intrinsic clearance (CLint; L/hour), as were 
creatinine passive permeability by the transcellular (CLPD,trans; 
L/hour) and paracellular (CLPD,para; L/hour) routes.

Fixed values were used for physiological model param-
eters based on literature data in healthy subjects (Table  1). 
CLPD,para and CLPD,trans were predicted from in vitro apparent 
permeability data (Papp; cm/second × 10−6), as per Eqs. 3–6.27 
Membrane permeability (Pmem; cm/second × 10−6) was calcu-
lated from the Papp after assuming resistance across the cell 
is sum of resistances across each membrane and that apical 
and basolateral membranes had equal permeability. Pmem and 

(1)dA(1)

dt
=−ka ⋅A(1)

(2)V2

dC (2)

dt
=Rsyn+ka ⋅A(1)−C(2) ⋅

(

CLR+CLnon − renal

)

http://www.fda.gov/drugsatfda
http://getdata-graph-digitizer.com/
http://getdata-graph-digitizer.com/
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paracellular permeability (Ppara) were scaled by proximal tubule 
surface area (SAPT; cm2) to calculate the respective CLPD.

where fTrans is the fraction of passive permeability occurring 
via the transcellular route.

Fraction reabsorbed in distal tubule regions (Freab,DT) was pre-
dicted using regional CLPD and midpoint filtrate flow rates.28

OAT2 and OCT2 on basolateral membrane and MATE1 
and MATE2-K on apical membrane of proximal tubule cells 
were considered in the model. OAT2 localization on the 
apical membrane was not included in the model, as the 
existing evidence (immunohistochemistry data) was consid-
ered equivocal. For OAT2 (uptake) and MATE1 and MATE2-K 

(efflux), unidirectional transport was implemented based on 
the understanding of their transport driving forces. In con-
trast, OCT2 was assumed to function either as an uptake 
transporter (“uptake OCT2” model) or as a bidirectional 
transporter (“bidirectional OCT2” model) using variant mod-
els. In the bidirectional OCT2 model, the net permeation rate 
was driven by the electrochemical gradient, assuming only 
transport of cationic species of creatinine by OCT2 (Eq. 7).

where fcation,x and pHx are the cationic fraction of creatinine 
and pH of the xth compartment, with subscript x indicating 
inside the cell (i) or outside the cell (o).

Mathematical description of the electrochemical gradi-
ent-driven bidirectional transport by OCT2 was adapted from 
previous metformin reports;16,29 details are provided in the 
Supplemental Material, Section 3. The in vitro CLint data 
measured in OCT2 transfected human embryonic kidney 
(HEK)293 cells, defined here as apparent CLint (CLint,OCT2,app), 

(3)Pmem=Papp× fTrans×2

(4)CLPD,trans=Pmem×SAPT

(5)Ppara=Papp×
(

1− fTrans
)

(6)CLPD,para=Ppara×SAPT (7)fcation,x=
10pKa−pHx

1+10pKa−pHx

Figure 1  Workflow of the development of a mechanistic kidney model for creatinine. Prior to implementation of the mechanistic model, 
a one-compartment model was used to evaluate systemic (plasma) parameters, including creatinine endogenous generation rate and 
volume of distribution, using creatinine kinetics data following administration of exogenous creatinine. The mechanistic kidney model 
was initially developed using in vitro–in vivo extrapolation (IVIVE) to inform parameters such as transporter intrinsic clearances and 
apparent permeability. Two variant models were developed that assumed the organic cation transporter 2 (OCT2) acted either as an 
uptake transporter, or as a bidirectional transporter. To recover the observed creatinine renal excretion clearance (CLR), the transporter 
intrinsic clearance parameters needed refining using the clinical data as a result of the underprediction by IVIVE. For prediction of 
creatinine–drug interactions, changes in creatinine transporter activity were driven by the half maximal inhibitory concentration (IC50) 
or inhibitory constant (Ki) and plasma concentration of the perpetrator. Plasma concentrations of perpetrators were simulated using 
one-compartment or two-compartment pharmacokinetic (PK) models. CL, clearance; CLnon-renal, non renal clearance; Freab,DT, fraction 
reabsorbed in distal tubule;  GFR, glomerular filtration rate;  ka, absorption rate constant;  QPT,blood, blood flow to proximal tubule;  
QPT-U,filt, filtrate flow rate from proximal tubule; Rsyn, synthesis rate.
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were corrected for the impact of the membrane potential (Φ) 
to calculate an intermediate parameter, “CLint of OCT2 with-
out effects of membrane potential” (CLint,OCT2,preMP) using 
Eq. 8 and 9. The in vitro data were assumed to be generated 
under sink conditions, and a membrane potential of −26 mV 
was used for the HEK293 cells.

where CLint,OCT2,preMP is the CLint of OCT2 without effects 
of membrane potential, and the subscript a refers to either 
HEK293 cells (i.e., NHEK293 or ΦHEK293) or proximal tubule 
cells (i.e., NPTC or ΦPTC, see Eq. 10); the remaining parame-
ters are defined in Table 1.

