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Abstract

The hippocampus and the medial prefrontal cortex (mPFC) are traditionally associated with 

regulating memory and executive function, respectively. The contribution of these brain regions to 

food intake control, however, is poorly understood. The present study identifies a novel neural 

pathway through which monosynaptic glutamatergic ventral hippocampal field CA1 (vCA1) to 

mPFC connectivity inhibits food-motivated behaviors through vCA1 glucagon-like peptide-1 

receptor (GLP-1R). Results demonstrate that vCA1-targeted RNA interference-mediated GLP-1R 

knockdown increases motivated operant responding for palatable food. Chemogenetic 

disconnection of monosynaptic glutamatergic vCA1 to mPFC projections using designer receptors 

exclusively activated by designer drugs (DREADDs)-mediated synaptic silencing ablates the food 

intake and body weight reduction following vCA1 GLP-1R activation. Neuropharmacological 

experiments further reveal that vCA1 GLP-1R activation reduces food intake and inhibits 

impulsive operant responding for palatable food via downstream communication to mPFC NMDA 

receptors. Overall these findings identify a novel neural pathway regulating higher-order cognitive 

aspects of feeding behavior.
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Introduction

The hippocampus and the medial prefrontal cortex (mPFC) are brain regions associated with 

the “higher-order” control of memory and executive function. Recent findings reveal that 

these brain regions are structurally and functionally interconnected 1–4. For example, ventral 

hippocampus (vHP) inputs to the prelimbic (PL) and infralimbic (ILA) regions of the mPFC 

are involved in the control of contextual fear conditioning and pharmacological 

antidepressant responses 3, 5, 6. However, the contributions of the vHP to mPFC neural 

pathways in controlling other fundamental motivated behaviors are less understood. 

Emerging research reveals that hippocampal and mPFC neural processes independently have 

a critical impact on energy balance and food-motivated behaviors 7–14. For example, ventral 

hippocampus neural activity has potent effects on several aspects of feeding behavior 

through integration of endocrine feeding signals (e.g., ghrelin, leptin) with external 

environmental and interoceptive stimuli 14. Similarly, the PL and ILA regions of the mPFC 

control feeding through dopaminergic and opioid systems 15–17 and regulate environmental 

cue-driven feeding 12, 13, 18 and impulsive responding for food 19–21. Whether a vHP to 

mPFC neural pathway orchestrates higher-order and cognitive aspects of feeding behavior is 

unknown.

Feeding behavior is regulated, in part, via various peripherally-derived endocrine and 

centrally-derived neuropeptidergic signals 22, 23 that communicate to neurons in the 

hypothalamus and caudal brainstem 24. Glucagon-like peptide-1 (GLP-1) is a hormone that 

is primarily derived from the distal small intestine and from neurons in nucleus tractus 

solitarius (NTS) of the hindbrain 25. Peripheral and central activation of GLP-1 receptors 

(GLP-1R) produces glucose-dependent insulin secretion and reduces food intake and body 

weight 26–30. Importantly, GLP-1 analogs were recently FDA approved for weight loss and 

this system is of high interest for the development of future anti-obesity pharmacotherapies 
29, 31, 32. Current research into the neural substrates mediating GLP-1R induced hypophagia 

has expanded from traditional lower-order hypothalamic and hindbrain “feeding centers” 
33–36 to include structures within the mesolimbic reward system and other forebrain sites 
37–42. For example, GLP-1Rs are expressed in the vHP 43, 44 and recent work from our 

laboratory demonstrates that pharmacological activation of vHP GLP-1Rs potently reduces 

caloric intake and body weight45. The extent to which endogenous vHP GLP-1R signaling 

controls food-motivated behaviors, however, is unknown. Moreover, the neural circuits 

through which the GLP-1R system suppresses motivated responding for palatable food have 

not been investigated.

The present study examines whether vHP GLP-1R signaling engages downstream mPFC 

signaling to control higher-order aspects of feeding behavior. Specifically, we hypothesize 

the presence of a novel functional neural pathway whereby vHP field CA1 (vCA1) 

glutamatergic pyramidal neurons are activated by GLP-1R agonists, which in turn engages 

downstream activation of mPFC glutamate receptors to inhibit motivated and impulsive 

responding for palatable food. This hypothesis is investigated using vHP targeted RNA-

interference (RNAi) mediated GLP-1R knockdown, classic and virally-mediated neural 

pathway tracing, fluoroscent in situ hybridization, and pathway-specific synaptic silencing 
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via inhibitory DREADDs (Designer Receptor Exclusively Activated by Designer Drugs) in 

combination with behavioral neuropharmacology.

Materials and Methods

Animals

Male Sprague-Dawley rats (Envigo, Indianapolis, IN; PND 60; 320–450g) were individually 

housed in a temperature controlled vivarium with ad libitum access (except where noted) to 

water and food (LabDiet 5001, LabDiet, St. Louis, MO) on either 12h:12h light/dark cycle 

or 12h:12h reverse light/dark cycle. For all surgical procedures, rats were anesthetized via 

IM ketamine 90mg/kg and xylazine, 2.8mg/kg and acepromazine, 0.72 mg/kg injections, 

followed by SC injections for analgesia (Ketoprofen, 5mg/kg). All procedures were 

approved by the Institute of Animal Care and Use Committee at the University of Southern 

California.

