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Abstract

We introduce a MATLAB-based simulation toolbox, called txtlsim, for an Escherichia coli-based Transcription–Translation
(TX–TL) system. This toolbox accounts for several cell-free-related phenomena, such as resource loading, consumption and
degradation, and in doing so, models the dynamics of TX–TL reactions for the entire duration of solution phase batch-mode
experiments. We use a Bayesian parameter inference approach to characterize the reaction rate parameters associated with
the core transcription, translation and mRNA degradation mechanics of the toolbox, allowing it to reproduce constitutive
mRNA and protein-expression trajectories. We demonstrate the use of this characterized toolbox in a circuit behavior
prediction case study for an incoherent feed-forward loop.
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1. Background

One of the goals in synthetic biology is the engineering of
genetic circuits to function in a predictable manner, so that
these circuits may be used to control cellular behavior (1, 2). The
design-build-test-learn (DBTL) cycle of these circuits in vivo,
however, can be time consuming and expensive. In disciplines
like electrical and aeronautical engineering, the design-build-
test cycle is accelerated with the help of rapid prototyping envi-
ronments like breadboards and wind tunnels, and associated
dynamics simulation software such as PSpice and XFlow (3, 4).
Analogously, it should be possible to accelerate the design of
novel biological systems in synthetic biology using appropriate

rapid prototyping tools, an end to which cell-free protein
synthesis (CFPS) systems have gained significant traction.

More generally, CFPS systems have been used in synthetic
biology as a versatile tool for biosensing (5), for the manufacture
of therapeutics (6), as a platform for discovery of biosynthetic
pathways and biomaterials (7), as a tool for building artificial
cells (8, 9), and as a platform for prototyping genetic circuits
(10, 11). These systems can be reconstituted from individual
molecules (12) or based on cell lysates (13), and can be used in
either solution phase, encapsulated in liposomes (14, 15), in
freeze-dried paper-based modes (16), or as part of microfluidic
systems (17). Cell lysate-based systems, in particular, are made
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of three components: a cytoplasmic extract, a buffer containing
energy and raw material molecules, and a solution containing
the DNA that encodes the circuit to be implemented. One
example of such a system based on Escherichia coli extract is the
TX–TL (transcription–translation) system (13, 18).

Cell-free systems have numerous advantages that make
them suitable as circuit prototyping platforms in synthetic biol-
ogy. First, since the DNA encoding the circuit is not constrained
by the need for replication, restrictions due to plasmid selection
markers and antibiotic compatibility are lifted. This allows for
the rapid exploration of genetic circuit variants by trying differ-
ent combinations of DNA species. Second, time-consuming
cloning and transformation steps may be bypassed by using
linearized DNA in the form of polymerase chain reaction
(PCR) products or de novo synthesized fragments, which speeds
up the DBTL cycle.

Examples of software for simulating general biochemical
reaction networks include TABASCO (19), COPASI (20), Bioscrape
(21) and MATLAB SimbiologyVR . TABASCO and COPASI are fast
general purpose solvers that can incorporate stochastic simula-
tions into circuit dynamics. Bioscrape is a Python-based simula-
tor that leverages the speed of Cython to perform fast
stochastic simulations with time delays, cell lineage tracking,
and Bayesian parameter inference. SimbiologyVR is a MATLAB
toolbox that follows the Systems Biology Markup Language
(SBML) in its structure, in that it allows for the specification of
the standard SBML features such as models, compartments,
reactions, species, parameters, rules and events in an object-
oriented manner. It works well with MATLAB’s ordinary
differential equation solvers, local and global optimization
methods, plotting tools, and other functionalities.

Examples of modeling studies specific to cell-free systems in-
clude the one performed by Stögbauer et al. (22), who described a
minimal rate equation model of the PURE cell-free system (12),
and performed a fit of their model parameters to the experimen-
tally measured time courses of both the expressed protein and
mRNA. A more detailed model was presented by Mavelli et al. (23,
24), where the authors accounted for nucleotide and amino acid
usage, considered tRNA aminoacylation separately from transla-
tion elongation, and modeled the energy regeneration system.
Neither of these studies, however, explored fitting their model to
an E. coli extract. Earlier work by Karzbrun and Noireaux (25), on
the other hand, did fit models to protein and mRNA data from
the TX–TL E. coli extract, but restricted their analysis to the first
60 minutes of system behavior. More recently, Moore et al. (26)
have performed extensive characterization of parts in non-
model bacteria extracts, such as those made from Bacillus megate-
rium. None of these studies, however, provide a software toolbox
or attempted to use their characterized models to predict and
validate the behavior of whole circuits.

In this article, we build on our initial work in (27) to describe
a MATLAB-based software toolbox called txtlsim for prototyping
genetic circuits in TX–TL. This toolbox comes with a library of
parts that can be combined in different combinations to build cir-
cuit models that are predictive of the behavior of circuits in vitro. It
does this by accounting for the loading of finite enzymatic resour-
ces, which can introduce complex interactions between otherwise
non-interacting elements of genetic circuits (28). Furthermore, it
models the consumption of resources like nucleotides and amino
acids, and does so without needing to model elongation processes
at the single base or codon resolution. Another feature of the tool-
box is its simple user interface, which requires only a few lines of
code and allows the user to specify a genetic circuit at the level of
promoters and genes, abstracting away all lower level interactions.

Finally, we demonstrate a Markov chain Monte Carlo (MCMC)
based multi-stage Bayesian inference procedure for characterizing
the toolbox’s parameters, and use the characterized models to pre-
dict and experimentally validate the behavior of an incoherent
feed-forward loop under a variety of experimental conditions.