The effects of membrane potential on CLint,OCT2 and the 
net permeation for the uptake OCT2 and bidirectional OCT2 
model are described by Eq. 10 and Eq. 11, respectively.

where Jo→i is the net flux (pmol/minute; being positive when 
flux is in extracellular-to-intracellular direction) and Ci and Co 
are intracellular and extracellular concentrations of creatinine.

Although MATE transport is proton-gradient driven, this 
was not considered in the current model because of the lack 

of (i) data on proximal tubule filtrate pH and (ii) data support-
ing specific equations to mechanistically describe the effect 
of proton gradient on MATE transport.

Differential equations for the bidirectional OCT2 model 
(Figure 2) are listed in Eqs. 12–17, and the corresponding equa-
tions for the uptake-only OCT2 model are listed in Eqs. S18–S23:

Oral depot (compartment 1):

Central/reservoir (compartment 2):

Proximal tubule blood and interstitium (compartment 3):

Proximal tubule cell (compartment 4):

(8)CLint,OCT2,preMP=
CLint,OCT2,app

fcation,o
⋅

(

eNHEK293 −1
)

NHEK293

(9)Na=
z ⋅Φa ⋅F

R ⋅T

(10)CLint,OCT2=CLint,OCT2,preMP ⋅
NPTC

(

eNPTC −1
)

(11)Jo→i,OCT2=CLint,OCT2,preMP ⋅
NPTC

(

eNPTC −1
) ⋅

(

Co ⋅ fcation,o−e
NPTC

⋅Ci ⋅ fcation,i
)

(12)dA (1)

dt
=−ka ⋅A(1)

(13)

V2

dC (2)

dt
=Rsyn+ka ⋅A(1)−C(2) ⋅

(

QPT,blood+CLnon − renal+GFR
)

+C(3) ⋅QPT,blood+C(5) ⋅QPT - U,filt ⋅FReab,DT

(14)

V3

dC(3)

dt
=C(2) ⋅QPT,blood+C(4) ⋅CLPD,trans+C(5) ⋅CLPD,para−C(3)

⋅ (QPT,blood + CLPD,trans+CLPD,para+CL_int,OAT2)

+CLint,OCT2,preMP ⋅
NPTC

(eNPTC −1)

⋅ (eNPTC
⋅C(4) ⋅ fcation,4−C(3) ⋅ fcation,3)

(15)

V4

dC(4)

dt
=C(3) ⋅ (CLPD,trans+CLint,OAT2)−CLint,OCT2,preMP

⋅

NPTC

(eNPTC −1)
⋅ (eNPTC

⋅C(4) ⋅ fcation,4−C(3) ⋅ fcation,3)

+C(5) ⋅CLPD,trans−C(4)

⋅ (2 ⋅CLPD,trans+CLint,MATE1+CLint,MATE2 - K)

Table 1  Fixed parameters in mechanistic kidney model for creatininea

Parameter Description Units Value Comment

V2 Volume of distribution of central (reservoir) compartment L 43.5  

V3 Proximal tubule blood and interstitium water volume L 0.0818  

V4 Proximal tubule intracellular water volume L 0.0661  

V5 Proximal tubule filtrate/luminal volume L 0.0535  

QPT,blood Blood flow rate to proximal tubule L/hour 58.45  

GFR Glomerular filtration rate L/hour 7.5 —

QPT-U,filt Filtrate flow rate exiting the proximal tubule L/hour 2.7  

ka Absorption rate constant h−1 1 Assumed value to recover rapid absorption

Rsyn Endogenous creatinine synthesis rate mg/hour 70.8 Representing synthesis (generation) from 
creatine

CLnonrenal Nonrenal creatinine clearance L/hour 0.17 Measured in kidney disease patients, assumed 
not to change with renal function

Z Valence of cation — +1 Monoprotic base

pKa Creatinine pKa — 4.74 See Supplemental Material, Section 3

ΦPTC Membrane potential V −0.07 Across sinusoidal membrane of proximal 
tubule cells