Viral preparations and central drug injections

Central drug injections—Experiments involving central drug injections included 

unilateral vHP injections of exendin-4 (American Peptide) and mPFC injections of 

clozapine-n oxide (CNO, National Institutes of Health), AP-5 (Sigma), or CNQX (R&D 

Systems). Drugs were dissolved in artificial cerebral spinal fluid (aCSF) except for CNO, 

which was dissolved in 33% DMSO and 66% aCSF. Drugs were administered using a 

microinfusion pump (Harvard Apparatus, Holliston, MA) connected to a 33-gauge 

microsyringe injector through the indwelling guide cannulae. Flow rate was calibrated and 

set to 5μl/min and 100nl injection volume. Injectors were left in place for 30-sec to allow for 

complete infusion of the drug. See Supplementary Materials for further details regarding 

stereotaxic placement of vHP and mPFC guide cannulae and central drug administration.

AAV-mediated RNA interference for GLP-1R—For in vivo knockdown of GLP-1R 

expression, short hairpin RNA targeting GLP-1R mRNA was cloned and packaged into an 

adeno-associated virus (AAV1) under the control of a U6 promoter and co-expressing green 

fluorescent protein (GFP) downstream of a Cb7 promoter (titer = 5.22e12), described in 

more detail in 46, 47. A GFP-expressing AAV1 downstream of a Cb7 promoter (titer = 

5.22e12) was used as a control. AAVs or aCSF were then delivered bilaterally to the vHP 

(AP: −4.9 ML: +/− 4.8 DV: −7.8) at an injection volume of 200nl via pressure injection with 

the microinfusion pump setup described above.

Following behavioral procedures (~60 days), animals were euthanized and brains were 

removed and flash frozen in dry-ice cooled hexane until processing as described in 47, 48. 

Tissues processing involved simultaneous histological verification and region of interest 

tissue micropunch collection (see Supplementary Materials); collected vHP tissue was then 

used for qPCR analyses for GLP-1R mRNA, described in more detail in Supplementary 

Materials.

AAV2-CaMKIIa hM4di DREADDs—CaMKIIa-promoted hM4di DREADDs (AAV2-

CaMKIIa-HA-hM4Di-IRES-mCitrine) were obtained from the UNC Gene Therapy Vector 
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Core. Animals received chronic indwelling cannulae targeting the vHP and mPFC. 

Following recovery, animals received 200nl pressure injections of the AAV-CaMKIIa-hM4di 

DREADDs or a control virus (AAV2-CaMKIIa-GFP) to the vHP through the indwelling 

guide cannulae.

Immunohistochemistry (IHC)

Animals were anesthetized, then transcardially perfused with ice-cold 0.9% saline, followed 

by 4% paraformaldehyde in 0.1M borate buffer (pH 9.5). Brains were removed and 

immersed in 12% sucrose in PFA fixative for 20–24 hr at 4°C. The brains were then flash-

frozen in dry-ice cooled isopentane before sectioning on a sliding microtome at 30 μm. 

Sections are stored in antifreeze solution at −20°C until IHC processing. IHC processing 

details are described in Supplementary Materials. Primary and secondary antibodies utilized 

are described in each experiment below. Photomicrographs were acquired using a Nikon 80i 

(Nikon DS-QI1, 1280×1024 resolution, 1.45 megapixel) under epifluorescent illumination.

Fluorescent in situ hybridization (FISH) for GLP-1R

Animals were fixation perfused and tissue was harvested and processed as described above 

in IHC methods. Flash-frozen brains were sectioned as above at 20 μm and stored at −20°C 

until FISH processing. Detailed FISH procedures are described in Supplementary Materials.

Anterograde neural pathway tracing

Neural pathway tracing experiments utilized two tracing strategies: anterograde tracing from 

the vHP field CA1 following unilateral iontophoretic injections of PHAL (Vector Labs, 

Burlingame, CA; 2.5% in 0.1 M sodium phosphate-buffered saline, pH 7.4) or AAV1-GFP 

(AAV1-hSyn-eGFP-WPRE-bGH) 49–51 (Penn Vector Core). Iontophoresis was performed 

using a precision current source (digital midgard precision current source, Stoelting) as 

described previously 52.

Experiment 1: the effects of vHP GLP-1R knockdown on energy balance and food-
motivated behaviors

Animals (n=32) received one of the following 200nl, bilateral injections to the vHP as 

described above: AAV-GLP-1R shRNA (referred to as vHP GLP-1R KD group; n=11), 

control AAV (n=11), or aCSF (n=10). After surgical procedures, food intake (spillage 

accounted for) and body weight were tracked daily for 40 days. Next, a representative subset 

of animals (based on representing median body weight group averages from the viral 

groups) (vHP GLP-1R KD n=6, control AAV n=6) underwent meal pattern analyses in 

chambers equipped with automated food intake monitors (Med Associates). aCSF controls 

were not included in this analyses because of equipment limitations at the time of the study, 

however this group of animals did not differ in GLP-1R mRNA expression or other 

behavioral measures from the control AAV control group (Fig. 1). The automated food 

intake monitors records the weight of the food hopper every 10 sec, allowing for ongoing 

analysis of meal patterns. Animals were first habituated to the chambers for 24 hr with ad 

libitum access to food and water. Analyzed data are from a second 24 hr period immediately 

following the habituation session. Meals were defined as an episode of feeding where at 
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least 0.25g was ingested, with meal termination defined as the beginning of a pause in 

ingestion of at least 10min 45. Data were objectively calculated with a custom Microsoft 

Excel macro 45.

To measure food motivated behaviors, animals (vHP GLP-1R KD n=10, control AAV n=11, 

aCSF control n=9) were trained to lever press in operant conditioning boxes (Med 

Associates) for a palatable 45mg food pellet (35% kcal fat enriched with sucrose, F05989, 

Bio-Serv) on a FR1 reinforcement schedule. Training occurred in 1 hr sessions over a 5-day 

period. This procedure included one “active” lever (right) that produced the food 

reinforcement, and a left “inactive” lever that served as a dummy lever for the measurement 

of general lever pressing activity.

