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Abstract

sensitivity to TRAIL.

inputs and multiple outputs.

enhanced cell death in A375 melanoma cells.

amplify the action of Cryptotanshinone.

Background: Metastatic melanoma is an aggressive form of skin cancer that evades various anti-cancer treatments
including surgery, radio-immuno- and chemo-therapy. TRAIL-induced apoptosis is a desirable method to treat
melanoma since, unlike other treatments, it does not harm non-cancerous cells. The pro-inflammatory response to
melanoma by nFk B and STAT3 pathways makes the cancer cells resist TRAIL-induced apoptosis. We show that due to
to its dual action on DR5, a death receptor for TRAIL and on STAT3, Cryptotanshinone can be used to increase

Methods: The development of chemoresistance and invasive properties in melanoma cells involves several
biological pathways. The key components of these pathways are represented as a Boolean network with multiple

Results: The possible mutations in genes that can lead to cancer are captured by faults in the combinatorial circuit
and the model is used to theoretically predict the effectiveness of Cryptotanshinone for inducing apoptosis in
melanoma cell lines. This prediction is experimentally validated by showing that Cryptotanshinone can cause

Conclusion: The results presented in this paper facilitate a better understanding of melanoma drug resistance.
Furthermore, this framework can be used to detect additional drug intervention points in the pathway that could

Keywords: Melanoma, Trail, Cryptotanshinone, Stat3, Boolean networks

Background

Melanoma is one of the most prevalent and aggres-
sive forms of skin cancer. Normal melanocytes are the
light receptors in the skin and are equipped to pro-
tect and repair the body from damage caused by radi-
ation. The chemoresistance of melanoma cell lines has
been attributed to their inherent capability to survive. In
melanoma cells in particular, and cancer cells in general,
this survival mechanism is hijacked by the mutated genes
and exploited to counter medical treatment [1].
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The human body reacts to threats by relying on its
immune system and by appropriate functioning of the cel-
lular signaling pathways. TNF-related apoptosis-inducing
ligand (TRAIL) is implicated in immunosurveillance,
which is the ability of the immune system to recognize
pathogens and activate the mechanisms to neutralize their
effect [2]. TRAIL resistance is observed in melanoma cell
lines; it is associated with the mutations in cell survival
pathways [3, 4].

Abnormalities in cell cycle control are a characteris-
tic of cancer, and this is accompanied by uncontrolled
growth [5]. Drugs used to treat melanoma try to restore
the normal cell cycle function through action on the cell
survival pathways. Metastatic melanoma cells are known
to develop resistance to most of the commonly used
drugs and therapy [1]. Chemoresistance is linked with
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TRAIL resistance in melanoma [4]. Treatment strategies
that involve sensitization of the melanoma cells to TRAIL-
induced apoptosis have shown promise [6]. Cryptotanshi-
none is one of the drugs that has been shown to restore
TRAIL sensitivity [7].

This paper will model the development of drug resis-
tance in metastatic melanoma cells, using a Boolean
network to explain the induction of apoptosis by Cryp-
totanshinone. The paper is organized as follows. The first
section describes the functions of the various pathways
in cancer and how they contribute to drug resistance.
The following section describes the Boolean formaliza-
tion of these pathways. Finally, the theoretical results are
presented, followed by the experimental validation in the
last section. For clarity of presentation, the color schemes
shown in Figs. 1 and 2 will be used while schemati-
cally modeling signaling pathways and the interactions
between genes. Extensive use of these schemes can be
seen in Figs. 3 through 8 to follow.

Biological pathways in melanoma

The various gene interactions in melanoma can be rep-
resented by biological pathways, which are all well doc-
umented [8—10]. Some of the interconnections derived
during modelling these pathways are based on the inter-
pretation of different research papers [3, 11-22] by the
authors of the present paper. We consider only a subset
of all possible interconnections and signaling pathways
in the cell, since the cancer of interest to us here is
melanoma.

TRAIL resistance is attributed to the activation of
the nF«kB pathway and the cell survival pathways.
Pro-inflammatory response of nF«xB leads to the over-
expression of cFLIP (Cellular FLICE (FADD-like IL-18-
converting enzyme)-inhibitory protein) that interferes
with the formation of the death-inducing signaling com-
plex (DISC), an important step in the extrinsic apop-
tosis governed by TRAIL [3, 23]. This is clearly shown
in Fig. 3.
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Fig. 1 Color coding for gene interactions in Figs. 3 through 8
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Another possible reason for the development of TRAIL
resistance is due to the lower expression of death recep-
tors - death receptor 4 (DR4) and 5 (DR5) [4]. TRAIL
receptors are abundantly expressed in the early stages of
melanoma, however as the immune system fails to combat
cancer growth, the TRAIL-induced apoptosis is affected.

