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Post-translational modifications 
(PTMs) of histones have been 

implicated in cellular processes such 
as transcription, replication and DNA 
repair. These processes normally involve 
dynamic changes in chromatin struc-
ture and DNA accessibility. Most of 
the PTMs reported so far map on the 
histone tails and essentially affect chro-
matin structure indirectly by recruit-
ing effector proteins. A recent study 
by Schneider and colleagues published 
in Cell1 has uncovered the function of 
H3K122 acetylation found within the 
histone globular domain and specifically 
positioned on the DNA-bound surface of 
the nucleosome. Their findings demon-
strate a direct effect of histone PTMs on 
chromatin dynamics, and propose that 
modifications located in different parts 
of the nucleosome employ distinct regu-
latory mechanisms.

The genome in every eukaryotic cell is 
packaged into a macromolecular structure 
known as chromatin. Chromatin itself 
is composed of a repeating subunit—the 
nucleosome—that contains 147 bp of DNA 
wrapped around a protein octamer made 
up of two copies of each of the four histones 
H2A, H2B, H3, and H4. The accessibil-
ity of the DNA that is coiled around the 
histone octamer is a critical parameter for 
processes such as transcription, replication, 
recombination and DNA repair. Among 
various factors that control DNA acces-
sibility, post-translational modifications 
(PTMs) of histones are key players since 
they regulate nucleosome dynamics.2

Numerous histone PTMs have been 
discovered to date, including acetylation, 
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methylation, phosphorylation, and ubiq-
uitination, with most of them occurring 
on the flexible unstructured tails that stick 
out of the nucleosome. Histone tail modi-
fications commonly function by recruiting 
effector proteins or multimeric complexes 
to chromatin (Fig. 1), which subsequently 
alter nucleosomal structure to regulate 
DNA accessibility.3 The exposed tail 
modifications are recognized by special-
ized protein domains, like bromodomains 
that bind acetyl marks.4 However, there 
are examples where tail PTMs can also 
directly inhibit or enhance the formation 
of higher order chromatin structure, as 
observed by in vitro studies for H4K16ac 
and H4K20me3.5,6 In these cases, tail 
PTMs regulate inter-nucleosomal interac-
tions and they are thought to control the 
structure of large chromatin domains as 
opposed to having local effects at a single 
gene promoter or enhancer. During the 
last decade, PTMs have also been detected 
within the globular parts of the histone 
proteins.7 These parts form the cylindrical 
structure of the histone octamer,8 which 
is composed of the core (containing the 
histone-histone interfaces), the two cir-
cular sides, and the DNA entry-exit sites 
together with the DNA-bound face, also 
known as the lateral surface.

While the function of histone tail mod-
ifications as a dynamic recruiting platform 
is well documented,4 the precise function 
of nucleosome lateral surface modifica-
tions remained poorly understood thus 
far. In fact, Cosgrove and colleagues pre-
dicted in 2004 that PTMs, which lie in 
the DNA-histone interface, could act 
by weakening this interaction9 (Fig. 1). 
As a result, the disrupted histone-DNA 
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not. Consistent with the notion that indi-
vidual tail acetylations are not sufficient 
for altering transcription, a previous study 
showed that only cumulative alterations in 
acetylated lysines within the H4 tail could 
affect gene expression.14 Finally, mutation 
of K122 to arginine delayed activation 
of the nmt1+ gene in Schizosaccharomyces 
pombe. Whether this delay in transcrip-
tion is due to the absence of acetylation or 
merely to the presence of a different amino 
acid residue is unclear and of course, this 
remains a general challenge when using 
mutagenesis to study the effect of protein 
modifications in vivo.