The rest of this article is organized as follows. In Section 2,
we describe the implementation details of the toolbox, includ-
ing the biochemical equations, and show sample code for creat-
ing models of genetic circuits. Section 3 describes inference of
the ‘core’ toolbox parameters, which are parameters associated
with transcription, translation and RNA and resource degrada-
tion. In Section 4, we demonstrate the predictive capabilities of
the toolbox using an incoherent feed-forward loop as an exam-
ple circuit. In Section 5, we discuss the results and possible fu-
ture work. Finally, in Section 6, we describe the experimental
and computational methods used for data collection and pa-
rameter inference.

2. Implementation

In this section, we describe the implementation details of
txtlsim that make it useful for modeling TX–TL experiments.

First, modeling the reactions associated with TX–TL requires
explicit accounting of the interactions of DNA and RNA with en-
zymatic resource species such as RNA polymerases, ribosomes,
ribonucleases (RNases), and transcription factors. This quickly
increases the complexity of the chemical reaction network be-
ing built, due to effects such as resource loading and retroactiv-
ity (28). This complexity is further compounded by the need to
account for nucleotide and amino acid consumption and degra-
dation. The txtlsim toolbox abstracts away the need for the
specification of these low-level mechanisms and interactions,
allowing the user to specify genetic circuits at the level of genes.
Indeed, txtlsim comes with a library of parts that can be com-
bined in different combinations to build genetic circuit models.
Secondly, it is able to predict the behavior of a genetic circuit,
based only upon the characterization of its constituent parts, as
discussed in Section 4.

The txtlsim toolbox is written using MATLAB SimbiologyVR , en-
abling its models to be compatible with MATLAB’s visualization,
simulation and parameter estimation capabilities. Genetic cir-
cuits are specified using a set of input strings that specify DNA,
small molecules and other miscellaneous species. The toolbox
then generates a deterministic mass action kinetics model of this
circuit’s mechanics in TX–TL. A typical TX–TL model, specified by
the user at the resolution of whole DNA, mRNA and protein spe-
cies, comprises mechanisms for transcription, translation, RNA
degradation, transcriptional regulation and the eventual inactiva-
tion of TX–TL itself. Other mechanisms, such as linear DNA and
protein degradation or gamS-mediated protection against nucle-
ases, may also be included (39).

2.1 User interface

We highlight several features of txtlsim. First, the toolbox
requires only a few lines of code to generate a relatively com-
plex chemical reaction network model of TX–TL. For instance,
the constitutive expression of green fluorescent protein (GFP)
can be modeled using the code shown below.

% Set up three Simbiology model objects.

tube1¼txtl_extract(’E1’); % extract

tube2¼txtl_buffer(’E1’); % buffer

tube3¼txtl_newtube(’constitutive_expression’);
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% Add DNA to model object by specifying promoter, RBS, CDS,

concentration and type of DNA.

txtl_add_dna(tube3, ‘pOR2OR1(50)’, ‘utr1(20)’,. . .

‘deGFP(1200)’, 30, ‘plasmid’); % reporter DNA

% Combine the three model objects into one.

Model_obj ¼ txtl_combine([tube1, tube2, tube3]);

% Simulate and plot.

simData ¼ txtl_runsim(Model_obj, 14*60*60);

txtl_plot(simData, Model_obj);

The set of commands shown in the snippet above mimic
the actual experimental protocol of setting up a TX–TL experi-
ment. The functions txtl_extract and txtl_buffer access
extract and buffer specific parameter configuration files, se-
lected by the input string ‘E1’ here, to set up two SimbiologyVR

model objects called tube1 and tube2. Users can use these to
store parameters for each new extract batch, or transfer
parameters corresponding to different batches between
laboratories.

Next, the txtl_newtube and txtl_add_dna commands are
used to initialize a new SimbiologyVR model object and add DNA
to this model object, respectively. In its most common use case,
the txtl_add_dna function allows for specification of a pro-
moter, an untranslated region and a coding sequence to form a
transcriptional unit on the specified DNA, along with the concen-
tration of the DNA added, and whether it is a linear fragment or
plasmid DNA. For example, in the call to txtl_add_dna above,
the promoter, ribosome binding site and coding sequence (CDS)
are specified by the strings ‘pOR2OR1’, ‘utr1’ and ‘deGFP’, re-
spectively. These strings, each describing a component of the
transcriptional unit, are used by txtl_add_dna to access a library
containing code and parameter files associated with these com-
ponents. These component files specify the reactions and species
associated with each component, and encode interactions with
other components. This allows txtlsim to automatically link dif-
ferent transcriptional units into a genetic circuit.

The txtl_combine command is used to combine the three
model objects (tube1, tube2 and tube3) into a model object,
Mobj, which is then simulated using txtl_runsim, with the
results plotted using txtl_plot. The flowchart in Figure 1
depicts the order these commands need to be specified in.

Figure 2 shows the result of the txtl_plot command, which
is arranged into three panels. The top panel shows the protein
species that exist within the TX–TL system. The bottom left
panel shows RNA (solid) and DNA (dashed) dynamics. The bot-
tom right panel (normalized to 1) shows the dynamics of enzy-
matic and consumable resources. The enzymatic resources are
ribosomes, RNA polymerases, and RNases; the consumable spe-
cies in the model are the four nucleotides (ATP and GTP,
summed into a so-called species AGTP, and CTP and UTP,
summed into CUTP), and amino acids (AA). Each RNA species is
plotted as the total concentration of all its forms (bound and un-
bound). The remaining species are plotted as the concentration
of free species (unbound). For example, the concentration of free
ribosomes is plotted as the dashed green curve in the bottom
right panel. This concentration drops as ribosomes bind to
mRNA during the first two hours of the experiment, and then
rises as the concentration of mRNA drops and ribosomes
unbind.