Experiment 2: Investigation of vHP projections to the mPFC

Rats received either a unilateral iontophoretic injection of PHAL (n=4) or AAV1-GFP (n=2) 

targeting the vHP. Following a survival period (10 days for PHAL and 14 days for AAV1-

GFP), animals were fixation-perfused and tissue was harvested and processed as described 

above. IHC detection of PHAL proceeded according to the described procedures using goat 

anti-PHAL primary antibody (1:5000, Vector Labs), followed by a donkey anti-goat 

secondary antibody conjugated to Cy3 (1:500, Jackson Immunoresearch). AAV1-GFP was 

detected based on a combination of native fluorescence of GFP and amplification of signal 

using a chicken anti-GFP primary antibody (1:500, Abcam) followed by a donkey anti-

chicken secondary antibody conjugated to AF488 (1:500, Jackson Immunoresearch). 

Representative images were obtained from animals with PHAL or AAV1-GFP injection sites 

that were most confined to the vCA1.

Experiment 3: Investigation of mPFC inputs from vHP GLP-1R expressing neurons

Rats (n=4) received a unilateral 100nl pressure injection of fluorogold (FG, Fluorochrome 

LLC; 2% in 0.9 % NaCl) targeting the mPFC. Following a survival period of 10 days, 

animals were fixation-perfused and tissue was harvested and processed as described in the 

Methods section. A representative animal with fluorogold back-labeled neurons in the vHP 

(field CA1) was selected for GLP-1R FISH analyses (See Methods and Supplementary 

materials). In order to observe separate GLP-1R mRNA in vHP cell bodies (as fluorogold 

and DAPI autofluoresce in the same channel), the protocol above was repeated in a separate 

untreated animal where DAPI (ACD, 320851) was placed on the slide prior to coverslipping.

Experiment 4: The effects of vHP to mPFC disconnection with inhibitory DREADDs on vHP 
GLP-1R mediated feeding

Rats were implanted bilaterally with vHP and mPFC-targeted cannulae (n=10) and received 

injections of AAV2-CaMKIIa-hM4Di DREADDs to the vHP as described above. After an 

incubation period of 30 days, animals were given unilateral injections of CNO (3mM) or 

vehicle to the mPFC, which was followed by unilateral vHP administration of exendin-4 

(0.03μg) 1 hr into the light cycle. Food intake (spillage accounted for) and body weight were 

measured 24 hrs later. This study utilized a counter-balanced within-subjects design with 2–

3 intervening days between treatments. Doses for CNO and exendin-4 were based on 
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53, 54 and 45 respectively. As a control experiment, a separate cohort of animals (n=7), 

received vHP AAV2-CaMKIIa-GFP and the design above was replicated.

Experiment 5: Investigating the effects of mPFC glutamate receptor blockade on vHP 
GLP-1R mediated food intake

Rats (n=11) were implanted bilaterally with vHP and mPFC-targeted cannulae. 1 hr into the 

light cycle, a NMDA receptor antagonist, AP-5 (0.5μg), or vehicle was delivered unilaterally 

into the mPFC, which was then followed by vHP exendin-4 (0.03μg) or vehicle delivery. 

Food intake (spillage accounted for) and body weight were measured 24 hrs later. This study 

utilized a counter-balanced within-subjects design with 2–3 intervening days between 

treatments. This design was then replicated in a separate cohort of rats (n=9) using an 

AMPA/Kainate receptor antagonist, CNQX (0.3μg), delivered to the mPFC. Dose selection 

for AP-5 and CNQX are based on 40.

Experiment 6: Investigating the molecular mechanisms underlying vHP GLP-1R to mPFC 
NMDA-R signaling

Animals received unilateral vHP delivery of either exendin-4 (0.03μg, n=6) or vehicle (n=6). 

90min later, animals were perfused and tissue was harvested as described above. IHC 

detection of phosphorylated NR2B (pNR2B) was performed according to the procedures 

above using rabbit anti-pNR2B (1:1000, Abcam) followed by a donkey anti-rabbit secondary 

antibody conjugated to biotin. The tissue was incubated in ABC reagent (1:1000, Vector) for 

5 hours, washed in KPBS, and then incubated in biotinylated tyramine (1:1000) for 10 

minutes. The tissue is then incubated overnight in a Cy3-conjugated streptavidin (1:500) 

complex. Quantification of pNR2B signal intensity was performed using ImageJ v1.48, 

where the mPFC region of interest was selected and mean pixel intensity was determined for 

each animal. Data are represented as the mean pixel intensity relative to the vehicle group.

Experiment 7: The effects of mPFC NMDA receptor blockade on the vHP GLP-1R regulated 
food impulsivity behavior

To measure food impulsivity behaviors, we adapted protocols for a task known as 

“differential reinforcement of low rates of responding” (DRL) 20, 21, 55. Briefly, rats (n=10) 

were trained to lever press in operant conditioning boxes (Med Associates) for a palatable 

45mg food pellet (35% kcal fat enriched with sucrose, F05989, Bio-Serv) on a DRL 0 

reinforcement schedule, where animals are not required to wait an allotted time between 

lever presses and are reinforced immediately upon a lever press. After 5 days of DRL 0, 

animals are then placed on DRL 5. Here, animals are required to withhold responding for 5 

sec before the subsequent lever press response results in food reinforcement. A lever press 

that occurs before the 5 sec period resets the timer and no reinforcement is provided. After 5 

days of DRL 5, animals underwent 5 days of DRL 10 (10 sec between reinforced lever 

presses), and finally 10 days of DRL 20 (20 sec between reinforced lever presses). During 

all 45min training sessions, a stimulus light turned on for reinforced lever presses. Efficiency 

in each DRL training schedule was calculated by the number of pellets earned/total number 

of lever presses.
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Two days after the last day of DRL 20 training, animals were given 4 tests (within-subjects 

design, 2–3 intervening days). Prior to each test, animals were 24 hr food deprived to induce 

high-impulsive drive 21. Unilateral mPFC injections of AP-5 (0.5μg) or vehicle and 

subsequent unilateral vHP injections of exendin-4 (0.03μg) were given 3 hrs before being 

tested in the DRL 20 task.

