
Research Article
TheScientificWorldJOURNAL (2011) 11, 2480–2490
ISSN 1537-744X; doi:10.1100/2011/968479

 

In Vivo Expression of Interleukin-37 Reduces Local
and Systemic Inflammation in Concanavalin A-Induced
Hepatitis

Ana-Maria Bulau,1 Michaela Fink,1 Christof Maucksch,1 Roland Kappler,2 Doris Mayr,3

Kai Wagner,3 and Philip Bufler1

1Department of Pediatrics, Dr. von Hauner Children’s Hospital,
Ludwig-Maximilians-University, 80337 Munich, Germany

2Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital,
Ludwig-Maximilians-University, 80337 Munich, Germany

3Institute of Pathology, Ludwig-Maximilians-University, 80337 Munich, Germany

Received 15 July 2011; Accepted 7 November 2011

Academic Editor: Giamila Fantuzzi

We recently reported that after LPS stimulation, IL-37 translocates to the nucleus and reduces
the expression of proinflammatory cytokines. The aim of this study was to investigate whether
transiently expressed IL-37 in mice reduces inflammation in concanavalin A (ConA)-induced
hepatitis and LPS-induced sepsis. Transgene IL-37 expression was detected in the liver lysate
of mice injected with IL-37 plasmid-DNA after hydrodynamic tail vein injection. All mice developed
severe acute hepatitis after ConA injection. No difference in the histological score and serum ALT
was observed between the two groups that might be explained by patchy expression of IL-37
protein in the liver. However, 2 hrs after ConA injection, serum levels for IL-1α, IL-6, IL-5, and IL-9
were significantly reduced in IL-37-expressing mice as seen for the LPS model. In conclusion, in
vivo expression of human IL-37 in mice reduces local and systemic inflammation in ConA-induced
hepatitis and LPS challenge.
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1. INTRODUCTION

The IL-1 family of cytokines possesses a variety of immunoregulatory properties in response to infection
and inflammation [1]. Most of the 11 known members of the IL-1 family share common cellular receptors
either acting as agonists or antagonists. The most prominent receptor antagonist is IL-1Ra. IL-37 (IL-1F7),
IL-33 (IL-1F11), and IL-1α were shown to translocate to the nucleus after cell stimulation and might also act
as transcriptional modulators. We recently showed that IL-37 stands apart being emerged as a fundamental
anti-inflammatory cytokine [2]. Five different splice variants of IL-37 have been described [3–6]. IL-37
binds to the IL-18Rα [7, 8] without having an agonistic or antagonistic function at the receptor level [7, 9].
IL-37 protein is expressed in human monocytes, and it is upregulated by a variety of TLR ligands [2, 10].

Intravenous injection of ConA into mice induces T-cell-mediated liver injury, which is characterized
by rapidly increased serum aminotransferase and cytokine levels, leukocyte infiltration of the liver, and
hepatocyte necrosis [11, 12]. Administration of ConA in mice leads to an acute, partly apoptotic hepatic
injury that is subsequently overlaid by massive necrosis [11, 13]. T-cell activation, that is, hepatic natural
killer T (NKT) cells, were shown to play a critical role in ConA-induced liver injury [11, 14] by releasing
a variety of cytokines, including interleukin 4 (IL-4), IL-5, interferon gamma (IFN-γ ), and tumor necrosis
factor alpha (TNF-α) [15–17]. Activation of CD4+ T cells in ConA-induced hepatitis results in the release
of IL-1β, IL-2, IL-4 [18], tumor necrosis factor-α (TNF-α) [13], and IFN-γ [19], the last two playing a
critical role in disease development as proven by antibody treatment [13, 19].

Activated T cells also play an important role in tissue repair after liver injury by producing anti-
inflammatory cytokines such as IL-10 and antiapoptotic cytokines such as IL-6 [20, 21]. Protection of
hepatitis can be induced by the administration of recombinant IL-6 if applied before ConA application [22].
IL-22 has also been shown to play a protective role in hepatitis [23].

To gain a better understanding of immune-mediated hepatitis and to provide further insight in the
physiological function of IL-37, we applied the model of ConA-induced hepatitis in mice transiently
expressing human IL-37 after hydrodynamic tail vein injection of plasmid-DNA. We also employed LPS-
induced shock to test whether transient expression of IL-37 in extralymphatic tissue is similarly effective to
reduce inflammation as shown for transgenic mice [2].