The plots in Figure 2 were generated using parameters found
by fitting the deGFP and mRNA curves to corresponding data, as
described in Section 4.

2.2. The modeling framework of the txtlsim toolbox

In this section, we describe the typical reaction network gener-
ated by txtlsim when a transcriptional unit is expressed. More
complex networks made out of multiple transcriptional units
interacting via transcription factor-mediated regulation are
simply iterations of this canonical network, but coupled via en-
zymatic and consumable resources, and the relevant regulatory
interactions. The species in the software toolbox may be divided
into five broad categories: DNA, mRNA, proteins, miscellaneous
species such as inducers or nucleotides, and the biochemical
complexes formed by combining these in defined ways.

The species follow a naming convention, which allows for the
automated decision making involved in the reaction network gen-
eration. This naming convention is described in Supplementary
Section S3.2.

The main processes associated with each transcriptional unit
are transcription, translation and RNA degradation (Supplementary
Figure S3). Other processes include DNA and protein degradation,

transcription factor mediated activation and repression, and in-
ducer action.

2.2.1 Transcription
Transcription is modeled as a four-step process (RNA polymer-
ase binding, nucleotide binding, elongation and termination)
using the reactions

Figure 1. Flowchart of the user-level code. The txtl_add_dna command is the

main command that is used to specify the DNA to be added to the model. This

allows for all the reactions and species associated with that DNA to be set up in

the model. The model is contained in a SimbiologyVR model class object, and is

simulated using the txtl_runsim command.
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RNAPþ DNA � RNAP : DNA;

RNAP : DNAþAGTP � AGTP : RNAP : DNA;

RNAP : DNAþ CUTP� CUTP : RNAP : DNA;

AGTP : RNAP : DNAþ CUTP� CUTP : AGTP : RNAP : DNA;

CUTP : RNAP : DNAþAGTP � CUTP : AGTP : RNAP : DNA;

CUTP : AGTP : RNAP : DNA kTX=Lm
!

RNAP : DNAterm þmRNA;

CUTP : AGTP : RNAP : DNA
Lm

4
� 1

� �
kTX

Lm
!

RNAP : DNA;

RNAP : DNAterm ! RNAP þDNA; ð1Þ

where a complex formed by two species, e.g. RNAP and DNA, is
denoted as RNAP: DNA.

The catalytic machinery of transcription is lumped into a sin-
gle species, denoted by RNAP. It is assumed to encompass RNA
polymerases, sigma factors, and other cofactors. Transcription
factors are modeled separately, because they are needed for tran-
scriptional regulation, are user defined, and because various dis-
tinct transcription factors may exist in a single circuit.

While all four nucleotides (ATP, GTP, CTP and UTP) are used
as raw materials for mRNA synthesis, ATP and GTP are also used
as a source of energy for translation. Thus, instead of lumping all
four nucleotides into a single generic nucleotide species that can
both be incorporated into mRNA and be used as an energy source
in translation (as was done in, for instance (23)), we lump ATP
and GTP into a species AGTP and CTP and UTP into a species
CUTP. We note that each molecule of AGTP is defined to

correspond to a molecule of ATP and one of GTP (as opposed to
“or”, a distinction that has implications for the stoichiometry of
the transcription and translation reactions). We denote this defi-
nition AGTP ¼ ATP þ GTP. Similarly, we define CUTP ¼ CTP þ
UTP.

After the binding of the catalytic and consumable species,
the production of mRNA itself is divided into two reactions. The
first reaction models mRNA production as a single step, where
the bound complex creates an mRNA molecule without model-
ing elongation along the DNA at the base pair resolution, or
modeling polysome formation, where multiple RNAP can bind
onto the DNA. This choice to model mRNA production in a sin-
gle step is made to keep the model relatively simple in light of
the fact that at present, sub-transcript resolution mechanisms
of regulation (such as attenuator-antisense RNA binding (40))
are not modeled in the toolbox. If a polysome model is needed,
the ribosome flow model (41) could be incorporated in future
releases of the toolbox.

On the other hand, accounting for nucleotide consumption,
which is generally done via base-pair resolution models, is ac-
complished using a ‘consumption’ reaction. This latter reaction
uses up AGTP and CUTP without producing mRNA, and is used
to balance the consumption of nucleotides with the production
of mRNA. We have discussed the consumption reaction in
Supplementary Section S4.1.

Finally, at the end of mRNA production, a termination com-
plex RNAP : DNAterm forms, which then dissociates into RNAP
and DNA in a separate reaction.