Data analysis—All experiments, except for GLP-1R qPCR analyses, met assumptions of 

normality and equality of variance and were analyzed using parametric repeated measures or 

one-way analysis of variance (ANOVA) followed by Fisher least significant difference post 

hoc comparisons when significant main effects were obtained to compare individual 

treatments with control groups. When assumptions were not met, non-parametric Mann-

Whitney tests were used. Data analyses were conducted with computer software (Statistica 

V7; Statsoft). The α level for significance was 0.05. All quantifiable data are displayed as 

mean +/− SEM. To ensure the minimum sample size required to be reasonably likely to 

detect the hypothesized effect, power analyses were conducted for each proposed experiment 

based on our pilot and recently published experiments using Statsoft software (Statistica 64, 

V7). Alpha level was set at 0.05 for power analyses; the Root Mean Square Standardized 

Effect (RMSSE) was estimated separately for each experiment.

Results

Endogenous vHP GLP-1R signaling regulates feeding and food motivated behaviors

To examine the relevance of endogenous vHP GLP-1R-mediated feeding and palatable food-

motivated responding, animals received bilateral vCA1 administration of AAV1-GLP-1R 

shRNA (vHP GLP-1R KD; n=11), AAV1-GFP (AAV control; n=10), or artificial cerebral 

spinal fluid (aCSF control; n=10). The latter control group is necessary in light of recent 

evidence that under some conditions AAVs can be neurotoxic 56, and thus the control/

scrambled AAV treatment can potentially have unintended neural or behavioral outcomes. 

However, in this case the aCSF control and AAV control groups did not differ significantly 

for any of the dependent variables (all p values > 0.4). Following experimental procedures 

(~60 days post-surgery), histological analyses confirmed successful transfection of both 

AAV-GFP and AAV-GLP-1R shRNA in vCA1 neurons (visualized with GFP, Figure 1A–B). 

One animal was omitted from analyses because the injection site did not include vCA1 and 

one KD outlier animal was removed based on excessive GLP-1R mRNA expression. 

Consistent with recently published work utilizing this AAV-GLP-1R shRNA knockdown 

approach 46, 47, qPCR analyses of vHP AAV-GLP-1R shRNA transfected tissue showed a 

significant (~50%) reduction of GLP-1R mRNA compared to either CTRL AAV or aCSF 

controls (Figure 1C, F(1,16)=8, p<0.01). vHP GLP-1R KD had no significant effects on long 

term food intake and body weight during the 5-week post-surgery period (Figure 1F–G). 

However, microstructural feeding analyses revealed that vHP GLP-1R KD alters meal 

patterning, evidenced by a trend towards greater meal size ( F(1,10)=4.5, p<0.07) with a 

compensatory decrease in meal frequency (F(1,10)=4.7, p<0.07) in the vHP GLP-1R KD 

group (n=6), as well as a significant increase in inter-meal interval (F(1,10)=6.3, p<0.05) 

compared to AAV-controls (n=6) (Figure 1D). No group differences were detected for 

satiety ratio, calculated as inter-meal interval/meal frequency (data not shown).
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To examine the endogenous relevance of vHP GLP-1R signaling on food motivated 

behaviors, rats were trained to lever press for a palatable 45mg food pellet (35% kcal fat 

enriched with sucrose) on a fixed ratio-1 reinforcement (FR1) schedule. Results show a 

significant main effect of group (F(2,26)=4.39, p<0.05) where vHP GLP-1R KD animals 

(n=10) earned a significantly greater number of pellets across a 5-day training period 

compared to either CTRL AAV (n=11) or aCSF controls (n=9) (p<0.05) (Figure 1E). 

Collectively, these data indicate that vHP GLP-1R signaling endogenously regulates meal 

patterning and effort-based responding for palatable food.

The vCA1 sends a monosynpatic input to the ipsilateral ILA and PL regions of the mPFC

Extending the findings of previous work1, 2, our results reveal an exclusively ipsilateral 

monosynaptic connection from the vHP to the mPFC (ILA and PL regions) using both 

traditional and virus-based anterograde pathway tracing methods. Animals received a 

unilateral vHP field CA1 (vCA1) iontophoretic injection of the anterograde pathway tracer 

Phaseolus vulgaris leocoagglutinin (PHAL) or an AAV that labels axons in an anterograde 

fashion (AAV1-hSyn-eGFP-WPRE-bGH; henceforth referred to as “AAV1-GFP”) 

(representative injection sites depicted in Figure 2B and E). This AAV is used by the Allen 

Institute for Brain Science 51 and in the literature 50 for anterograde tracing purposes. 