The cell survival pathways mTOR/PI3K/AKT and
MAPK/ERK have been implicated as contributors to
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Fig. 3 Extrinsic Apoptosis and the nF«x B pathways
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TRAIL resistance [4, 24]. These two anti-apoptotic path-
ways govern melanocytes; control their cell cycle, pro-
mote proliferation, growth and survival [14]. They may
be involved in melanomagenesis, particularly N-Ras, B-
Raf and PTEN loss are some of the commonly occurring
mutations of Ras, Raf and PTEN respectively [8—10].
These pathway mutations can attenuate the cytotoxicity of
several drugs [24].

Figure 4 shows the crosstalk between the two cell sur-
vival pathways and how they mutually control the p53
pathway. The tumor suppressor gene p53 is also consid-
ered to be an oncogene. Referred to as the master guardian
gene, p53 responds rapidly to DNA damage [25]. Figure 5

Page30f13

shows how the cell cycle arrest can occur if DNA dam-
age is detected and can lead to the activation of the tumor
suppressor action of p53 [26]. Once activated, p53 serves
as a brake on cell proliferation as shown in Fig. 4.

There are other pathways which are involved in TRAIL
resistance indirectly, such as the pathway governing the
unfolded protein response (UPR). UPR is triggered by
endoplasmic reticulum (ER) stress as depicted in Fig. 6.
In melanoma, UPR may aid metastasis via the epithelial-
mesenchymal transition (EMT)[27]. UPR could be linked
to chemoresistance and TRAIL resistance, as it acti-
vates the pro-inflammatory response. JNK is also acti-
vated in response to ER stress, it inhibits IL8 signaling
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Fig. 4 JNK, p53, PI3K/AKT/mTOR and MAPK/ERK pathways
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Fig. 5 DNA damage pathway

and increases TRAIL-induced apoptosis [28]. JNK is also
involved in the upregulation of CHOP and Bak/Bax, both
of which are pro-apoptotic factors [29]. These relation-
ships involving JNK are captured in the pathway diagram
in Fig. 6.

Signal transducer and activator of transcription 3
(STAT3) plays a part in decreasing TRAIL cytotoxicity in
metastatic melanoma cells. Cyclooxygenase-2 (COX2) is a
transcriptional target of both nFxkB and STATS3, and is a
regulator of inflammatory response. Inhibition of STAT3
causes a decrease in protein expression of COX2 [30].
STAT3 is also activated upon incidence of ER stress by
PERK [31]. The increase of metastatic activity by UPR
is partly due to the action of STAT3 [31]. Additionally,
STAT3 upregulates Mcll, an anti-apoptotic factor, thus
contributing to cell survival [17].

The role of STAT3 in cancer cells is extensive as is
evident from the pathway diagram in Fig. 7. STAT3 is acti-
vated in the skin to achieve migration of keratinocytes,
that produce proinflammatory mediators and initiate
immune response [32]. It regulates reactive oxygen species
(ROS) in the mitochondria. ROS levels influence mito-
chondrial membrane potential and are important driving
factors in mitochondrial apoptosis and are shown to have
an effect on TRAIL sensitivity [33—35]. Given its influence
on the various pathways involved in developing TRAIL

PERK Bak/Bax

JAK1 ATF4

STAT3 CHOP

Casp3

Apoptosis

Fig. 6 Endoplasmic Reticulum Stress and the JNK pathway

resistance, STAT3 is a good candidate to induce TRAIL
sensitivity [36, 37].