The authors clearly demonstrated that 
H3K122ac directly stimulates transcrip-
tional activation and then proceeded 
to identify the molecular mechanism 
underlying this effect. Since Tropberger 
and colleagues could not identify a 
binding protein for H3K122ac and the 
presence of this modification did not 
influence chromatin compaction, they 
considered histone eviction as a possible 
mechanism. Indeed, by using a histone 
eviction assay the authors demonstrated 
that nucleosomes containing this modi-
fication were more prone to displace-
ment. This was consistent with previous 
studies, which showed that acetylations 
at the dyad axis, including H3K122ac, 
reduce histone-DNA interactions and 
promote nucleosome disassembly.15,16 The 

led the authors to define a role for this 
acetyl mark in transcriptional activation.1 
First, the authors locate H3K122ac (by 
immunofluorescence) exclusively within 
euchromatic regions in mouse embryonic 
fibroblasts. Second, they demonstrate that 
nucleosomes containing H3K122ac also 
possess other modifications and histone 
variants usually associated with active 
transcription, such as H3K9ac, H3K27ac, 
H3K4me3, acetylated H2A.Z and 
H3.3. Third, genome-wide distribution 
analysis by ChIP-sequencing shows that 
H3K122ac is enriched primarily at active 
gene promoters and enhancer elements. 
Notably, the levels of H3K122ac occu-
pancy at these genomic loci are directly 
proportional to the levels of gene expres-
sion. Fourth, H3K122ac is induced upon 
stimulation of gene expression. Addition 
of estrogen in MCF7 cells induced estro-
gen receptor α (ERα)-mediated activation 
of the pS2 (TFF1) estrogen-responsive 
gene, coinciding with rapid deposition 
of H3K122ac and RNA Pol II loading. 
Fifth and most importantly, the authors 
established an elegant in vitro transcrip-
tion assay to show that H3K122ac does 
not only correlate with transcriptional 
activation but functionally contributes to 
this process. H3K122 acetylation on its 
own was enough to stimulate transcrip-
tion from a chromatin template while an 
equivalent tail acetylation at H3K18 could 

contacts may facilitate exchange of his-
tone variants, nucleosome mobility or 
eviction. Hence, histone modifications 
on this lateral surface could have a direct 
impact on DNA accessibility and nucleo-
some dynamics in order to regulate pro-
cesses like transcription. This model was 
supported at the time by in vitro experi-
ments and studies in yeast, which showed 
that mutations of the modifiable residues 
around the dyad axis at the lateral surface, 
known as sin (SWI/SNF independent), 
alter nucleosomal stability and mobil-
ity.10,11 The model was further developed 
recently by Fenley et al. (2010), who pro-
posed that a decrease in the charge of the 
globular histone core by only one unit, for 
example by a single lysine acetylation, can 
lead to a substantial reduction of its inter-
action with the DNA.12 On the contrary, a 
similar decrease in the charge of a histone 
tail will have no impact on nucleosomal 
stability.

A recent article by Tropberger et al. 
has now put flesh on this anticipated 
model by depicting the direct effect of a 
lateral histone modification (Fig. 1) on 
nucleosome dynamics.1 Specifically, the 
authors studied acetylation on lysine 122 
of histone H3 (H3K122ac), a modifica-
tion located within the dyad axis of the 
nucleosome at a point where the DNA 
contacts the histone octamer with maxi-
mum affinity.13 Several lines of evidence 

Figure 1. Mechanisms used by histone modifications located in the tail and lateral surface of the nucleosome. (A) Histone tail modifications (acetyla-
tion, red oval) commonly act as anchoring points for various effector proteins that can subsequently alter chromatin structure, enabling the tran-
scriptional machinery to access the DNA. (B) Lateral surface modifications can change chromatin structure directly (without the need of an effector 
molecule) by weakening the DNA-histone interactions and destabilizing the nucleosome.
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could expose the buried lysine residue (Fig. 
2A), thus providing access to p300 or CBP 
that would already be tethered to specific 
TSSs or enhancers by ERα.28,29 Although, 
the rate of spontaneous unwrapping at the 
dyad axis might be slower than the high 
frequency of 4 times per second observed 
for the DNA entry and exit sites,30 it 
could still be long enough for a successful 
encounter between p300 and H3K122. 
Second, other histone modifications pres-
ent within the nucleosome could enable 
p300 to access H3 lysine 122 (Fig. 2B).  
For example, acetylation at H3K56, 