Results demonstrate extensive PHAL immunoreactive and AAV1-GFP axon terminal fields 

in the PL and ILA that were exclusively ipsilateral to the vCA1 injection (Figure 2A and C; 

D and F). Figure 2G–J displays a schematic representation of the distribution AAV1-GFP 

axon terminal fields in the mPFC. We note that while previous reports have investigated vHP 

to mPFC projections 1, here we examine a novel vCA1 subregion that is caudal and lateral to 

previously investigated vHP anterograde projection pathways. Moreover, this is the first 

report to our knowledge to directly compare PHAL with AAV1-GFP anterograde neural 

pathway tracing from the same injection area.

vHP GLP-1R expressing neurons project to the mPFC

We detected GLP-1R mRNA expression in vHP (field CA1) pyramidal layer neurons 

(Figure 3A) via fluorescent in situ hybridization (FISH), an outcome consistent with 

previous work utilizing a mouse model with transgenic GFP expression in GLP-1R-

expressing neurons 44 and with a publication demonstrating radio-labeled in situ 
hybridization signal in this region43. In all rats that received mPFC fluorogold (FG) 

injections (n=4; representative injection site in Figure 3B), extensive FG expression in back-

labeled vHP neurons was observed (representative FG-labeled cell bodies in Figure 3C). 

These data support the presence of a monosynaptic pathway between the vCA1 and mPFC, 

as also suggested in Figure 2. Moreover, vCA1 FISH analyses combined with native FG 

immunoreactivity from a representative mPFC FG-injected animal revealed that all FG back-

labeled vCA1 cell bodies co-expressed GLP-1R mRNA (Figure 3D). Collectively, these data 

provide proof-of-principle evidence that vCA1 neurons express GLP-1Rs, and that mPFC-

projecting vCA1 neurons are predominantly GLP-1R positive.
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Reversible chemogenetic disconnection of vHP to mPFC neural circuitry abolishes vHP 
GLP-1R mediated food intake reduction

Taking advantage of the ipsilateral monosynaptic connection between the vHP GLP-1R 

expressing neurons and the mPFC, we utilized an hM4Di inhibitory DREADDs technique to 

silence synaptic communication to the mPFC from the vHP to investigate the functional 

relevance of this circuit to food intake. Recent findings show that AAV-hM4Di DREADDs 

are trafficked to axon terminals, and administration of the DREADDs ligand, clozapine-n 

oxide (CNO) targeted to axon terminals silences synaptic communication to post-synaptic 

cells without affecting the firing rate of the presynaptic neurons53, 54. Utilizing the design 

outlined schematically in Figure 4A, animals (n=10) first received AAV2-CaMKIIA-hM4Di 

DREADDs in the vCA1, where the CamKIIa promoter allows for the selective expression of 

hM4Di in glutamatergic pyramidal neurons in the vCA1 (Figure 4B). Using a 

counterbalanced, within-subjects design, vHP hM4Di DREADDs-expressing animals 

received unilateral CNO (3mM) or vehicle (VEH) targeted to the ILA and PL (representative 

injection site in Figure 3D following 100nl Chicago Skyblue ink administration). Rats then 

received unilateral administration of the selective GLP-1R agonist, exendin-4 (EX4), or 

vehicle to the ipsilateral vCA1 (representative injection site in Figure 3E) and 24hr food 

intake and body weight were recorded. The dose of EX4 (0.03μg) was selected with 

reference to previous work 45 showing it to be without effects on feeding and body weight 

when delivered to the lateral ventricle. Results reveal a significant main effect of drug 

(F(3,27)>4.4, p<0.01), where the food intake and body weight reduction that is observed 

with vHP GLP-1R activation (Figure 4F, mPFC VEH/vHP VEH vs. mPFC VEH/vHP EX4, 

p<0.05), is eliminated when synaptic communication from the vHP to the mPFC is 

disconnected via mPFC CNO delivery (Figure 4F, mPFC VEH/vHP EX4 vs. mPFC CNO / 

vHP EX4, p<0.05). In contrast, animals receiving a control virus (AAV2-CaMKIIa-GFP; 

representative transfection in Figure 3C) in the vHP retain the food intake and body weight 

reduction resulting from vHP GLP-1R activation when pre-treated with CNO (Figure 4G, 

mPFC CNO/vHP VEH vs. mPFC CNO/vHP EX4, F(3,18)=5.5, p<0.05; body weight mPFC 

CNO/vHP VEH vs. mPFC CNO/vHP EX4, F(3,18)=4.2, p<0.07). Taken together, these data 

suggest that a monosynaptic neural pathway from the vHP to the mPFC is critical in 

regulating GLP-1R mediated food intake.

vHP GLP-1R-mediated hypophagia requires mPFC NMDA receptor signaling

We next examined the role of different glutamate receptor subtypes in the mPFC in vHP-

GLP-1R-mediated feeding. To determine the functional relevance of mPFC NMDA 

receptors (NMDAR) in the vHP GLP-1R-mediated hypophagic response, rats (n=11) first 

received a unilateral mPFC injection of a NMDA receptor antagonist, AP-5 (0.5μg) or 

vehicle. Immediately afterwards, animals received unilateral and ipsilateral vHP injections 

of EX4 (0.03μg). Treatments were counterbalanced using a within-subjects design. Results 

showed a main effect of drug (F(3,30)=9.8, p<0.01), where vHP EX4 administration 

significantly reduced food intake and body weight when animals were pretreated with mPFC 

vehicle (Figure 5A, p<0.01). In contrast, pretreatment with mPFC AP-5 resulted in the 

attenuation of vHP EX4 induced food intake and body weight reduction (Figure 5A, mPFC 

VEH/vHP EX4 vs. mPFC AP-5/vHP EX4, p<0.01). Utilizing a similar experimental design 

(n=9), mPFC pretreatment with an AMPA/Kainate receptor antagonist, CNQX (0.3μg) had 
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no effect on the food intake and body weight reduction induced by vHP exendin-4 

administration (main effect of drug, F(3,18)=6.3, Figure 5B, mPFC CNQX/vHP VEH vs. 