There are several existing drugs that act at different
points in the MAPK/ERK and mTOR/PI3K/Akt path-
ways as is shown in Fig. 4; however none of them have
been proven significantly effective against melanoma [1].
A possible mechanism for drug resistance is the failure
to induce apoptosis in cancer cells. Typically, most cancer
cells deactivate the pathways to apoptosis and simulta-
neously heighten the activities of the cell proliferation
and growth pathways [5]. The balance of pro-apoptotic
and anti-apoptotic factors determines the fate of the cell
[12, 13]. These factors are regulated by genes in different
signaling pathways as can be seen in Table 1. The mito-
chondrial pathway which governs cellular respiration and
apoptosis in many cells is shown in Fig. 8. The matrix
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Fig. 7 STAT3 pathway

membrane permeability depends on the ratio of the pro-
apoptotic to the anti-apoptotic factors and is controlled by
the matrix metalloproteases (MMPs) [13]. It is noteworthy
that in both normal and cancer cells, the expression of
pro-apoptotic factors can be detected [3]. This indicates

Table 1 Mitochondrial apoptosis factors

Factor From pathway Effect on apoptosis
Bad AKT Pro-apoptotic
Bid TRAIL Pro-apoptotic
Casp-12 ER stress Pro-apoptotic
Noxa p53 Pro-apoptotic
Puma p53 Pro-apoptotic
Bim INK Pro-apoptotic
Mcl-1 STAT3 and DNA damage Anti-apoptotic
Al nFxB Anti-apoptotic
Bak/Bax Mitochondrial Pro-apoptotic
Bcl2 Mitochondrial Anti-apoptotic
Bcl-XL Mitochondrial Anti-apoptotic
XIAP AKT Anti-apoptotic
ROS STAT3, TRAIL, TNFa and ER stress Pro-apoptotic

Caspl2

Casp3

XIAP

Apoptosis

Fig. 8 Mitochondrial Apoptosis Pathway

that the upstream defects in cancer most likely inhibit
apoptosis by an increase in the activity of anti-apoptotic
genes. This fact is useful when trying to understand drug
resistance.

Cryptotanshinone as an effective drug

Cryptotanshinone (CT) is one of the bio-active
compounds of the plant Salvia miltiorrhiza (danshen),
the root extract of which has been used widely in tra-
ditional Chinese herbal treatment for various diseases.
There are many studies discussing the effects of CT on
cancer [38-40], and on melanoma [7, 18, 30, 41]. Cryp-
totanshinone has been shown to kill tumor-initiating cells
(cancer stem cells) by targeting stemness genes [40], cause
cell cycle GO/G1 and G2/M phase arrest, counter metas-
tasis and invasion of cancer cells [18], and activate the
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mitochondrial [41] as well as the extrinsic apoptotic path-
ways [7, 30]. Its protein structure and molecular targets
have been studied in efforts to make it an effective drug
for cardiovascular disease [38], and even for cancer [42] .

CT can restore TRAIL sensitivity and induce apopto-
sis in A375 melanoma cells, by increasing DR5 expression
via the induction of CHOP (CCAAT/enhancer-binding
protein-homologous protein) [7]. In addition, STAT3
plays a key role in and is upstream of many of the func-
tions that CT affects and is a known target of CT in other
cancers [43, 44].

Methods

We model the biological signaling pathways that we have
discussed in the “Background” section as a Boolean net-
work. Each gene is a node and its direct interaction with
another gene is represented as an edge. Gene expression
is binarily quantized: a gene, if expressed is considered to
be ON (State 1) and if not expressed, is considered to be
OFF (State 0). If two or more genes interact to activate or
inhibit a third gene, such relationships are modelled with
the use of logic gates. The genetic regulatory network can
then be thought of as a multi-input multi-output (MIMO)
digital logic circuit.

A cancerous cell will not have the same input-output
mapping as a normal one. This is due to the abnormalities
that occur in the biological pathways of cancer cells. Mal-
functioning genes lead to uncontrolled cell proliferation,
increased inflammation and failure of the apoptotic path-
ways. These irregularities of tumor cells can be thought
of as faults in the Boolean network, particularly stuck-at
faults. A stuck-at fault occurs when a node in the network
is permanently set to a fixed value of either zero (stuck-at-
0 fault) or one (stuck-at-1 fault) [5]. This implies that the
circuit will not change as expected when subjected to a
certain set of inputs. The output vector of a faulty network
then will be independent of the other signal values in the
regulatory circuit. An over-expressed gene can be denoted
as a stuck-at-1 fault. This notion is common in cancer
where oncogenes tend to display similar faulty behaviour,
irrespective of what input they receive and evade any
corrective action from upstream. The effect of such a
fault can be corrected by using a drug as shown in Fig. 9.
On the other hand, a stuck-at-O fault can result when a
gene becomes permanently inactive, independent of the