0 5 10 15
Time [h]

0

10

20

30

40

m
R

N
A

 a
m

ou
nt

s 
[n

M
] DNA and mRNA

RNA

20

22

24

26

28

30 D
N

A
 am

ounts [nM
]

0 2 4 6 8 10 12 14
Time [h]

0

2000

4000

6000

8000

10000

S
pe

ci
es

 a
m

ou
nt

s 
[n

M
] Gene Expression

protein deGFP
protein deGFP*

0 5 10 15
Time [h]

0

0.2

0.4

0.6

0.8

1

S
pe

ci
es

 a
m

ou
nt

s 
[n

or
m

al
iz

ed
]

Resource usage

AGTP 
CUTP 
AA 
RNAP 
Ribo 

DNA

Figure 2. Standard output of txtlsim. Top: Gene-expression profiles for unfolded (deGFP) and folded (deGFP*) reporter protein. Bottom left: left axis: total mRNA profile,

right axis: free DNA profile. Bottom right: Normalized resource loading and consumption AGTP ¼ ATP þ GTP, CUTP ¼ CTP þ UTP. The mRNA curve for each RNA corre-

sponds to the total concentration of that RNA in all its bound forms (i.e. bound to ribosomes, RNase, etc.). The remaining species (proteins, DNA and resources) corre-

spond to the free (unbound) species concentrations.
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2.2.2 Translation
Translation is modeled analogously, with the reactions

RiboþmRNA � Ribo : mRNA;

Ribo : mRNAþAA � AA : Ribo : mRNA;

AA : Ribo : mRNAþ AGTP � AA : AGTP : Ribo : mRNA;

AA : AGTP : Ribo : mRNA kTL=Lp
!

Ribo : mRNAterm

þ proteinþ AGMP;

AA : AGTP : Ribo : mRNA ðLp � 1ÞkTL=Lp
!

Ribo : mRNAþ AGMP;

Ribo : mRNAterm ! RiboþmRNA;

(2)

where Lp is the length of the protein in amino acids, and kTL is
the translation rate. The protein production step is once again
modeled in two reactions, a protein production reaction and a re-
source consumption reaction, and we once again avoid modeling
polysome formation or elongation at the single amino-acid reso-
lution. We also use AGTP as an energy source, and its conversion
to AGMP¢AMPþ GMP is used to model the four high energy
phosphate bonds needed for a single amino acid incorporation
(two for tRNA charging and two for elongation). We note that this
is an approximation, because in the true model, while ATP!
AMPþ PPi provides two of the phosphate bonds for the tRNA
charging step, the two bonds for elongation are supposed to
come from two GTP molecules: 2 GTP! 2GDPþ 2Pi. These con-
siderations are discussed in greater detail in Supplementary
Section S4.2.2.

2.2.3 RNA degradation
RNA degradation is mediated by RNases, and is implemented as
an enzymatic reaction,

RNaseþmRNA� RNase : mRNA;
RNase : mRNA ! RNase:

(3)

Similar binding and degradation reactions are set up for
mRNA in its various bound forms, such as Ribo: mRNA, AA: Ribo:
mRNA, etc., which result in the degradation of the mRNA and re-
turn of the remaining species to the species pool. The full set of
these reactions is described in Supplementary Section S5.2.

2.2.4 AGTP regeneration system
In batch mode CFPS systems, the ability to express mRNA and
proteins diminishes as the experiment proceeds, eventually
reaching zero. There are numerous reasons for this exhaustion,
including the depletion of nucleotides, the accumulation of in-
organic phosphate molecules and the resulting sequestration of
magnesium ions, and even the accumulation of magnesium
phosphate (42). The depletion of ATP and GTP can be temporar-
ily halted by the use of energy regeneration systems involving a
phosphate donor, such as creatine phosphate, phosphoenolpyr-
uvate and 3-phosphoglycericacid (18). The accumulation of
phosphate molecules can be slowed down using, for instance, a
pyruvate-based system or dual systems that combine phos-
phate donor systems with a glucose system (42).

Eventually, as the regeneration systems are themselves de-
pleted, and waste by-products accumulate, transcription and
translation slow down, and eventually stop. Noireaux et al.
showed that ATP levels were constant for the first 3–6 h after
the start of the reaction, independent of whether an eGFP re-
porter protein was expressed [(43) Figure 1B], after which they
dropped exponentially.

We model this mechanism as a reversible degradation–re-
generation reaction involving AGTP and AGMP,

AGMPdATPaATP
�

AGTP: (4)

After sATP seconds, the reverse (regeneration) reaction stops,
leading to pure degradation of the energy resources in the
system.

For simplicity, we use this inactivation of the regeneration
system and the subsequent depletion of ATP and GTP as the
mechanism by which TX–TL depletes its capacity for gene ex-
pression. That is, we use this mechanism to model the deactiva-
tion of TX–TL due to all effects, including the accumulation of
inorganic phosphates or depletion of magnesium ions. The
parameters involved in this mechanism (sATP, for instance) are
estimated using experimental data, and may be thought of as
effective parameters capturing the multiple causes of TX–TL
inactivation.

2.2.5 Other reactions
Additionally, txtlsim can model linear DNA degradation medi-
ated by RecBCD, which is a three subunit enzyme that unwinds
DNA, and RecBCD sequestration by the GamS protein (39). The
TX–TL system has no innate protein degradation, and degrada-
tion of tagged proteins can be mediated by the ClpXP protease
(44, 45) and transcription factor-mediated regulation, among
other mechanisms. For brevity, we describe just the transcrip-
tional repression and induction reactions here. Repression by
the dimerizable protein TetR and its sequestration by the in-
ducer anhydrotetracycline (aTc) are modeled as

2 TetR�TetRdimer;
DNAþ TetRdimer�DNA : TetRdimer;
2 aTcþ TetRdimer�aTc2 : TetRdimer:

(5)

2.3 Circuit example

The incoherent feed-forward loop (IFFL) is a genetic circuit in-
volving an activator, a repressor and a reporter (Figure 4A).
Owing to the circuit’s network topology, the repression of the
reporter is delayed with respect to its activation. The IFFL used
in this article uses LasR as an activator, expressed constitutively
under the control of a pLac promoter. The repressor is TetR,
which is under the control of an engineered pLas promoter. We
also combined this las-activatable promoter with a tetO opera-
tor site to form the combinatorial promoter used to control the
deGFP expression (Section 6.4). The code below shows the com-
mands needed to set up the IFFL in txtlsim. This gene circuit
will be used to demonstrate the predictive capabilities of the
toolbox (Section 4 and Supplementary Section S6).