mPFC CNQX/vHP EX4, p<0.05). These data indicate that the full expression of vHP 

GLP-1R mediated feeding requires mPFC NMDA-R signaling, but not AMPA/Kainate 

receptor signaling. Consistent with these findings, unilateral vHP EX4 (n=6; 0.03μg) 

administration significantly increased phosphorylation of NR2B, an NMDA-R subunit, in 

the mPFC 90 minutes after injection compared to vehicle treatment (n=6; Figure 5C, 

F(1,10)=12.6, p<0.01). Overall these data provide behavioral, neuroanatomical, and 

molecular evidence consistent with the hypothesis that mPFC NMDA receptors (NMDA-R) 

are a downstream target for vHP GLP-1R-mediated anorectic effects.

vHP GLP-1R to mPFC NMDA-R neural signaling inhibits impulsive responding for palatable 
food

To investigate the role of a vHP GLP-1R to mPFC NMDA-R neural pathway in food 

impulsivity, we utilized a behavioral procedure known as “differential reinforcement of low 

rates of responding” (DRL) as a measure of inhibitory control 20, 21, 55. Briefly, animals 

(n=10) first learn to lever press for a palatable food reward (35% kcal fat enriched with 

sucrose). Following a series of training phases with escalating DRL delay criteria, rats 

acquired stable responding after 10 days of DRL 20 schedule, where lever presses are only 

reinforced if an animal waits 20 sec between lever presses. Responses made before the 20 

sec period ends result in no food reinforcement and the timer is reset. Our data show that 

animals increase their efficiency (measured by pellets earned/total number of lever presses) 

in this task across a 10 day DRL 20 training period (Figure 6A, significant main effect of 

day, F(9,108)=11.9, p<0.01).

During test sessions in which impulsive food drive is upregulated via 24 hr food restriction 
21, results show that vHP EX4 administration (0.03μg) alone significantly increases 

efficiency in the DRL 20 task (main effect of drug, F(3,30)=6.3, p<0.01) (Figure 6B, mPFC 

VEH/vHP VEH vs. mPFC AP-5/vHP EX4, p<0.01), suggesting that vHP GLP-1R activation 

reduces impulsive responding for food. Importantly, this effect is generated by a significant 

decrease in total lever presses (Figure 6B, mPFC VEH/vHP VEH vs. mPFC VEH/vHP EX4, 

p<0.05) with no differences in pellets earned, suggesting that vHP GLP-1R signaling did not 

entirely suppress appetitive drive, but rather increased the efficiency in earning food 

reinforcement. When combined with mPFC NMDA-R blockade via AP-5 pre-treatment, the 

increased efficiency elicited by vHP GLP-1R activation was significantly attenuated (Figure 

6B, mPFC VEH/vHP EX4 vs. mPFC AP-5/vHP EX4, p<0.01), as demonstrated by a trend 

towards an increase in total lever presses for the mPFC AP-5/vHP EX4 treatment compared 

to mPFC VEH/vHP EX4 (p<0.07) with no differences found in the number of pellets 

earned. Together these data suggest that a vHP GLP-1R to mPFC NMDA-R neural pathway 

regulates impulsive responding for palatable food.

Discussion

The hippocampus is known for its role in regulating mnemonic processes, including those 

relating to declarative and visuospatial memory. More recently this brain region has emerged 
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as an important center for controlling higher-order aspects of feeding behavior 8, 14. 

Hippocampal neurons respond to several types of gastrointestinal satiation signals 57, 58 and 

utilize endocrine signals to bi-directionally control energy balance and conditioned food-

motivated behaviors 14. Using vHP-targeted RNA interference to chronically knockdown 

vHP gene expression of GLP-1R (a G protein-coupled receptor of clinical relevance for 

obesity), the present findings extend previous work by providing evidence that vHP GLP-1R 

signaling is endogenously relevant for both normal feeding behavior and for effort-based 

responding for palatable food. Relative to controls, rats with vHP GLP-1R KD demonstrated 

increased lever-press responding (FR1 operant schedule) for a palatable high-fat, sugar-

enriched food under ad libitum conditions. vHP GLP-1R KD also altered meal patterning by 

significantly increasing inter-meal interval (driven by trends towards increased meal size and 

compensatory decreases in meal frequency) relative to controls. This is consistent with our 

recent work 45 showing that pharmacological vHP GLP-1R activation decreases meal size, 

and with other work demonstrating that peripheral and central GLP-1R activation reduces 

food intake primarily through a reduction in meal size 27, 59–62. Despite these alterations in 

feeding behavior, GLP-1R KD did not influence long-term body weight or total caloric 

intake when animals were maintained on chow. It is unknown whether total caloric intake 

and/or body weight would be impacted with a greater GLP-1R KD magnitude (~40% KD in 

the present study), and/or with an “obesogenic” dietary challenge (e.g., cafeteria diet).

GLP-1 is produced in L cells in the ileum, as well as in NTS neurons that have extensive 

ascending projections throughout the brain. The endogenous source of GLP-1 signaling to 

the vHP is unknown, but given that GLP-1-expressing NTS neurons do not project to the 

hippocampus 45, 63, GLP-1 acting on vHP neurons is likely to originate from either 

peripheral transport of GLP-1 across the blood-brain barrier 64, or via “volume 

transmission” from GLP-1 released in the cerebral spinal fluid (CSF) from hindbrain GLP-1 

neurons 45. Consistent with the latter possibility, our recent work detected active levels of 

GLP-1 in both the vHP parenchyma and in the CSF, and GLP-1-immunoreactive terminals 

are abundant in the ependymal layer lining the cerebral ventricles at multiple rostral-caudal 

levels of the neuraxis 45. Moreover, ~30% of GLP-1-producing neurons are co-labeled 

following injection of a retrograde pathway tracer in the lateral cerebral ventricle, suggesting 

a subset of these neurons have axon terminals innervating the ventricular space.