F Faraday’s constant C/mol 96,490 —

R Gas constant J/mol/K 8.314 —

T Absolute temperature K 310 —

pHplasma pH of blood plasma — 7.4 —

pHPTC pH of proximal tubule cell — 7.2  

aSee Supplemental Material, Sections 1 and 2, including Tables S1 and S2, for further information on the literature sources and calculation of parameter values.
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Figure 2  Compartmental structure of model used for simulation of creatinine–drug interactions. Blue shaded area presents schematic 
of creatinine mechanistic kidney model, with compartment numbers in light blue (see Eqs. 13–16). The concentration (Cx (mg/L)) in each 
xth compartment is a model state, Vx representing the volume of each xth compartment, with the amount excreted in urine (Eq. 17; Ae) 
also representing a state. The central (reservoir) compartment (Eq. 13; subscript c), which represents the blood plasma, receives the 
input function representing creatinine synthesis rate (Rsyn (mg/hour)) and orally absorbed dose (Eq. 12; not shown). Nonrenal clearance 
(CLnonrenal) represents a minor elimination route from the central compartment. The central compartment is linked with the proximal 
tubule blood/interstitium compartment (Eq. 14; subscript PT,bi) through the proximal tubule blood flow (QPT,blood (L/hour)) and to the 
proximal filtrate (Eq. 16; subscript PT, filt) via glomerular filtration rate (GFR (L/hour)). Filtrate flow out of the proximal filtrate is described 
with a flow rate parameter (QPT-U,filt (L/hour)). Passive permeability of creatinine in nonproximal nephron regions (loop of Henle, distal 
tubule, and collecting ducts) are described under assumption of first-order reabsorption using “fraction reabsorbed in distal tubule” 
(Freab,DT) parameter. In proximal tubule cells (Eq. 15; subscript PT,c), the roles of passive permeability (transcellular and paracellular) 
and transporters expressed on the basolateral (organic anion transporter 2 (OAT2) and organic cation transporter 2 (OCT2)) and apical 
(multidrug and toxin extrusion protein (MATE) 1 and 2-K) membranes are presented in the purple shaded area. OCT2 was modeled 
as either an uptake transporter or as a bidirectional transporter in variant creatinine models. As a bidirectional transporter, net flux 
by OCT2 is a function of the electro-chemical gradient of creatinine and the membrane potential (Em,PT,c (70 mV)) (see Eqs. 9 and 11). 
The red shaded area shows a one-compartment model used to simulate the plasma concentration of the perpetrator (inhibitor) drug 
(subscript inh), with oral absorption rate constant (ka) and elimination clearance (CL). The plasma concentration of perpetrator drug, 
along with its half maximal inhibitory concentration (IC50) or inhibitory constant (Ki), is used to drive inhibition of transporter activity in 
the creatinine model (Eq. 23).
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Proximal tubule filtrate (compartment 5):

Urine (compartment 6):

Initial conditions for all compartments were zero.
Steady-state creatinine CLR was calculated using Eq. 18.

In vitro–in vivo extrapolation of creatinine transporter 
intrinsic clearance
In vitro CLint literature data were scaled using physiolog-
ical parameters to predict creatinine CLR (Table  2). Two 
alternative scaling approaches (scenario 1, Eq. 19; and 
scenario 2, Eq. 20) were applied to address the uncertainty 
in renal-scaling factors (i.e., use of cellularity and protein 
content of tissue) and in physiological data.11 Criteria for 
selecting in vitro data were availability of kinetic data from 
single-transporter transfected cell lines for OAT2, OCT2, 
MATE1, and MATE2-K and protein content or cellularity of 
the in vitro system.

where CLint,i and CLint,i,in vitro are predicted in vivo (L/hour) 
and measured in vitro (µL/minute/mg protein) CLint of the 
ith transporter, respectively, and REFi (unit less) is the rel-
ative expression factor of the ith transporter (Eq. 21). Units 
of remaining parameters are protein content of kidney 
cortex (mg protein/g kidney cortex), protein content of 
HEK293 cells (mg protein/million cells), proximal tubule 
cellularity (million proximal tubule cells/g kidney cortex), 
and kidney cortex weight (g kidney cortex/person).

REFi were calculated using transporter protein abun-
dance data from relevant transporter-transfected cell 
lines (Expression i,in  vitro; pmol  transporter protein/mg  
native membrane protein)30 and in human kidney 
(Expression i, in vivo; pmol transporter protein/mg total 
membrane protein) and measured using liquid chro-
matography coupled to tandem mass spectrometry 
(Eq.  21).11 The human kidney protein expression data 
were based on mean data reported for 41 kidneys,31 with 
the exception of MATE2-K for which the expression data 
came from pooled samples.32

Estimation of transporter intrinsic clearance 
parameters
As a result of the underprediction of steady-state creatinine 
CLR using the proteomics-informed IVIVE approach, CLint 
parameters were estimated to recover the steady-state cre-
atinine CLR. Observed creatinine CLR was calculated as the 
glomerular filtration rate for a typical adult male plus average 
difference (i.e., net secretion) between creatinine CLR and 
inulin clearance in subjects with normal renal function.25,26 
Optimization was performed by minimizing the squared resid-
ual between simulated and observed (8.2 L/hour) creatinine 
CLR using the Nelder-Mead simplex search method33 as an 
efficient minimization algorithm. To ensure the identifiability of 