% Set up three Simbiology model objects.

tube1¼txtl_extract(’E1’); % extract

tube2¼txtl_buffer(’E1’); % buffer

tube3¼txtl_newtube(’las-tet-IFFL’);
% Set up LasR activator DNA.

txtl_add_dna(tube3, ’plac(50)’, ‘utr1(20)’, ‘LasR(1000)’, 2,

‘plasmid’);

% Set up TetR repressor DNA.

txtl_add_dna(tube3, ’plas(50)’, ‘utr1(20)’, ‘TetR(1000)’,

0.1, ‘plasmid’);

% Set up deGFP reporter DNA.

txtl_add_dna(tube3, ’plas_ptet(50)’, ‘utr1(20)’,

‘deGFP(1000)’, 2, ‘plasmid’);

% Combine model objects and add inducers.

Model_obj ¼ txtl_combine([tube1, tube2, tube3]);
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txtl_addspecies(Model_obj, ‘OC12HSL’, 1000);

txtl_addspecies(Model_obj, ‘aTc’, 1000);

% Simulate and plot.

simData ¼ txtl_runsim(Model_obj, 14*60*60);

txtl_plot(simData, Model_obj);

2.4 Managing chemical reaction network complexity

In lower-level specifications of reaction networks, where the
user must specify each chemical reaction and interaction, such
as SimbiologyVR , Bioscrape (21) or even directly stated ODEs,
modeling the IFFL at the level of detail of the txtlsim toolbox
would require several tens to over a hundred equations, all of
which would need to be manually specified. Furthermore, mod-
ifying the network would entail manually updating the relevant
equations, a process that is both time consuming and error
prone. The txtlsim toolbox, on the other hand, allows the user
to specify genetic circuits at a higher level of abstraction, allow-
ing for rapid testing of different designs.

The rationale behind including the above reactions to model
circuits is to account for the consumption of the limited pool of
nucleotides and amino acids, and the loading of the finite cata-
lytic and regulatory machinery (RNA polymerases, ribosomes,
transcription factors, etc.). The consumption and degradation of
nucleotides and amino acids is thought to underlie the inactiva-
tion of the gene expression capability, and is therefore impor-
tant to model to capture the full curves of TX–TL experiments.
Coupling between different parts of a circuit, via the loading of
enzymatic resources (28) or regulatory elements, has been shown
to introduce unintended interactions between parts of genetic
circuits in both TX–TL and in vivo (46). The txtlsim toolbox incor-
porates these types of effects naturally, since it is built on mass
action—as opposed to Michaelis–Menten or Hill—kinetics, allowing
for enzymatic loading to be modeled by the explicit formation of
complexes and a drop in the concentration of free enzyme. The use
of such mass action kinetic models also means that the models are
extensible, in the sense that once a species exists, new types of in-
teraction can be added without modifying any of the existing equa-
tions—a property that does not hold for Michaelis–Menten or Hill
kinetics in general. Finally, models created with txtlsim can be con-
verted into SBML, and may be exported into any other SBML com-
patible environment for analysis.

In Supplementary Section S3.1, we describe the software ar-
chitecture that allows for the automatic generation of these
reactions and the interactions between them without the need
for the user to specify them explicitly.

3. Inferring the parameters associated with
the core mechanisms in TX–TL
3.1 Overview

Our parameter inference was divided into two stages: the infer-
ence of parameters associated with the core mechanisms of the
toolbox (transcription, translation, RNA degradation, energy re-
generation) and the parameters associated with the parts of ge-
netic circuits (repressors, activators, reporters). The core
inference stage is described in this section, while the inference
of part specific parameters is described in Section 4.

In the core inference stage, we used trajectories of the degra-
dation of spiked-in RNA and expression of mRNA and protein
(Figure 3) to infer parameters associated with transcription,
translation, RNA degradation and AGTP regeneration. We used a
Bayesian approach to infer the parameters, so that instead of

inferring point estimates for parameter values, we estimated the
entire distribution of parameters (Supplementary Figure S7),
which gives a better sense of the correlations between parameter
values, and the uncertainty in the parameter estimates. The
parameters associated with transcription and translation were,
for example, the elongation rates, the dissociation constants as-
sociated with the binding of enzymes (RNA polymerases and
ribosomes) or resources (nucleotides and amino acids) and the
initial concentration of the enzymes. The parameters associated
with RNA degradation were the dissociation constant of the
binding of the RNase, the forward catalysis rate for the reaction
and the initial concentration of the RNase. For the energy regen-
eration system, the parameters were the forward and reverse
rate of AGTP degradation (aatp; datp) and the time when the AGTP
regeneration switches off, satp. The full list of parameters inferred
is shown in Table 1, which is described in greater detail in this
section. Here we simply note that the values in the ‘nominal’ pa-
rameter value column are reported after transformation using a
logarithm of base-e (so that numbers between 0 and 1 show up
as negative values) and that this table describes multiple inde-
pendent attempts at inferring the parameters, where some
parameters are fixed (marked by asterisks) while the others were
inferred. We found that the parameter fitting was computation-
ally tractable for up to approximately 15 free parameters. This is
discussed in detail in the rest of this section.