cells.1 A lingering question, however, is 
how do these enzymes gain access to this 
residue while it is hidden beneath the 
DNA double helix? The importance of 
this question is exemplified by the fact that 
p300 acetylates H3K122 more efficiently 
in free histone octamers than in recom-
binant chromatin,1 indicating that struc-
tural changes are required for the enzyme 
to reach its target. There are several sce-
narios that could explain how p300/CBP 
catalyze H3K122ac within native chro-
matin in vivo (Fig. 2). First, spontaneous 
unwrapping of the nucleosomal DNA 

proposed nucleosome eviction mecha-
nism is also supported by the enhanced 
binding of Pol II and the mediator sub-
unit Med23, as a result of increased DNA 
accessibility, in genomic regions enriched 
with H3K122ac.1 Also the presence of 
H3K122ac at transcriptional start sites 
(TSSs) correlates with decreased nucleo-
some occupancy,1 in accordance with its 
function in nucleosome eviction. Another 
evidence that supports the nucleosome 
eviction mechanism is the co-existence 
of H3K122ac with the histone variants 
H3.3 and H2A.Z, which render the 
nucleosomes unstable and coincide with 
nucleosome-depleted regions at active 
promoters and enhancers.17,18 Hence, the 
authors concluded that H3K122ac con-
tributes to the overall instability of H3.3 
and H2A.Z-containing nucleosomes in 
order to facilitate their displacement.

Previous studies linked nucleosome 
eviction to various histone chaperones,19 
as well as to chromatin remodelers like 
INO80,20 Swi/Snf21 and CHD1.19 In their 
in vitro experiments, Tropberger and 
colleagues used the histone chaperone 
nucleosome assembly protein 1 (Nap1) to 
demonstrate the eviction of H3K122ac-
containing nucleosomes. Although the 
factor(s) that mediates this displacement 
in vivo remains unknown,1 there is strong 
evidence implicating Nap1 in this pro-
cess. Earlier work has demonstrated that 
Nap1 together with p300, the enzyme that 
mediates H3K122ac, promote nucleo-
some eviction at the HTLV-1 promoter.22 
Another piece of evidence is the fact that 
Nap1 is a component of the p300 co-
activator complex23 and augments the 
activity of the p300 acetyltransferase.24 
Furthermore, other Nap1 family mem-
bers form complexes with HATs in order 
to regulate their acetyltransferase activ-
ity.25 Interestingly, Nap1 also cooperates 
with ATP-dependent remodelers (i.e., 
CHD1) to displace nucleosomes,26,27 rais-
ing the possibility that such remodelers are 
involved in the H3K122ac eviction mech-
anism. Overall, Nap1 is a likely candidate 
for the H3K122ac-mediated eviction in 
vivo, but further work is required to eluci-
date completely this mechanism.

The authors identified p300 and its 
related CBP as the HATs that mediate 
H3K122 acetylation in vitro and within 