[1]
STUCK-AT-1 [
a

D
_r—»\—J FAULT LOCATION Out

DRUG INHIBIT

Fig. 9 Boolean representation of the drug action countering a
stuck-at-one fault
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activity status of its upstream regulators. For example,
a mutated p53 gene in a cancer cell will remain inac-
tive despite being phosphorylated as a result of cellular
DNA damage. This situation, common to several can-
cers, is one where a drug can correct a stuck-at-0 fault as
shown in Fig. 10. The static Boolean network considered
here is used to represent a trail resistant network and also
includes information about how drug intervention could
allow us to sensitize the melanoma cell lines to TRAIL.
We focus on the TRAIL apoptotic pathway and on the
effect the genes in the other pathways have on extrinsic
cell death. The other inputs are DNA damage, ER stress
and the growth factors that activate the pathways involved
in melanoma. The outputs are all apoptotic factors, both
pro- and anti- apoptotic, the ratio of which will decide
whether the cell undergoes death. The input and output
vectors are given by Egs. 1 and 2 below:

Input = [ER Stress, TNF «, TRAIL, PTD, IL6,

1
DNA Damage, IGF, EGF] @

Output = [ Casp8, Bid, Bad, Bim, Bak/Bax, Casp12,
Bcl-XL, Bcl2, XIAP, Mcll]
(2)

For A375 melanoma cells, we consider 6 possible faults in
our model. These correspond to the common mutations
in the involved pathways and especially those that have
been shown to cause TRAIL resistance [24]. All possible
combinations of the faults have been simulated, that is 64
different configurations of the fault vector are considered.
It is important to note that each component of the fault
vector is either zero or one based on whether a particular
fault is present or not. A one in the fault vector can denote
a stuck-at-one fault or a stuck-at-zero fault, whichever is
consequential for that particular gene. For instance, if the
fault vector is [1 0 0 0 O 0], this implies that the Ras
gene is faulty. Since it is a stuck-at-one type of fault, it
means that Ras is being constitutively expressed. On the
other hand, presence of a stuck-at-zero fault represents
the downregulation of the gene. For instance, when the
fault vector equals [0 0 1 0 0 0], it means that PTEN
is faulty and its suppressing action has failed. The fault

0] .
STUCK-AT-0 !

FAULT LOCATION

Out

—
DRUG

Fig. 10 Boolean representation of the drug action countering a
stuck-at-zero fault
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Table 2 Faults

Stuckat 1 Stuck at 0
Ras PTEN

Raf p53
STAT3 DR5

vector components are given by Eq. 3 and the types of
faults are as listed in Table 2.

Fault = [Ras, Raf, PTEN, p53, STAT3, DR5] 3)

The activity points of the different drugs on the path-
ways have already been shown in Figs. 3 and 4. The
components of the drug vector are displayed in Eq. 4.

Drugs = [CT, LY294002, Temsirolimus, UO126,
Lapatinib, SH5-07, AG1024]

Each component of the drug vector corresponds to
whether or not that drug is applied, so a zero in the
i column indicates that the i drug is not applied and
vice versa. Since a major goal of this paper is to evaluate
the action of Cyrptotanshinone, either by itself, or for
enhancing the activity of other drug combinations, the
combination of drugs considered here is limited to Cryp-
totanshinone alone and Cryptotanshinone in combination
with the other drugs. Since there are six other drugs in the
vector, a total of 2° drug combinations were tested. For
instance, the drug vector [1 0 0 0 0 0 0] indicates that only
Cryptotanshinone is applied.

Input

Connection

Pro-Apoptotic

Fig. 11 Legend showing the color coding scheme used in Figs. 12, 13
and 14
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For clarity of exposition, the entire Boolean network will
be split up into three different components. Each com-
ponent will follow the colour scheme shown in Fig. 11
and the interconnections between the three component
networks will be indicated by the gray blocks. The three
components are shown in Figs. 12, 13 and 14. Figure 12
shows the relationship between the DNA damage input
and how the apoptotic factors are affected upon the
incidence of DNA damage, and this figure also helps
in closely studying the effect of a p53 fault. Similarly,
Figs. 13 and 14 represent the gene interactions in the
major pathways involved in melanoma. An additional
Simulink file shows the entire Boolean network as a whole
[see Additional file 1].