(16)V5

dC(5)

dt
=C(2) ⋅GFR+C(3)

⋅CLPD,para+C(4) ⋅ (CLPD,trans+CLint,MATE1+CLint,MATE2 - K)

−C(5) ⋅ (CLPD,trans+CLPD,para+QPT - U,filt)

(17)dA (6)

dt
=C (5) ⋅QPT - U,filt ⋅

(

1−FReab,DT
)

(18)CLR=
dA(6)

dt
∕C(2)

(19)

CLint,i = CLint,i,in vitro×REFi ×Proteincontentof kidneycortex

×Kidneycortexweight

(20)

CLint,i =CLint,i,in vitro×REFi ×ProteincontentofHEK293cells

×Proximal tubulecellularity×Kidneycortexweight

(21)REFi =
Expressioni,in vivo

Expressioni,in vitro

Table 2  Scaling factors used for in vitro–in vivo extrapolation of transporter intrinsic clearance data for creatinine

Transporter

In vitro  
transporter  
abundancea  

(pmol/mg  
native 

membrane  
protein)

Kidney  
transporter  
abundance  

(pmol/mg total  
membrane  

protein)

Relative  
expression  

factor

Scenario 1 onlyb Scenario 2 onlyb

Kidney  
cortex  

weight (g)f

Total  
protein content 
(kidney cortex)c 
(mg/g kidney)

Protein  
content 
(HEK293  

cells)d (mg/
million cells)

PTC  
cellularitye  

(million cells/g  
kidney  
cortex)

OAT2 (SLC22A7) 54.1 0.93g 0.017 89.1 0.93 60 217.0

OCT2 (SLC22A2) 58.7 7.42g 0.126 89.1 0.93 60 217.0

MATE1 (SLC47A1) 329 5.06g 0.015 89.1 0.93 60 217.0

MATE2-K (SLC47A2) 18.6 0.94h 0.051 89.1 0.93 60 217.0

HEK293, human embryonic kidney 293; MATE1, multidrug and toxin extrusion transporter 1; MATE2-K, multidrug and toxin extrusion transporter 2-K; OAT2, 
organic anion transporter 2; OCT2, organic cation transporter 2; PTC, proximal tubule cell.
aRef. 30.
bScenario 1, Eq. 19; scenario 2, Eq. 20.
cProtein content of kidney cortex homogenate.47

dRef. 16.
eRef. 48.
fAssuming kidney weight of 4.5 g/kg body weight,49 cortex fraction of kidney (by weight) of 0.68,47,50 and body weight of 70 kg.
gRef. 31.
hPrasad et al.,31 were unable to quantify abundance of MATE2-K in human kidney, therefore abundance of MATE2-K was estimated as the abundance of 
MATE131 multiplied by the ratio of MATE2-K to MATE1 protein abundance in kidney measured by Nakamura et al.32
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the parameters, the relative contributions (i.e., fraction trans-
ported; ft,i) (Eq.  22) of transporters calculated using IVIVE 
were maintained during CLint estimation.

Simulation of creatinine–drug interactions
Plasma concentration-time profiles of 11 perpetrator drugs 
following intravenous or oral administration were described 
by either one-compartment or two-compartment models 
(Supplemental Material, Section 5). Perpetrator models 
were considered fit for purpose if simulated plasma con-
centrations were not inconsistent with the observed data 
collated. Observed pharmacokinetic data were collated 
from creatinine–drug interaction studies or from other 
pharmacokinetic studies with similar dosing to that of the 
creatinine–drug interaction studies.

The effect of the jth perpetrator drug on the creatinine 
transport activity of the ith transporter (simulated dynami-
cally over time (t)) is described by Eq. 23, adapted from ref. 
7. Following simulation for the nominal duration of 96 hours 
to achieve steady-state SCr, creatinine–drug interactions 
were simulated following the study designs described in re-
spective literature studies.

where CLint,i,inh(t) is the CLint of the ith transporter at time t 
after accounting for inhibition, CLint,i is the baseline CLint 
of the ith transporter (Eqs.  14–16), Cp,j(t) is the plasma 
concentration of perpetrator j at time t, fu,p,j is the fraction 
unbound in plasma for perpetrator j, and IC50,i,j is the un-
bound concentration of perpetrator j causing 50% inhibition 
of transporter i.