Figure 2. Potential scenarios of how HATs p300/CBP gain access to H3 lysine 122. (A) Spontaneous 
unwrapping of the nucleosome allows p300/CBP to access the previously hidden lysine. The HATs 
are already recruited at the relevant genomic regions, such as, at an estrogen-responsive element 
(orange box) through ERα. (B) A chromatin-remodeling complex (CRC), which is recruited by a 
histone tail modification (PTM), loosens the nucleosome and enables p300/CBP to access H3K122. 
(C) The instability and high histone turnover of H3.3/H2A.Z-containing nucleosomes provides 
accessibility of p300/CBP to K122. Alternatively, K122 is acetylated on H3.3 by p300/CBP just before 
incorporation into the nucleosome. (D) Cooperative binding of ERα with another transcription 
factor (TF) facilitates DNA unwrapping, allowing p300/CBP to reach H3K122.
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positioned at the dyad axis could func-
tion in a similar manner to H3K122ac16,42 
to induce transcription. For example, 
H3K115ac and H3T118ph that are nearby 
H3K122 reduce the free energy of the 
DNA-histone binding.15,43 As a result, 
these modifications increase DNA acces-
sibility and facilitate nucleosome mobility 
and disassembly mediated by chromatin 
remodeling factors. However, the con-
tribution of these modifications toward 
nucleosome mobility might not be totally 
equivalent, as phosphorylation of T118 
reduces the DNA-histone binding free 
energy more robustly than H3K122ac and 
H3K115ac. This notion is further sup-
ported by the fact that certain T118 muta-
tions are lethal in yeast, while mutations in 
H3K122 have a slow growth phenotype.44 
Apart from affecting the DNA-histone 
contact, H3K122ac and the other dyad 
modifications could modulate the recog-
nition of the octamer by histone chaper-
ones and chromatin-remodelling factors. 
Considering that these regulators bind 
the octamer at sites that overlap with the 
designated path of the wrapped DNA,45 
it is conceivable that lateral modifications 
also control this interaction. Indeed, in 
vitro experiments with various modified 
histone peptides showed that H3K122ac, 
H3K115ac and H3T118ph regulate the 
affinity of chaperone NapS for H3.45 
In addition, it has been demonstrated 
that H3T118ph can alter the remodel-
ing activity of SWI/SNF from nucleo-
some sliding to disassembly.43 Moreover, 
phosphorylation of H3S47, another lat-
eral surface modification that is nearby 
H3K122, regulates the interaction of his-
tone chaperones with H3 variants in order 
to promote assembly of H3.3-containing 
nucleosomes. More specifically, H3S47ph 
stimulates the interaction of HIRA with 
H3.3 and reduces the association of CAF1 
with H3.1.46 Interestingly, a similar func-
tion has been defined for the DNA entry 
and exit site modification H3K56ac since 
it can change the remodeling specific-
ity of SWR-C, resulting in promiscuous 
exchange of H2A or H2A.Z containing 
dimers.47 In general, lateral surface modi-
fications could influence the association of 
the histone octamer with any other mol-
ecules (i.e., DNA or proteins) to regulate 
chromatin dynamics.

increased the levels of acetylation at lysine 
122,1 supporting the existence of an 
HDAC targeting H3K122ac. Considering 
that H3K122ac is dynamically regulated 
at the estrogen-responsive promoter TFF1 
during gene activation, identifying the 
implicated HDAC will provide a more 
precise explanation on how H3K122ac 
stimulates transcription. What is the func-
tion of H3K122ac at enhancer elements? 
The authors speculate that H3K122 
acetylation regulates the expression of 
enhancer RNA (eRNA), since this modi-
fication facilitates binding of activators at 
transcribed regions, stimulates transcrip-
tion in vitro and its enrichment at enhanc-
ers correlates with high levels of eRNA.1 
This speculation is further supported by 
a recent study which shows that estrogen-
stimulated binding of ERα at enhancers 
in MCF7 cells causes a global increase 
in eRNA transcription.36 These are the 
same conditions in which deposition of 
H3K122ac is induced by ERα12 and thus, 
it now remains to be determined whether 
there is a link between H3K122ac and 
eRNA transcription. How do other modi-
fications of lysine 122 relate to its acety-
lated form? It was previously shown that 
H3K122 is also methylated, formylated 
and succinylated.37-39 Therefore, it will 
be interesting to know where the other 
K122 modifications are distributed in 
the genome and whether they are associ-
ated with transcription. For instance, it is 
possible that methylation of H3K122 is a 
repressive mark because it acts as a barrier 
against acetylation of the same residue, as 
it was proposed for H3K64.40 What is the 
interplay of H3K122ac with other histone 
PTMs? Although, H3K122ac is sufficient 
on its own to stimulate transcription in 
vitro, in an in vivo situation this acetyla-
tion might collaborate with other histone 
PTMs to induce gene expression. There is 
an impressive overlap of H3K122ac with 
H3K27ac at enhancers and with H2A.Zac 
at TSSs,1 raising the possibility of interde-
pendence between H3K122ac and these 
modifications. Additionally, H3K122ac 
co-exists with H3K115ac on the same his-
tone protein41 suggesting that these two 
acetylations might be working together to 
destabilize the nucleosome.