Results and discussion

We ran several rounds of simulations to test how Cryp-
totanshinone acts in combinations with the other drugs.
To check the effectiveness of CT in increasing TRAIL
cytotoxicity, we monitor its influence on the apoptosis
induced. In this section, we are testing a TRAIL resistant

DNA Damage

STAT3 SUP2

MCL1

SUP12

NOXA

!

BIM

Fig. 12 Boolean network for the DNA Damage pathway
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static Boolean network. Here, it should be pointed out
that a network can display trail resistance even in the
absence of TRAIL, the resistance in that case having been
residually left over from an earlier TRAIL induction event.
The metric used to calculate the degree of apoptosis is:

> Pro-Apoptotic factors
> Anti-Apoptotic factors

Apoptosis Ratio =

The apoptosis ratio is a measure of the relative change
in apoptosis upon a change in conditions. The apoptosis
ratio will change depending on different factors such as
the values of the inputs, the presence of certain faults or
the application of a drug. Changing the input combination
to the Boolean network will change the value of the
apoptosis ratio. Figure 15 presents three different states of
the Boolean network, when the input vectors are:

Page 8 0of 13

1 ‘0000000 : ‘No Input’ which means that no growth
factors, cytokines or stress signals are present and the
STAT3 suppressor PTP is OFF.

2 ‘0010000’ : “TRAIL-induced apoptosis’ which means
that the TRAIL apoptotic pathway is active.

3 ‘1000000’ : ‘ER Stress induced Apoptosis’ which
considers ER Stress as the only active input.

Each color in the figure represents a different fault and
drug combination. Blue stands for the situation where
there is no fault and no drug; orange means that the DR5
and STAT3 faults are present; yellow shows the apopto-
sis induced by SH5-07 in the presence of these faults; and
violet shows the apoptosis induced by CT in the presence
of the two faults.

From Fig. 15, we can see that the apoptosis ratio is 1.67
when there is ‘No Input’ and ‘No Fault! Moreover, we

Fig. 13 Boolean network for the TRAIL, ER Stress and STAT3 pathway
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Fig. 14 Boolean network for the PI3K/AKT/mTOR and MAPK/ERK pathway

CYCLIND1
CDK4

observe that CT is inducing apoptosis even in the absence
of TRAIL or other apoptosis-inducing factors. This means
that CT must be down-regulating the anti-apoptotic fac-
tors through its action on STAT3, thus leading to a
relatively greater value of the apoptosis ratio.

A similar situation can be seen for the ‘ER Stress induced
apoptosis’ case, where the apoptosis value increases upon
application of CT. However, only its effect on STAT3 is not
enough to explain the increased TRAIL sensitivity. This is
clear by looking at the action of the other STAT?3 inhibitor
SH5-07, which is unsuccessful in inducing further apop-
tosis in the presence of the faults. Here, it is evident that
the upregulation of DR5 by CT plays a role in increasing
the apoptosis ratio.

Looking at the “TRAIL-induced apoptosis’ condition in
the absence of a fault, we observe that the apoptosis ratio
is large. DR5 and STAT3 faults reduce the value to almost
half. The STAT3 inhibitor SH5-07 is unable to counter
these faults. Cryptotanshinone though not able to regain
the fault-free value of apoptosis, is effective in increas-
ing apoptosis despite the presence of faults. This seems
to imply that the upregulation of DR5 is instrumental to
restoring TRAIL sensitivity.

The next simulation was run to test which single drug
is the most effective in combination with CT. We con-
sidered the input to be TRAIL so that the input vector
is ‘0010000’ and assumed that all 6 faults are simulta-
neously present. The results are shown in Fig. 16. The
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Fig. 15 Apoptosis ratios for different inputs
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Fig. 16 Apoptosis by CT in combination with a single drug in the presence of simultaneous occurrence of all faults

Faults

Drugs

Fig. 17 All possible combinations of faults and drugs when the input is TRAIL, with Cryptotanshinone
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Drugs

Faults

Fig. 18 All possible combinations of faults and drugs when the input is TRAIL, without Cryptotanshinone

effect of LY294002, a PI3K inhibitor in combination with
Cryptotanshinone seems to be better than the other com-
binations considered. The role of the mTOR/PI3K/AKT
pathway in TRAIL resistance is confirmed by the increase
in TRAIL cytotoxicity via inhibition of PI3K.