Simultaneous estimation of transporter intrinsic 
clearance and apparent permeability parameters
The transporter CLint and apparent permeability parameters 
were simultaneously estimated by fitting the creatinine–
drug interaction model to observed creatinine CLR and 
observed interaction data for trimethoprim. Trimethoprim 
was selected considering the rich data set of reported inter-
actions with creatinine (six studies with daily dosing ranging 
200–1,600 mg). Two options were explored to address the 
optimization problem (Supplemental Material, Section 
6). First, the parameters were estimated by minimizing 
the sum of squared residuals between simulated and ob-
served interaction data (i.e., the objective function) subject 
to a nonlinear constraint, defined as steady-state creatinine 
CLR of 8.2 L/hour. Second, a multiobjective optimization 
problem was defined, with squared residual for CLR as one 
objective function and observed interaction data as another 
objective function. The weighted sum multiobjective opti-
mization34 was selected as the most appropriate for use in 
current study (Eqs. 24–26).

where wi are the scalar weights applied to the objective 
functions (Fi), β are the parameters to be estimated, and 
α are the fixed model parameters; Ppred,j,k and Pobs,j,k are 
the predicted and observed percent change in SCr for the 
kth timepoint (tk) of the jth study, respectively; uk are the in-
puts associated with the jth study design; Nj are the number 
of subjects in the jth study; and CLR,pred and CLR,obs are 
the predicted and observed steady-state creatinine CLR, 
respectively.

The weights w1  =  1 and w2  =  10,000 were selected to 
ensure sufficiently precise recovery of CLR while ensuring 
that the minimization algorithm was not restricted into find-
ing only local minima. Minimization was performed using the 
Nelder-Mead simplex search method with transformation 
of parameters to allow bound constraints;35 lower bounds 
of 0 were used for both parameters (see Supplemental 
Material, Section 6, for further details relevant to multi-
objective optimization vs. single objective with nonlinear 
constraint optimization, suitability of various minimization 
algorithms for nonsmooth objective functions, and weight-
ing of objective function).

Sensitivity analysis
Local sensitivity analysis was performed by calculating 
normalized sensitivity coefficients for each of the fixed 
model parameters against either simulated steady-state 
SCr or creatinine CLR (Supplemental Material, Section 7).  
Although there are implications related to the intercorrela-
tion of parameters,17,36 no information was available on 
such intercorrelations for many of the system parameters 
relevant to the kidney model.

Software
Models of creatinine and perpetrator drugs, described 
as systems of ordinary differential equations, were im-
plemented in Simulink, version 8.9 (R2017a; MathsWorks, 
Inc, Natick, MA) using a variable-step numerical solver. 
The solver was automatically selected by the Simulink 
software, but was either ode45 (Runge-Kutta, Dormand-
Prince4,5 pair) or, for problems that were stiff, ode15s 
(numerical differentiation formulas). Solver settings were 
not changed from the default values, with the exception 
that relative tolerance was set from the default of 1/1,000 
to 1/100,000 to reduce model noise (see Supplemental 
Material, Section 6). Simulation data were exported to 
Matlab (R2017a, MathsWorks, Inc) for statistical analyses, 
calculation and minimization of objective functions, and 
generation of figures.

(22)ft,i =
CLint,i

CLint,OAT2

(23)CLint,i,inh(t)=
CLint,i

1+
Cp,j (t)⋅fu,p,j

IC50,i,j

(24)min
β

:

2
∑

i=1

wi ⋅Fi (β)

(25)F1(β)=

m
∑

j=1

nj
∑

k=1

(

(

Ppred,j,k

(

β,�,uj ,tj,k
)

−Pobs,j,k

)2
×Nj

)

(26)F2(β)= (CLR, pred (β,α)−CLR, obs)
2
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RESULTS
Collation of clinical data
Pharmacokinetic and in vitro transporter inhibition data were 
collated for 11 drugs, namely, trimethoprim, cimetidine, DX-
619, cobicistat, dolutegravir, pyrimethamine, famotidine, 
ranolazine, rilpirivine, indomethacin, and ranitidine; these 
drugs are associated with different extents of renal trans-
porter inhibition and clinical changes in SCr (Table S5).

Stepwise development of creatinine model
Initial turnover model for creatinine was modified to 
describe the kinetics of creatinine following oral ad-
ministration of exogenous creatinine (Figure  3), 
thereby verifying the volume of distribution and Rsyn. 
Subsequently, the model was expanded to mechanis-
tically describe renal disposition of creatinine. Initially, 
bottom-up proteomics-informed IVIVE was used to im-
plement permeability and transporter kinetic parameters 
in the mechanistic creatinine model. In vitro apparent 
permeability data collated from the literature (Table S6) 
were used to predict the paracellular (0.245 L/hour) and 
transcellular membrane (0.0369 L/hour) permeability 
clearances for proximal tubule and fraction reabsorbed in 
distal tubule regions (0.0167).