2. MATERIALS AND METHODS

2.1. Chemicals

All reagents were purchased from Sigma-Aldrich GmbH (Germany) unless indicated.

2.2. Plasmid Construction

Human IL-37 cDNA was cloned into the expression plasmid pTarget, which contains a constitutively active
CMV promotor, as previously described [10]. All plasmids were isolated by “low LPS” MaxiPrep kit
(Qiagen, Germany) to reduce nonspecific inflammation by contaminating LPS.

2.3. In Vivo Expression of IL-37

Animal protocols were approved by the Federal Government of Bavaria, Germany. Six to eight weeks
old, female C57/BL/6 mice were purchased from Janvier (France). The animals were housed at controlled
temperature with light-dark cycles, with free access to food and water and were acclimatized before being
studied. For in vivo expression of human IL-37, mice were rapidly injected with either 20 μg of empty
pTarget or pTarget-IL-37 in 2 mL of Ringer’s solution into the tail vein (“hydrodynamic injection” [24]).
The plasmid pLuc was coinjected at a ratio of 1 : 20 for in vivo transfection control.
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2.4. Animal Models and In Vivo Imaging

48 hrs after plasmid-DNA injection, ConA (200 μg) in pyrogen-free saline was injected into the tail vein
of mice to induce hepatitis. Alternatively, 10 μg of LPS (E. coli 055:B59) was injected intraperitoneally.
2 hrs after LPS injection, mice were anesthetized by isoflurane, blood was taken by intracardiac puncture,
and mice were sacrificed. 2 hrs after ConA injection, a blood sample was taken for cytokine measurement
from the retroorbital plexus under isoflurane anesthesia. 24 hrs after ConA injection, in vivo bioluminescent
imaging was performed as previously described [25]. The substrate luciferin was injected into the
intraperitoneal cavity at a dose of 3 mg in aqueous solution 10 min before imaging. Ventral images were
collected for 1 s using the IVIS imaging system (Xenogen Corp., Alameda, CA, USA). Photons emitted
from the liver region were quantified using Living Image software (Xenogen Corp.). Another blood sample
was then obtained, and the mice were subsequently sacrificed. The livers were removed and stored for
histological, protein, and cytokine analysis.

2.5. Western Blot

Frozen livers were sonicated in phosphate-buffered saline containing 0.1% Tween 20 and protease
inhibitors. After centrifugation (13,000 rpm, 7 min, 4◦C), supernatants were aspirated, and their protein
concentrations were determined. 90 μg of liver lysates were separated on a 10% SDS polyacrylamide
gel and transferred on to a nitrocellulose membrane (Hybond ECL, Amersham Biosciences, Freiburg,
Germany). For detection of IL-37 protein in the liver lysates, a mouse monoclonal Ab was used [10]. After
washing, the membrane was incubated with a secondary horse-radish-labeled antibody (Sigma-Aldrich) at
room temperature for 1 h. The membranes were developed with enhanced chemiluminescence (SuperSignal,
Pierce, Rockford, IL, USA).

2.6. Analysis of Liver Injury

The extent of liver injury was assessed 24 hrs after ConA administration by determination of serum alanine
aminotransferase (ALT) using a Hitachi 917 Analyzer (Hitachi).

2.7. Liver Histology and Immunohistochemistry

A segment from the right lobe of the liver was fixed in 10% formalin, dehydrated in ethanol, and paraffin-
embedded for histologic analysis. 5 μm sections were stained with hematoxylin and eosin and reviewed
by a single, blinded pathologist. A histological score was performed as previously described [26]. For
lobular inflammation, no inflammation was counted as 0, mild lobular inflammation (<10% of liver
parenchyma) as 1, moderate lobular inflammation (10–50% of liver parenchyma) as 2, and a score of
3 was given for severe lobular inflammation (>50% of liver parenchyma). For portal inflammation, no
portal inflammation was counted as 0, mild portal inflammation (<1/3 of portal tracts) as 1, moderate
portal inflammation (approximately 1/2 of portal tracts) as 2, and a score of 3 was given for severe
portal inflammation (>2/3 of portal tracts). The scores for portal and lobular inflammation were added,
representing the inflammation score. For necrosis, no necrosis was counted as 0, necrosis of <10% of liver
parenchymas 1, necrosis of 10–25% of liver parenchyma as 2, and a score of 3 was given for necrosis of
>25% of liver parenchyma. Inflammation and necrosis scores were added resulting in the total histological
score.