The final simulation evaluates all fault combinations
with all the drug combinations with and without Cryp-
totanshinone in Figs. 17 and 18 respectively, when only
the TRAIL input is active. Each row corresponds to a
different drug combination (indicated by the correspond-
ing drug vector) while each column corresponds to a dif-
ferent fault combination (indicated by the corresponding
fault vector). The apoptosis value in each cell in the figure,
thus, is the action that a drug vector has on that particular
fault vector. Both the figures follow the same color scale.
The red areas show regions of low apoptosis (apoptosis
ratio = 0.67) while the green areas show regions of maxi-
mum apoptosis (apoptosis ratio = 5). A visual inspection
shows that CT is successful in increasing TRAIL cytotoxi-
city for most combinations of faults. It is our conjecture in

this paper that the effect of Cryptotanshinone on TRAIL
resistance is through its action on STAT3 and DR5. The
simulations seem to support this as they show that even
in the presence of faults in other cell signaling pathways,
such as p53, CT can solely through its action on STAT3
and DR5 diminish TRAIL resistance. Figure 17 does not
have a single red cell, which means that CT is more
effective in inducing apoptosis than any other drug com-
bination considered in this paper. In contrast, Fig. 18 has
fewer green cells, which seems to point towards Tem-
sirolimus, an mTORC]1 inhibitor [20] to perform better
than the other drugs in the absence of Cryptotanshi-
none. LY294002 in combination with CT seems to be
the most effective drug among the ones considered in
this paper. This is also what was seen in Fig. 16. The
red regions in Fig. 18 correspond to a PTEN fault being
active and the PI3K inhibitor LY294002 seems to keep
the apoptosis ratio away from the red region despite
the presence of PTEN faults. This adds to the argument
that the mTOR/PI3K/AKT signaling pathway contributes

Apoptotic .
Fraction Z:’

Hours

= Cry = +tly = +Tem

= +U0 == +Lap == +SH

+AG == Untreated

Fig. 19 Experimental results for each single drug in combination with CT
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Table 3 Legend for Fig. 19

Abbreviation Drug combination

Cry Cryptotanshinone 50uM

+Ly LY294002 10uM+ Cryptotanshinone 50uM
+Tem Temsirolimus 10uM+ Cryptotanshinone 50uM
+U0 U0126 10uM+ Cryptotanshinone 50uM

+Lap Lapatinib 10uM+ Cryptotanshinone 50uM
+SH SH5-07 10uM+ Cryptotanshinone 50uM

+AG AG1024 10uM+ Cryptotanshinone 50uM
Untreat Untreated

to TRAIL resistance, and its inhibition increases TRAIL
sensitivity. An additional excel file shows the data in
Figs. 17 and 18 in greater detail [see Additional file 2].

Experimental Validation

High-content fluorescent protein reporter imaging is used
to track cellular apoptosis in a sample of A375 melanoma
cells, subject to various drug treatments. A two-part data
processing procedure similar to the one introduced in
[45] is applied to extract cell processing dynamics. The
data obtained after image processing is summarized into
expression profiles and represented as plots to facilitate
further evaluation. The cellular apoptosis occurring in
A375 melanoma cells with respect to time is displayed in
Fig. 19. The Y-axis shows the apoptotic fraction, which
corresponds to the percentage of apoptosis occurring in
the cell line in the given time. Table 3 explains the legend
in Fig. 19 in greater detail.

It can be seen that CT in combination with the
drugs one at a time is successfully inducing apoptosis in
melanoma cell lines. The final value of apoptosis is similar
for each combination as is also shown in Fig. 16.

Conclusions

We modelled the TRAIL resistant metastatic melanoma
network using a Boolean network. The effects of Cryp-
totanshinone in combination with a few other drugs were
studied. Simulations were run to study the effectiveness
of Cryptotanshinone in increasing TRAIL sensitivity. The
theoretically predicted efficacies seem to be borne out by
the experimental results.

Additional files

Additional file 1: This is the representation of a Simulink model (slx file).
The model shown was used as a reference to cross-check the results from
the .m-file. It contains the exacts same Boolean network as is encoded in
‘boolean_net.m’ and is shown in the Figs. 12,13 and 14. (PDF 110 kb)

Additional file 2: This is an Excel file, it is used to analyze the data from
the simulations. It has two sheets 'cry’ and 'nocry’ used to generate the
Figs. 17 and 18 respectively. (XLSX 41 kb)
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