Creatinine was reported to be in vitro substrate of a num-
ber of kidney transporters,2,21,30 namely, OAT2 and OCT2 on 
the basolateral membrane and MATE1 and MATE2-K on the 
apical membrane. Reported Michaelis constant (Km) values 
for these transporters (> 795 µM, Table S7) exceed the re-
ported SCr in subjects with normal renal function (~100 µM), 
and therefore nonsaturable (first-order) kinetics was as-
sumed for all transporters.

The predicted CLint mediated via OAT2, OCT2, MATE1, 
and MATE2-K are listed in Table  3. Overall, both IVIVE 
scenarios resulted in predicted in vivo CLint for uptake trans-
porters at least 20-fold greater than corresponding values 
for efflux transporters. After accounting for the difference in 

membrane potential between HEK293 cells and proximal tu-
bule cells, OCT2 (54%) and OAT2 (46%) were predicted to 
have similar contributions in creatinine uptake into proximal 
tubule cells (Table 3). Ignoring the effects of membrane po-
tential would have resulted in OAT2 having the largest (60%) 
predicted contribution.

Proteomic-informed IVIVE underpredicted creatinine CLR 
(Figure S22), possibly because of the different proteomics 
methods applied to the cellular systems and kidney tissue.30,31 
Although the magnitude of underprediction appears small, the 
contribution of net secretion to creatinine CLR (8.2 L/hour) is 
minor compared with glomerular filtration (7.5 L/hour); there-
fore the relative underprediction of the secretion component 
is actually substantial. Because of the current challenges in 
proteomic-informed IVIVE for transporters, IVIVE was also at-
tempted without consideration of expression differences (i.e., 
assuming REF = 1); however, the models then over-predicted 
the creatinine CLR by a large margin (data not shown).

As a result of the inadequate prediction of creatinine 
secretion using IVIVE, transporter CLint were optimized to 
recover the observed creatinine CLR; relative contributions 
of each transporter (i.e., ft,i; Eq. 22) were as noted previously 
(Table  3) to avoid any identifiability issues. The optimized 
CLint were 4-fold and 11-fold higher using the uptake and bi-
directional OCT2 models, respectively, when compared with 
IVIVE scenario 1 predictions, or 6-fold and 17-fold compared 
with IVIVE scenario 2 predictions, respectively (Table 3).

Refinement of the model using creatinine–
trimethoprim interaction data
To assess the robustness of creatinine models, the mag-
nitude of creatinine–drug interactions with 11 different 
perpetrator drugs (28 studies in total) was predicted fol-
lowing optimization of the creatinine CLint. Pharmacokinetic 
model parameters for these perpetrators are listed in Table 
S3. Substantial overall underprediction of the magnitude 
of interactions for both the uptake and bidirectional OCT2 

Figure 3  Creatinine kinetics in plasma simulated using one-compartment model following oral administration of either a cooked meat 
meal estimated to contain (a) 340 mg creatinine45 or (b) a 3 g creatinine tablet46 and compared with observed creatinine concentration 
data.
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models was apparent. Therefore, creatinine models were 
further refined by estimating apparent permeability and 
CLint using creatinine–trimethoprim interaction data from 
six studies (total of 44 subjects, daily dose ranging 200–
1,600  mg). The models were fitted to creatinine CLR and 
creatinine–trimethoprim interaction data simultaneously 
using only the steady-state or maximal percent change in 
SCr from each study and fixed relative contributions (i.e., 
ft,i) of the transporters. The best fit estimates of apparent 
permeability and CLint (Table 3) were higher than the cor-
responding values predicted using IVIVE by 24-fold and 
77-fold for the uptake OCT2 model and 12-fold and 80-fold 
for the bidirectional OCT2 model, respectively. The refined 
models described creatinine–trimethoprim interactions in 
agreement with observed data from the six literature studies 
(Figure 4). The ratios of simulated steady-state concentra-
tions in proximal tubule cells and plasma (accounting also 
for passive permeability) were 19 and 11 for the uptake 
OCT2 and bidirectional OCT2 models, respectively (Table 
S8). Sensitivity analysis was performed for the fixed param-
eters of these refined creatinine models (Supplemental 
Material, Section 7). Glomerular filtration rate, proximal 
tubule filtrate flow rate (QPT-U,filt), Rsyn, membrane poten-
tial in proximal tubuel cell (φPTC) (bidirectional OCT2 model 
only), and pH in proximal tubule cells (pHPTC; bidirectional 
OCT2 model only) and blood (pHblood) had the largest im-
pact on steady-state SCr.