Immunostaining against IL-37 in formalin-fixed liver tissue was performed with a polyclonal
antibody against IL-37 (anti-human IL-1F7/FIL1 zeta goat IgG R&D-Systems) and a mouse monoclonal
Ab [10]. The mouse antibody was not as sensitive with the immune staining as the polyclonal goat
antibody but similarly specific. The final immune stainings were, therefore, done with the polyclonal goat
antibody.
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2.8. Measurement of Cytokines

Levels of serum cytokines in LPS- or ConA-treated mice as well as liver lysates were measured by Bio-Plex
multiarray cytokine assay (Bio-Plex Multiarray Cytokine Assay, Bio-Rad Laboratories GmbH, Munich,
Germany).

2.9. Statistical Analysis

Results are expressed as mean ± SEM. Differences between control and treated groups were compared by
Mann-Whitney-U -test. Statistical analysis was performed with Prism 5 Version 5.0d for Macintosh.

3. RESULTS

3.1. In Vivo Luciferase Activity in the Liver of C57/Bl6 Mice after Hydrodynamic Tail Vein
Injection of Plasmid-DNA

Anatomic distribution of luciferase protein, coexpressed with IL-37, was investigated by in vivo imaging.
The substrate luciferin was intraperitoneally applied into DNA-injected C57/BL/6 mice after ConA
application shortly before imaging analysis. In vivo measurement of luciferase activity did not differ
between IL-37-expressing mice and control mice showing high expression in liver region (Figures 1(a)
and 1(b)).

3.2. High Transgene IL-37 Expression in Liver after Hydrodynamic Tail Vein
Injection of Plasmid-DNA

In order to monitor the expression of IL-37, tail-vein-injected C57/BL/6 mice were sacrificed after luciferase
measurement, and the level of IL-37 protein was assayed in liver lysate by Western blotting. High level of
transgene IL-37 expression was detected in liver lysate of LPS or ConA-treated mice after tail vein injection
of pTarget-IL-37 plasmid-DNA, while mice injected with control plasmid (empty pTarget) did not express
human IL-37 in the liver (Figure 1(c)). In addition, immunohistochemistry showed positive staining of the
liver of IL-37 expressing but not control mice (Figure 2). Expression of transgene IL-37 in the liver was not
homogenous but showed a patchy distribution.

3.3. LPS-Induced Inflammation Is Reduced in IL-37-Expressing Mice

Shock produced by bacterial lipopolysaccharides (LPSs) induces a systemic cytokine response as well
as liver injury in mice [27]. To see whether transient IL-37 expression in the liver of mice can attenuate
systemic inflammation, we analyzed serum cytokine levels 2 hrs after LPS injection (Figure 3). The T-cell-
derived cytokines IFN-γ , IL-2, and IL-4 and the macrophage-derived cytokine IL-6 and IL-9 expression
were significantly reduced in IL-37-expressing mice when compared to controls after LPS challenge.
Expression of proinflammatory cytokines IL-12 and IL-5 was also significantly reduced in the plasma from
IL-37 expressing mice after LPS challenge. In contrast, serum levels of the anti-inflammatory cytokine
IL-10 were unaffected in mice expressing IL-37 compared to control mice.

3.4. IL-37 Expression in Mice Reduces ConA-Induced Liver Inflammation

After we showed that transient expression of IL-37 in mice reduces systemic inflammation after LPS
challenge we wanted to investigate the functional relevance of IL-37 in another model of inflammation.
ConA induced hepatitis is a well-established model of systemic and local inflammation which is associated
with the production of various cytokines and liver damage. ConA injection induced high serum alanine
aminotransferase (ALT) levels 24 hrs after induction of hepatitis in both IL-37-expressing and control mice.
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FIGURE 1: In vivo luciferase activity in the liver of C57/BL/6 mice after hydrodynamic tail vein injection of
plasmid-DNA. C57/Bl6 mice were rapidly injected with pTarget-IL-37 (20 μg) and pLuc plasmid-DNA (1 μg)
in 2 mL of Ringer’s solution. After 48 hrs concanavalin A 200 μg was applied into the tail vein. 24 hrs after
ConA injection, luciferase expression was measured in vivo using the IVIS imaging system (a). Luciferase
activity in IL-37-expressing mice (open bar) and control mice (closed bars) (b). IL-37 protein detected in
liver lysate of mice injected with IL-37-pTarget plasmid mice and control mice (empty pTarget) by Western
blotting (c).