Several recent findings indicate 
that other lateral surface modifications 

which is detected in the same nucleo-
somes as H3K122ac,1 could facilitate 
this process since it induces nucleosome 
accessibility by increasing the spontane-
ous DNA unwrapping rate by one order 
of magnitude.31,32 Alternatively, a his-
tone tail modification could recruit an 
ATP-remodeler that would open up the 
nucleosome prior to H3K122 acetylation. 
Many of the modifications that co-exist 
with H3K122ac, like H3K9ac, H3K18ac 
and H4K16ac,1 could serve as recruiting 
signals for such a remodeler.4 Of course, 
this scenario would require that these 
histone marks would be deposited imme-
diately prior to H3K122ac. Interestingly, 
Tropbeger and colleagues already showed 
that maximum deposition of H3K9ac 
precedes H3K122ac at the pS2 promoter 
upon estrogen stimulation.1 A third pos-
sible explanation is based on the fact that 
H3K122ac occurs in nucleosomes contain-
ing the histone variants H3.3 and H2A.Z. 
Nucleosomes containing these variants are 
less stable and more accessible than canon-
ical nucleosomes.17,33 Moreover, the H3.3/
H2A.Z nucleosomes are associated with 
genomic regions of high histone turnover, 
and therefore, it remains possible that 
H3K122ac occurring at these sites, such 
as TSSs and active enhancers, is catalyzed 
immediately prior to histone incorpora-
tion (Fig. 2C). A final scenario could be 
based on the observation that cooperative 
binding and interactions of transcriptional 
activators at regulatory sites facilitates 
nucleosome invasion.30,34 For instance, 
ERα-dependent recruitment of p300 
at estrogen response elements could be 
accompanied with binding of additional 
transcription factors, such as retinoic acid 
receptor α (RARα),35 that would aid p300 
in gaining access to H3K122 (Fig. 2D). 
All the scenarios proposed above do not 
have to be mutually exclusive and there-
fore, modifying enzymes could be using a 
combination of these mechanisms to reach 
histone residues lying under the DNA on 
the lateral surface of the nucleosome.

Despite the extensive work performed 
by Tropberger and colleagues, some 
other fundamental questions relating to 
H3K122ac remain unexplored. Which 
histone deacetylase (HDAC) removes 
acetylation from this lysine? Treatment of 
cells with a general deacetylase inhibitor 
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the ones reported by Tropberger and col-
leagues will prompt re-evaluation of the 
causal effects of histone modifications.51,52
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histone-histone interfaces. It is thought 
that modifications found on the outer sur-
face of the circular sides would regulate 
inter-nucleosomal contacts48 while modifi-
cations within the nucleosome core would 
affect octamer assembly. In fact, H4K91ac 
located in the center of the nucleosome 
weakens octamer stability by inhibiting 
the interaction between the H4/H3 tetra-
mer and the H2A/H2B dimers.50 We look 
forward to seeing whether the above dis-
tinct modes of action will hold true in the 
future, as more histone modifications are 
being discovered and functionally char-
acterized. Lastly, more findings such as 

A hypothesis arises from the work of 
Tropberger et al. that histone modifications 
occurring in different structural regions of 
the nucleosome employ distinct modes 
of action.48 It is accepted that tail modi-
fications typically function by recruiting 
effector molecules,4 histone marks at the 
DNA entry-exit sites facilitate nucleosome 
unwrapping,16 and now, other lateral sur-
face modifications mediate nucleosome 
displacement by directly disrupting DNA-
histone contacts.1 Histone PTMs were 
also detected within the other two regions 
of the nucleosome:49 the circular sides and 
the heart of the octamer containing the 
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