To investigate the neural pathways downstream of vHP GLP-1R mediated-feeding, we 

utilized complementary anterograde neural pathway-tracing methods to investigate a vHP to 

mPFC neural connection: PHAL and AAV1-GFP pathway-tracing. Building on previous 

work 1, both methods revealed a robust monosynaptic connection from vCA1 to the PL and 

ILA that are exclusively ipsilateral (Figure 2A–F). Furthermore, combination of FISH and 

retrograde neuronal tracing revealed evidence that vHP neurons that project to the mPFC 

also express GLP-1R (Figure 3D). To examine the functional relevance of this monosynaptic 

vHP GLP-1R to mPFC neural connection in the control of feeding behaviors, we combined 

neuropharmacology with reversible chemogenetic CaMKIIa hM4di DREADDs-mediated 

synaptic disconnection. Results showed that vHP to mPFC disconnection eliminates the food 

intake reduction that accompanies vHP GLP-1R activation, suggesting that the mPFC is a 

critical downstream target for vHP GLP-1R mediated feeding. Importantly these effects 

were not secondary to confounds arising from parenchymal CNO 65 and AAV delivery 56 
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because animals with vHP AAV-CaMKIIa-GFP controls were unaffected by mPFC CNO 

delivery.

While the current study, along with previous neuroanatomical work 1, 2, presents strong 

support for a direct relationship between vHP GLP-1R signaling and the mPFC, we 

recognize the possibility that multisynaptic and other downstream pathways are also 

involved. The vCA1 sends inputs to other feeding-related regions, including the lateral 

hypothalamic area (LHA) and amygdala 1, 66. Furthermore, amygdala-LHA and mPFC-LHA 

circuitry has been shown to regulate external cue-driven feeding 12, 67. Interestingly, recent 

work from our lab has demonstrated interactions between vHP ghrelin-mediated 

hyperphagia and the LHA 68 and other data from 69 has shown that activation of a vHP to 

lateral septum pathway reduces feeding. Additional studies will be required to determine the 

involvement of multisynaptic pathways and other downstream neural targets modulating 

vHP GLP-1R-mediated feeding effects.

vHP pyramidal neurons are primarily glutamatergic and provide an excitatory input to the 

mPFC 1, 2, and hippocampal glutamatergic signaling has been shown to interact with mPFC 

ionotropic glutamate receptors such as NMDA and AMPA/Kainate receptors 2, 70, 71. Here 

we demonstrate that a glutamatergic pathway from the vHP to the mPFC is functionally 

relevant to feeding behaviors. First, mPFC NMDA receptor, but not AMPA/Kainate receptor 

blockade attenuated the food intake and body weight reduction following vHP GLP-1R 

activation, suggesting that downstream mPFC NMDA receptor signaling is required for the 

full expression of vHP GLP-1R mediated feeding behaviors. At the molecular level, our data 

further suggests that vHP GLP-1R activation increases phosphorylation of the NMDA 

receptor subunit, NR2B, in the mPFC. mPFC NMDA receptor blockade attenuated but did 

not completely reverse the vHP GLP-1R induced food intake reduction, whereas DREADDs 

mediated vHP to mPFC synaptic silencing completely reversed the effects. These findings 

suggest that other downstream mPFC neurochemical systems are likely involved. For 

example, research has shown that mPFC neurons utilize metabotropic glutamate receptors 

(e.g. mGluR 2/3, mGluR 5) to control executive functions 72–74 and mGluR 2/3 activation 

has been shown to interact with mPFC serotonin receptor signaling to control impulsive 

behaviors 75. Furthermore, research has implicated dopaminergic 11, 16, 17, 20, 55, 76 and 

opioid systems acting in the mPFC 15, 21 in appetite control. Thus, the extent to which other 

neurochemical signals in the mPFC interact with vHP GLP-1R signaling requires further 

investigation.

The “differential reinforcement of low rates of responding” (DRL) task is a well-established 

measure of food impulsive response control in rats 20, 55. mPFC pyramidal neuron activation 

has been shown to reduce impulsive feeding behaviors 19 and mPFC opioid systems play a 

role in regulating impulsive feeding behaviors, particularly when animals are in a “high-

drive” impulsive state such as during food restriction 21. Our results demonstrate that vHP 

GLP-1R signaling is involved in controlling impulsive responding for palatable food, as 

vHP-targeted EX4 administration reduced impulsivity in the DRL task when animals were 

in a high-impulsive state induced by 24 hr food deprivation. mPFC NMDA-R blockade 

attenuated the vHP GLP-1R induced impulsivity reduction, indicating these downstream 

receptors regulate both the food intake reduction and the reduced impulsive responding for 
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palatable food triggered by vHP GLP-1R activation. Importantly we found that this effect 

was primarily driven by changes in lever press responses and no differences were found in 

pellets earned between all treatments, suggesting that vHP GLP-1R to mPFC NMDA-R 

signaling does not eliminate appetitive drive, suggesting a more selective effect on food 

impulsivity. We note that parallel analyses of impulsive responding for palatable food were 

not possible in the vHP GLP-1R KD animals, as these rats had increased FR1 lever-press 

responding at baseline (DRL 0), therefore precluding interpretation of potential group 

differences with longer DRL delays. These results taken together suggest that vHP GLP-1R 

to mPFC NMDA-R pathways are modulating higher-order aspects of feeding behavior, 

particularly in the realm of inhibitory control.