Hydrodynamic tail vein injection itself did not induce liver damage as assessed by ALT measurement of
control mice (Figure 4). Serum levels of IL-1α, IL-5, IL-6, and IL-9 were significantly reduced 2 hrs after
ConA injection in mice expressing IL-37 (Figure 5(a)). This effect was not sustained, since 24 hrs after
induction of hepatitis, there was no difference in serum cytokine expression between the two groups of
mice (Figure 5(a)). Serum levels of IL-1β, IL-2, IL-3, IL-4, IL-10, IL-12 (p40 and p70), IL-13, IL-17,
Eotaxin, G-CSF, GM-CSF, IFNγ , KC, MCP-1, MIP-1α, MIP-1β, Rantes, and TNFα were not significantly
different (data not shown).

Consistent with equal ALT concentrations, histologic evaluation of the liver showed a similar extent
of liver injury in both IL-37 transgenic mice and control mice after ConA injection. Treatment with ConA
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FIGURE 2: Detection of transgene IL-37 by immunohistochemistry. 5 μm sections of mouse livers after
plasmid-DNA injection with control plasmid (empty pTarget) or IL-37-pTarget were stained with a polyclonal
antibody against IL-37.

Normalized cytokine concentration

TNF-α 100

IFN-γ

GM-CSF

Eotaxin 100

IL-17

IL-13 10

IL-12(p70) 10

IL-10 100

IL-9 10

IL-6 10/4

IL-5

IL-4

IL-3

IL-2

IL-1β 100

IL-1α

0 40 80 100 120 1406020

pTarget

pTarget-IL-37

FIGURE 3: LPS-induced serum cytokines in mice expressing IL-37. Tail vein injected C57/Bl6 mice (with
or without IL-1F7b plasmid-DNA) were challenged with LPS (10 μg) intraperintoneally (n = 7–9). After 2 hrs
the mice were sacrificed and serum cytokines were measured by a multiarray cytokine assay as described.
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FIGURE 4: Serum ALT levels in ConA-induced hepatitis. Serum ALT was measured in tail-vein-injected
C57/Bl6 mice (with or without IL-1F7b cDNA, n = 3-4) 24 h after ConA treatment. Serum ALT levels were
measured by a Hitachi 917 Analyzer.
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FIGURE 5: Expression of serum cytokines in IL-37-expressing mice after ConA-induced hepatitis. Serum
cytokines were measured by a multiarray cytokine assay 2 hrs (a) and 24 hrs (b) after ConA treatment in
IL-37 expressing mice (open bars, n = 4) and control mice (closed bars, n = 3).

2486



TheScientificWorldJOURNAL (2011) 11, 2480–2490

(a) (b)

(c) (d)

1

2

3

4

5

6

7

0

H
is

to
lo

gi
ca

ls
co

re

(e)

IL
-6

pg
/m

g
pr

ot
ei

n

0

100

200

300

400

500

600

(f)

FIGURE 6: Histological hepatitis score and IL-6 protein expression in the liver of mice after ConA-induced
hepatitis. Areas of portal inflammation (a and b) and necrosis (c and d) in ConA-induced hepatitis in
control mice (histology of IL-37-expressing mice not shown). Histological hepatitis score analyzed for IL-
37 expressing mice (open bars) and control mice (closed bars) (e). IL-6 in liver lysate was analyzed by
multiarray cytokine assay and is expressed as pg/mg total protein in liver lysate (f).

induced marked lobular and portal inflammation (Figures 6(a) and 6(b)) as well as hepatocyte necrosis
(Figures 6(c) and 6(d)). Hydrodynamic injection of plasmid-DNA itself did not induce liver damage as
assessed by serum ALT (see Figure 4, histology not shown). In both groups, the histologic score was similar
(4.5±2.1 versus 4.0±1.0) (Figure 6(e)). However, IL-6 in the liver lysate was reduced in IL-37 expressing
mice after ConA-induced hepatic injury indicating a downregulation of local inflammation in the liver by
transiently expressed IL-37 (Figure 6(f)).