Once the parameters for the core mechanisms have been in-
ferred, the toolbox can be used to simulate the basic mecha-
nisms of TX–TL. The prediction of circuit behavior, in contrast,
requires inference of the parameters associated with the parts
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Figure 3. Estimating the core TX–TL parameters. Experimental data is from

[25,47]. Shaded regions indicate standard error over three replicates (left), and

model simulations based on the inferred parameters (right). (A) Decay of puri-

fied deGFP-MGapt transcripts initiated at six different mRNA concentrations. (B)

Transcription kinetics reported by a Malachite Green aptamer. (C) Translation

kinetics reported by deGFP. Rows (B) and (C) show four different concentration

of plasmid DNA that was added to each TX–TL master mix at the beginning of

the experiment.
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of the circuits. In Section 4, we discuss a case study involving
the IFFL circuit (described in Section 2.3), where we first follow a
multi-stage procedure to infer the parameters associated with
the parts of the IFFL, and then use the resulting characterized
models to predict the behavior of the IFFL and compare this to
corresponding experimental data.

3.2 Core parameter inference

In this section, we estimate the parameters associated with the
core mechanisms of TX–TL, such as transcription, translation
and RNA and energy regeneration (equations (1)–(4)). Our pa-
rameter inference is performed in a Bayesian framework, with
an MCMC sampler used to construct the posterior distribution
of parameters, conditioned on the data and models (See Section
6, Materials and Methods). The experimental data used for esti-
mating the core parameters is from (25, 47), and comprises fluo-
rescence measurements of constitutive protein and mRNA
expression, along with the degradation of spiked in mRNA
(Figure 3, left column). More details about the data can be found
in Supplementary Section S5.1.

The column on the right of Figure 3 shows the results of fit-
ting txtlsim models to this data. There are a total of 26 parame-
ters in these models, of which several are non-identifiable (48,
49). Briefly, non-identifiability of parameters corresponds to the
situation where multiple values of that parameter give the
same output behavior of the model, precluding the possibility of
uniquely identifying these parameters from the data at hand.
Often, parameter non-identifiabiltiy is observed when one

parameter’s value compensates for the value of another param-
eter, so that the overall input-output behavior of the model
remains unchanged. Examples of non-identifiability and pa-
rameter values trading off against each other can be seen in, for
instance, the initial RNA polymerase concentration and the
transcriptional elongation rate (pol; TXcat) during the character-
ization of the core parameters, Supplementary Figure S7, and
the transcriptional and translational elongation rate parameters
(TXcat; TLcat), or the dissociation constant for the binding of RNA
polymerase to the ptet or plac promoters (polKd; tet; polKd; lac)
during the IFFL circuit characterization, Supplementary Figure
S9. See Supplementary Section S7 for formal definitions of pa-
rameter non-identifiability and parameter covariation.

Unlike point estimation methods, MCMC-based sampling gives
an estimate of the entire joint parameter distribution, and can be
used to gain insight into which parameters are non-identifiable
and may therefore be fixed during parameter inference. Examples
of such parameters include the forward reaction rates associated
with reversible reactions, and in some cases, might even include
the dissociation constants themselves. The forward reaction rates
set the timescales at which fast reversible reactions reach quasi-
steady-state, and were found to be non-identifiable once they were
large enough for time-scale separation to be achieved. Some of the
dissociation constants, especially those associated with reactions
embedded deeper inside the reaction network, also had broad dis-
tributions, indicating possible non-identifiability. Examples of reac-
tions with such dissociation constants include those involving
nucleotides and amino acids binding to their respective transcrip-
tion and translation complexes.

Table 1 and Supplementary Figures S4–S6 show five inde-
pendent parameter inference runs involving models of consti-
tutive expression and RNA degradation, and experimental data
from (47). In these runs, different combinations of parameters
were fixed to nominal values (reported here after log e transfor-
mation, so that negative values correspond to parameter values
between 0 and 1; this transformation was performed for techni-
cal reasons described in the Methods Section 6.7) as part of an
exploratory scheme designed to help elucidate the trade-off be-
tween model fidelity and the computational tractability of the
parameter inference procedure as a function of the number of
free and fixed parameters. In Run 1, only the forward rates in
the various reversible reactions were fixed, resulting in a 19-di-
mensional parameter space, which was too large to be searched
efficiently. In Run 2, in addition to the forward reaction rates,
the dissociation constants of the reactions involved in the bind-
ing of nucleotides and amino acids to the transcription and
translation complexes were also fixed, leading to a more man-
ageable search space. In the remaining runs, we successively in-
creased the number of parameters that were fixed, allowing for
the parameter space to be searched more efficiently. We found
that Runs 3 and 4 were able to fit the data well while still allow-
ing the parameter space to be searched relatively quickly.

The nominal parameter point shown in the first column pro-
vided the values to fix the parameters to, and was found using a
combination of MCMC and manual tuning (details in
Supplementary Section S5). Ultimately, the fits shown in
Figure 3 were generated using the parameter fixing profile of
Run 3, which had a small enough number of free variables to
search over efficiently, while still leaving the model flexible
enough to fit the data. Supplementary Figure S7 shows the mar-
ginal distributions of the core parameters estimated during Run
3, using data from both (25, 47).