Both vHP and mPFC neural processing, as well as CNS GLP-1R signaling are capable of 

regulating both food and non-food motivated behaviors, particularly anxiety and stress 
3–7, 77–79. However, our results indicate that vHP GLP-1R activation does not impact 

anxiety-like behaviors in the Zero maze task (Supplemental Figure S1), an established 

rodent assay for anxiety-like behaviors. Moreover, our recent work 45 demonstrated that vHP 

GLP-1R activation does not induce nausea-associated behaviors (assessed via conditioned 

flavor avoidance). These findings suggest that vHP GLP-1R-mediated reductions in food-

motivated behaviors are not secondary to alterations in visceral state or anxiety. However, 

comprehensive additional studies are required to carefully assess other non-food-motivated 

behaviors that might be regulated by vHP GLP-1R to mPFC NMDAR pathways. Moreover, 

provided that Experiment 1 demonstrated that vHP GLP-1R KD increases operant FR1 

responding for palatable food, it is likely that activation of the novel identified vHP GLP-1R 

to mPFC NMDAR pathway reduces various food motivated behaviors rather than 

specifically reducing impulsive responding for palatable food. Other aspects of motivational 

feeding behaviors (e.g. cue-driven feeding), as well as other measures of food impulsivity 

(e.g., impulsive choice tested via delay discounting 80) that are potentially inhibited by this 

pathway will require further research.

The GLP-1 system is clinically relevant for obesity treatment based on its potent food intake 

and body weight reducing effects following CNS GLP-1R activation 29. Results from the 

present study identify a neural pathway where vHP glutamatergic neurons are activated by 

GLP-1R signaling which in turn engages NMDA-R signaling in the mPFC to regulate food-

motivated behaviors. Collectively these data illuminate novel neurobiological targets for the 

control higher-order feeding behaviors, and reveal a novel functional output of vHP-mPFC 

neural connectivity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
vHP targeted A) AAV-GFP and B) AAV-GLP-1R shRNA delivery transfects vHP neurons. 

C) vHP AAV-GLP-1R shRNA significantly reduces GLP-1R mRNA expression. D) Meal 

pattern analyses in vHP GLP-1R KD vs. CTRL AAV rats. E) Operant responding on a FR1 

reinforcement schedule in vHP GLP-1R KD vs. CTRL animals. F) Body weight gain and G) 

food intake in vHP GLP-1R KD vs. CTRL groups. CA1sp: CA1 pyramidal cells; alv = 

alveus. *p<0.05 vs CTRL AAV or aCSF controls; Ŧp<0.07. Data are mean ± SEM.
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Figure 2. 
vCA1 neurons provide monosynaptic and unilateral input to the mPFC. Unilateral 

iontophoretic vCA1 delivery of either PHAL (red) or AAV1-GFP (green) (representative 

injection sites in B and E respectively) reveals A, C) PHAL and D, F) AAV1-GFP 

fluorescent axon terminal fields in the mPFC ipsilateral to the vCA1 injection. A schematic 

representation of mPFC AAV1-GFP axon field terminals from the vHP is shown in G-J, 

where G) displays a representative vCA1 AAV1-GFP injection site and H-J) shows mPFC 

AAV1-GFP axon terminal field distribution (Swanson atlas levels 8–10). CA1sp: CA1 
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pyramidal layer; alv = alveus; PL = prelimbic area, ILA = infralimbic area; fa = corpus 

callosum, anterior forceps.
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Figure 3. 
A) GLP-1R mRNA expression (green) in vCA1 cell bodies (DAPI, teal). B) Representative 

mPFC fluorogold injection site C) Distribution of backlabeled fluorogold vCA1 neurons that 

project to the mPFC. D) Representative vCA1 neurons that project to the mPFC (fluorogold, 

blue) co-express GLP-1R mRNA (green).
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Figure 4. 
Reversible vHP to mPFC disconnection with inhibitory DREADDs. A) Shows the 

experimental design involving DREADDs mediated vHP-mPFC synaptic disconnection and 

pharmacological activation of vHP GLP-1Rs with exendin-4. B) AAV2-CaMKIIa hM4Di 

DREADDs and C) AAV2-CaMKIIa-GFP transfects vHP pyramidal neurons. D) 

Representative mPFC and E) vHP injection sites. F) 24 hr food intake and body weight 

following mPFC administration of CNO or vehicle (VEH) and vHP administration of 

exendin-4 (EX4) or VEH in vHP hM4Di DREADDs transfected animals. G) 24hr food 

intake and body weight following mPFC administration of CNO or VEH and vHP 

administration of EX4 or VEH in vHP CTRL AAV animals. *p<0.05; Ŧp<0.07. Data are 

mean ± SEM.
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Figure 5. 
A) 24 hr food intake and body weight following mPFC administration of AP-5 or vehicle 

(VEH) and vHP administration of exendin-4 (EX-4) or VEH. B) 24 hr food intake and body 

weight following mPFC administration of CNQx or VEH and vHP administration of EX-4 

or VEH. C) Phosphorylated NR2B expression in the mPFC following unilateral vHP 

delivery of exendin-4 or vehicle. *p<0.05. Data are mean ± SEM.
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Figure 6. 
A) DRL 20 efficiency across a 10 day training period. B) DRL 20 test session after 24 hr 

food deprivation in animals receiving mPFC AP-5 or vehicle and vHP exendin-4 or vehicle. 

*p<0.05; Ŧp<0.07. Data are mean ± SEM.
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