4. DISCUSSION

We have recently reported that IL-37 transgenic mice are protected against LPS-induced shock, and in
vivo silencing of endogenous Smad3 significantly reduced the anti-inflammatory properties of IL-37 [2].
Accumulated data reveal IL-37 as a natural modulator of inflammation acting in a feedback mechanism to
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overcome an exacerbate immune reaction. To address whether IL-37 could be a therapeutic target for other
inflammatory diseases, we employed ConA-induced hepatitis as a model for this study.

The IL-1 family is very unique in that there is no species specificity. IL-37 is the only IL-1 family
member of which the mouse homolog is not detected yet. Overexpression of IL-37 in a variety of murine
and human cell lines resulted in a marked decrease of cytokine expression after LPS [2, 28] indicating that
IL-37 is active in both the human and murine system.

We introduced a plasmid that expresses human IL-37 into mice by the hydrodynamic-based gene
delivery procedure, a method that has previously been proved with high efficiency for delivery of genes
into the mouse liver [29, 30]. This mode of in vivo protein expression might be advantageous compared to
transgenic animals since nonspecific effects by nondirected integration of the transgene into the genome are
excluded. Indeed, the hydrodynamic tail vein procedure successfully delivered IL-37 into mouse livers
without organ damage as observed by in vivo measurement of luciferase activity which did not differ
between IL-37 expressing mice and control mice. Detection of IL-37 by western blotting showed high levels
of transgene IL-37 expression in liver lysate. Immunohistochemistry staining showed a patchy distribution
of overexpressed IL-37 in the liver.

Recently, we showed experimental data indicating that IL-37 transgenic mice are protected against
nonlethal LPS-induced shock by shifting the cytokine equilibrium away from excessive inflammation.
Here, we similarly observed suppression of proinflammatory cytokine but not anti-inflammatory IL-10
secretion in serum from mice expressing IL-37 compared to controls. The hydrodynamic tail vein injection
delivers the transgene mainly into the liver. We found transgene IL-37 being predominantly expressed in
the hepatocytes and not the immune cells of the liver (data not shown). Therefore, our results indicate that
expression of IL-37 in extralymphatic tissues as the liver can modulate systemic inflammation induced by
LPS. This might be related to the action of IL-37 released into the extracellular space or the modulation of
the hepatocyte inflammatory response.

To see whether the protective effect of IL-37 is expanding beyond the LPS model of systemic
inflammation, we employed a mouse model of experimental hepatitis induced by ConA [13]. Administration
of ConA to mice results in T-cell and macrophage activation that is characterized by a rapid increase of pro-
inflammatory cytokines in plasma and liver tissue [6, 11, 31]. Mice intravenously injected with ConA were
shown to suffer from acute liver failure with signs of injury restricted to the liver and an increase of serum
transaminases [11]. In our study, transient IL-37 expression could not inhibit ConA-induced liver necrosis as
manifested by similar serum levels of ALT and histological severity score after ConA insult in both IL-37-
expressing and control mice. This might be in part explained by the patchy distribution of transgene IL-37
after hydrodynamic tail vein injection. In contrast, at the serum cytokine level, we observed a protective
effect of ectopically expressed IL-37. This effect was not sustained, since 24 hrs after ConA application, no
significant suppression of serum cytokines was observed. However, in the liver lysate of IL-37-expressing
mice, IL-6 was significantly lower than that in control mice 24 hrs after ConA challenge.

In conclusion, in vivo expression of human IL-37 in mice reduces local and systemic inflammation
in ConA-induced experimental hepatitis and LPS-induced sepsis. Since transiently expressed, IL-37 is
not specifically expressed in immune cells of the liver, this observation supports the in vitro generated
hypothesis of IL-37 acting as an anti-inflammatory cytokine in the extracellular compartment beside its
intracellular functionality.

Abbreviations
ConA: Concanavalin A
ALT: Serum alanine aminotransferase
LPS: Lipopolysaccharide.
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