Table 1. Runs 1–5: different combinations of parameters that were
fixed during the core parameter inference

Parameter log eðnominalÞ Run 1 Run 2 Run 3 Run 4 Run 5

TXcat 4.9 est est est est est
satp 9.2 est est est * *
datp �9.5 est est est * *
aatp �3.9 est est * * *
polKd 9.5 est est est est est
polF 1.5 * * * * *
polterm 3.3 est est est est *
nKd1 2.9 est * * * *
nF1 0 * * * * *
nKd2 14.0 est * * * *
nF2 0 * * * * *
RNAseKd 9.2 est est est * *
RNAseF 0 * * * * *
RNAsecat �4.4 est est est est *
pol 1.4 est est est est est
RNAse 6.5 est est est est *
TLcat 0.5 est est est est est
GFPmat �6.1 est est * * *
RiboKd 11.2 est est est est est
RiboF �0.2 * * * * *
aaKd 6.6 est * * * *
aaF �0.3 * * * * *
TLn;Kd 14.5 est * * * *
TLn;F �1.2 * * * * *
Riboterm 5.4 est est est est *
Ribo 7.3 est est est est est

Asterisks denote the parameters are fixed to the corresponding values at the

nominal point.

V. Singhal et al. | 7

https://academic.oup.com/synbio/article-lookup/doi/10.1093/synbio/ysab007#supplementary-data
https://academic.oup.com/synbio/article-lookup/doi/10.1093/synbio/ysab007#supplementary-data
https://academic.oup.com/synbio/article-lookup/doi/10.1093/synbio/ysab007#supplementary-data
https://academic.oup.com/synbio/article-lookup/doi/10.1093/synbio/ysab007#supplementary-data
https://academic.oup.com/synbio/article-lookup/doi/10.1093/synbio/ysab007#supplementary-data
https://academic.oup.com/synbio/article-lookup/doi/10.1093/synbio/ysab007#supplementary-data
https://academic.oup.com/synbio/article-lookup/doi/10.1093/synbio/ysab007#supplementary-data
https://academic.oup.com/synbio/article-lookup/doi/10.1093/synbio/ysab007#supplementary-data


4 Case study: experimentally validated
prediction of gene circuit behavior

The main role of the txtlsim toolbox is to be a simulator for the
TX–TL system. This section highlights this role using a case
study involving the prediction and experimental validation of
the behavior of an IFFL.

First, we collected experimental data involving the compo-
nents of an IFFL in five different experiments (Figure 4A, B and
Table 2, top half). Second, we estimated the parameters of the
building blocks of IFFL, with some of the previously estimated
core parameters (Supplementary Figure S7) providing the ap-
proximate ranges of values to search over, while others provid-
ing the values to fix the parameters to. Third, we assembled the

whole gene circuit model of the IFFL using these characterized
parts in txtlsim (Section 2.3) and simulated it. We also collected
experimental data about the dynamical behavior of the whole
IFFL in TX–TL under five sets of experimental perturbations
(Figure 5A, and lower part of Table 2), and compared the simu-
lated model with the experimental data (Figure 5B and C).

4.1 Part characterization

The part characterization experiments involved collecting data
on the isolated behavior of the various components of the IFFL.
The experiments we chose to characterize the components
were pTet constitutive expression, TetR-mediated repression,

A

B

C

D

Figure 4. Part characterization and parameter fitting for the incoherent feed-forward loop (IFFL, schematic in A) with the parameter fixing profile of Stage 2d (Table 3).

(B) Schematics describing the five part characterization experiments used to infer the part-specific parameters. (C) Endpoint curves (mean, standard error at 480 min)

corresponding to the experimental data (blue, n¼3) and corresponding parameter fitting trajectories (orange, n¼50, sampled from the posterior parameter distribution

and simulated). The posterior distributions were generated by fitting the full time-course trajectories to the data (D).
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aTc-mediated induction, pLac constitutive expression and
3OC12HSL-mediated induction (Figure 4B, and Table 2, top half).

We used three models to fit the five IFFL characterization
data sets shown in Table 2. The constitutive pLac expression
and the 3OC12HSL-mediated induction data sets had their own
models, while the remaining three data sets: constitutive pTet
expression, TetR-mediated repression and aTc-mediated induc-
tion only needed a single model, with three different sets of ini-
tial conditions accounting for their differences. Model
equations and associated reaction rate parameters can be found
in Supplementary Section S6.2.

The inference of the parameters associated with the parts of
the IFFL was also performed in a consensus Bayesian inference
framework (Section 6, Materials and Methods). In total, there
were 42 parameters in the model, as shown in the first column
of Table 3. The first 26 parameters were those associated with
the core mechanisms in the toolbox, and were described in
Section 3. The next 8 parameters were associated with the Tet-
repression system, and the final 8 parameters were those asso-
ciated with the Las-activation system.

Table 3 summarizes the multi-stage parameter estimation
scheme that we employed to search the parameter space. This
approach was needed because the 42 dimensional space was
too large to be searched efficiently. All columns except the one
labeled ‘Init.’ describe a parameter inference run in terms of
which parameters were estimated, and which ones were fixed.
There are four types of symbols in this table: Asterisks, the
phrase ‘fixed: p’ (where p is a numerical parameter value), nu-
merical values and the word ‘free’. Asterisks indicate that the
value was the same as the value in the previous column. The
phrase ‘fixed: 1.5’ means that that parameter value was fixed to
1.5 at that stage. A numerical value indicates that that parame-
ter was freely estimated at that stage, and that value was picked
from the resulting distribution (jointly with any other such fixed
values) and fixed in the next stage (therefore, every numerical
value is necessarily followed by an asterisk). Finally, the word
‘free’ means that that parameter was freely estimated at that
stage, but no value was picked for fixing in the next stage (and
is therefore never followed by an asterisk in the next column).
As in the previous section, all parameter values are log-
transformed (base-e).