DISCUSSION

In the current study, physiologically based models of cre-
atinine renal disposition were developed for the first time. 
These models were developed systematically following 
PBPK best practices.7,11,13,20 Given the uncertainty of scal-
ing factors for kidney transporters11 and ongoing debates 
concerning best practices and the consistency of proteom-
ics data,37 proteomic-informed IVIVE was attempted using 
different approaches. However, each resulted in the under-
estimation of creatinine CLR (predicted value was <  88% 
of the observed regardless of the scenario investigated). 
Underprediction of transporter-mediated clearance is not 
uncommon and is often resolved by drug-specific empirical 
scaling factors to recover clinical observations.17,38 From the 
initial quantitative translational efforts it was unclear if the 
transporter CLint might be underpredicted or whether addi-
tional transporters might be involved that were not included 
in the model (e.g., organic cation transporter 3 (OCT3)).

Benefits and limitations of proteomics-informed IVIVE
The use of the conventional equation to describe OCT2-
mediated transport (i.e., uptake OCT2 model) resulted in 
a different set of estimated CLint compared with transport 
driven by electrochemical gradient (i.e., bidirectional OCT2 
model), consistent with previous PBPK modeling of the 
metformin–cimetidine interaction.15,16 Implementation of 

Table 3  Intrinsic clearance (CLint) values calculated for OAT2, OCT2, MATE1, and MATE2-K transporters using in vitro–in vivo extrapolation 
(IVIVE) and optimized from fitting creatinine models to data

Source OAT2 OCT2 MATE1 MATE2-K

1. In vitro–in vivo extrapolation of CLint

In vitroa (µL/minute/mg total protein) 13.5 1.18 (0.754)g 0.114 0.113

Scaled to kidney proteinb (µL/minute/mg total 
protein)

0.233 0.095h 0.0018 0.0057

In vivo, IVIVE scenario 1c (L/hour) 0.270 0.111 (0.312)i 0.002 0.0066

In vivo, IVIVE scenario 2d (L/hour) 0.169 0.0692 (0.196)i 0.0013 0.0041

2. Optimized parameters fitted using creatinine CLR only

In vivo, uptake OCT2 model (L/hour) 0.994 1.14j 0.0075 0.0244

In vivo, bidirectional OCT2 model (L/hour) 2.86 1.17k 0.0216 0.0703

3. Optimized parameters fitted using creatinine–trimethoprim interaction data

In vivo, uptake OCT2 modele (L/hour) 20.8 23.9j 0.157 0.510

In vivo, bidirectional OCT2 modelf (L/hour) 21.5 8.75k 0.162 0.527

CLint,OCT2,app, apparent OCT2 intrinsic clearance; CLint,OCT2,preMP, intrinsic clearance of OCT2 without effects of membrane potential; CLPD,para, creatinine pas-
sive permeability by the paracellular route; CLPD,trans, creatinine passive permeability by the transcellular route; fcation,pH7.4, cationic fraction of creatinine at 
pH 7.4; HEK293, human embryonic kidney 293; MATE1, multidrug and toxin extrusion transporter 1; MATE2-K, multidrug and toxin extrusion transporter 2-K; 
OAT2, organic anion transporter 2; OCT2, organic cation transporter 2; Papp, apparent permeability data; REF, relative expression factor.
aAverage of values at 41.2 µM and 123.5 µM, extracted from Figure 2 in Shen et al.30 using GetData Graph Digitizer, transporter transfected HEK293 cell 
uptake data corrected for uptake by mock-transfected cells.
bAfter accounting for REF.
cAs per Eq. 19.
dAs per Eq. 20.
eEstimated Papp = 28.9 cm/s × 10-6

, CLPD,trans = 0.89 L/hour, CLPD,para = 5.9 L/hour.
fEstimated Papp = 14.0 cm/s × 10-6

, CLPD,trans = 0.43 L/hour, CLPD,para = 2.87 L/hour.
gValue for OCT2 represents CLint,OCT2,app, value in parentheses represents CLint,OCT2,preMP·fcation,pH7.4 (see Eqs. 7 and 8).
hValue for OCT2 represents CLint,OCT2,preMP·fcation,pH7.4 (see Eqs. 7 and 8).
iValue for OCT2 represents CLint,OCT2·fcation,pH7.4 (Eqs. 7 and 10) and used in uptake only OCT2 model, value in parentheses represents CLint,OCT2,preMP·fcation,pH7.4 
(see Eqs. 7 and 8).
jCLint,OCT2·fcation,pH7.4 (Eqs. 7 and 10).
kCLint,OCT2,preMP·fcation,pH7.4 (Eqs. 7 and 8).
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equations to describe the role of membrane potential and 
electrochemical gradient is expanding within mechanistic/
PBPK models.15,16,29,39 Although experimental evidence for 
OCT2 efflux of creatinine is not reported, the concept of bi-
directionality of the OCT2 transport is supported by in vitro 
data for tetraethylammonium.40 Creatinine is largely un-
charged (as ampholyte) at pH 7.4, yet creatinine transport 
by OCT2 is affected by changes in membrane potential,41 
supporting the inclusion of electrochemical gradient-driven 
transport in the bidirectional OCT2 model.

Distinguishing the quantitative contributions of multiple 
processes to a single net observed effect represents a chal-
lenge to ensure the “identifiability” of a model.6 In general, 
problems with model identifiability can be overcome in var-
ious ways, including simplification or reparameterization of 
the model or simultaneous use of different data that either (i) 
inform different states of the model or (ii) are associated with 
specific perturbations to model parameter(s).42 For example, 
to optimize creatinine transporter CLint, proteomic-based in-
formation was used to inform the relative contributions of 
each transporter to creatinine renal disposition. Confidence 
in proteomic-based transporter IVIVE is generally not high, 
and an abundance-function relationship has yet to be estab-
lished for transporters.6,8,9,13 However, without these prior 
data, the CLint parameters for four transporters would have 
been nonidentifiable. The proteomics-based IVIVE predicted 
similar contributions of OCT2 and OAT2 to the basolateral 
uptake of creatinine in contrast to previous reports of a 
larger contribution by OAT2.4 Furthermore, overall transport 

clearances via the basolateral transporters OAT2 and OCT2 
were much larger compared with MATE1 and MATE2-K. 
Simulated steady-state proximal tubule cell-plasma con-
centration ratios were lower than anticipated solely from the 
relative ratio of the transport clearances because of the role 
of passive permeability (Table S8). This concentration ratio 
was even lower in the bidirectional OCT2 model because of 
bidirectional transport assumption.

Model assumptions relating to creatinine membrane 
permeability
Initial evaluation of the mechanistic models resulted in a 
general underprediction of the magnitude of creatinine–
drug interactions, signifying an incorrect assumption of the 
creatinine model. IVIVE predictions of permeability clear-
ance parameters suggested low Freab (< 10%) for creatinine. 
In a previous study, IVIVE of reabsorption of 45 diverse 
drugs was least accurate for basic compounds,28 whereas 
another study required empirical scalar to overcome uncer-
tainty toward the microvilli expansion of effective membrane 
surface area.43 Therefore, simultaneous estimation of per-
meability and transporter CLint parameters was performed 
using data associated with specific perturbations (i.e., cre-
atinine–trimethoprim interaction data). The relevance of 
the estimated permeability within the context of biological 
understanding of creatinine disposition is discussed in a 
companion article.21 The availability of concentration data 
within specific organs using imaging technologies would 
provide additional information to distinguish uptake and 

Figure 4  Simulation of creatinine–trimethoprim interaction following oral administration of 400 mg trimethoprim every 6 hours (i.e., 
20 mg/kg/day) using the uptake OCT2 model (a–c) or bidirectional OCT2 model (d–f) with optimized apparent permeability data and 
intrinsic clearance. a,d: Simulated trimethoprim plasma concentrations. d,e: Simulated fraction activity remaining. c,f: Simulated and 
observed percentage change in serum creatinine. Cp, plasma concentration; MATE1, multidrug and toxin extrusion transporter 1; 
MATE2-K, multidrug and toxin extrusion transporter 2-K; OAT2, organic anion transporter 2; OCT2, organic cation transporter 2; SCr, 
serum creatinine concentration.
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efflux rates, although limited examples have been reported 
to date for liver.13,44 The simultaneous estimation of Papp and 
CLint presented additional model optimization challenges, 
including multiobjective optimization and model noise lead-
ing to nonsmooth objective functions. These were explored 
in a pragmatic manner (details in Supplemental Material, 
Section 6). Expanding the application of PBPK models 
within the reverse translation paradigm illustrated here 
emphasizes the need for further work to determine more 
efficient approaches to these complex problems.

In conclusion, mechanistic creatinine models were 
developed, accounting for the first time for passive per-
meability and multiple transporter-mediated processes in 
proximal tubule cells. Equations describing bidirectional 
transport by OCT2 driven by electrochemical gradient 
were implemented in the models. Challenges in quanti-
tative translation of in vitro transporter kinetics data were 
highlighted; the identification of knowledge gaps is a valu-
able benefit of employing mechanistic models that is often 
ignored. This mechanistic framework allows investigation 
of the interplay of transporter processes, and provides 
opportunity to update models with new data that address 
knowledge gaps. Multiobjective optimization enabled 
reverse translation to inform/refine transporter kinetic pa-
rameters of the complex mechanistic models by clinical 
data. Evaluation of the performance of the model for the 
prediction of creatinine–drug interactions, accounting also 
for intraindividual variability in SCr, is reported in a com-
panion article.21

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).
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