The first 26 (core) parameters are specified by the ‘Init.’ (ini-
tialization) and ‘St. 1’ (Stage 1) columns of the table.
Initialization refers to the initial parameter point found using
MCMC and manual parameter tuning in Section 3. The numbers
shown in the Stage 1 column correspond to a particular param-
eter point from the distribution found in Run 3 during the core
inference stage.

In Stage 2a, the constitutive pTet expression, TetR-mediated
repression and aTc-mediated induction circuits described in
Table 2 and Figure 4 were characterized. In addition to the core
parameters, there were eight additional Tet-system-associated
parameters in the model. Stage 2 b had the same models, but
with some of the core and Tet-system parameters re-estimated.
In Stage 2c, the 3OC12HSL-mediated induction (activation of the
pLas promoter by the LasR activator) system was introduced,
along with 8 new parameters associated with this model. The
forward rates are fixed to a value of zero (in loge-space), and the
parameters marked ‘free’ were estimated. In Stages 2d–f, we es-
timated different combinations of parameters, and in doing so,
explored the trade-off between model fidelity and the computa-
tional tractability of the MCMC runs. The characterization
results from the probability distribution resulting from Stage 2d
are shown in Figure 4, and the pairwise marginal probabilityT
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distributions are shown in Supplementary Figure S9. The fitting
trajectories and parameter distributions resulting from Stage 2f
are shown in Supplementary Figures S10 and S11.

4.2 Model prediction and experimental validation

Using the part-specific parameters inferred in the previous sec-
tion, we created in silico predictions of the behavior of the whole
IFFL, and compared these to corresponding TX–TL data. We
measured the behavior of the IFFL under five sets of perturba-
tions away from a nominal IFFL. This nominal condition was:
pLac-UTR1-LasR at 1 nM; IPTG at 1 mM (sequestering any native
LacI in the extract); the LasR inducer 3OC12HSL at 1 mM; the re-
pressor DNA pLas-UTR1-TetR at 0.1 nM; the reporter DNA
plas_tetO-UTR1-deGFP at 1 nM; and the TetR inducer aTc at
10 mM.

With this nominal IFFL, we collected the deGFP expression
levels under perturbations of 3OC12HSL, the LasR DNA, aTc, the
TetR DNA and the deGFP DNA, as listed in lower half of Table 2.
The results of these experiments are shown in Figure 5B and C.

A

B

C

Figure 5. Model predictions and experimental validation for the incoherent feed-forward loop (IFFL), with parameters found in Stage 2d. (A) Schematics describing the

five perturbations of the IFFL that were used for the validation of model predictions. (B) IFFL behavior under these perturbations. The nominal IFFL conditions are de-

scribed in the main text. Endpoint measurements of mean and standard error for experimental (blue, n¼3) and predicted (orange, n¼50) values (t¼480 min). (E)

Corresponding experimental and model prediction trajectories.
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The blue curves in Figure 5B show the expression levels of the
deGFP under the various perturbations at 480 min (i.e. end-point
measurements). The error bars are the standard errors of three
technical replicates. Figure 5C, top row, shows the trajectories
of the full 480 min of these experiments.

The model prediction trajectories were generated by sam-

pling points from the joint posterior parameter distribution

resulting from Stage 2d in Table 3, and simulating the IFFL

model at each of these parameter points. The orange curves in

Figure 5B are the mean and standard errors of the deGFP species

concentration at 480 min for 50 of these trajectories. Similarly,

the predictions shown in the bottom row of Figure 5C are the

mean trajectories of the same 50 trajectories. Similar model pre-

dictions from parameter values found in Stage 2f are shown in

Supplementary Figure S12.

5. Discussion

Synthetic biology is an attempt at incorporating engineering
principles into the design of novel biological functions. These
principles include the standardization of parts, the principled
composition of these parts into larger systems, the use of ab-
straction layers to decouple phenomena at different scales, and
the use of rapid prototyping and predictive modeling to speed
up the engineering process.

The rapid prototyping paradigm has been implemented in
synthetic biology using cell-free systems like TX–TL, which,
among various other uses in biomanufacturing, biosensing,
therapeutics and artificial cells, have found utility as a tool for
testing genetic circuits in vitro. In this article, we have described
an in silico modeling toolbox called txtlsim to accompany TX–TL.
This toolbox is built using MATLAB SimbiologyVR , and closely

Table 3. Step-wise parameter inference strategy for IFFL part characterization

Stage Init. St. 1 St. 2a St. 2b St. 2c St. 2d St. 2e St. 2f
Model const. const. tet tet, lac tet, lac, las tet, lac, las tet, lac, las tet, lac, las

polF; lac (or p70) 1.5 * * * * * * *
polKd; lac (or p70) 9.5 13.6 * Free Free Free Free Free
nF1 0 * * * * * * *
nKd1 2.9 * * * * * * *
nF2 0 * * * * * * *
nKd2 14.0 * * * * * * *
RiboF �0.2 * * * * * * *
aaF �0.3 * * * * * * *
aaKd 6.6 * * * * * * *
TLn;F �1.2 * * * * * * *
TLn;Kd 14.5 * * * * * * *
RNAseF 0 * * * * * * *
GFPmat �6.1 * * * * * * *
aatp �3.9 * * * * * * *
TXcat 4.9 2.4 * 2.3 * Free 3.1 *
polterm 3.3 4.4 * * * Free Free Free
pol 1.4 1.6 * Free Free Free Free Free
TLcat 0.5 3.3 * 3.7 * Free 3.4 *
RiboKd 11.2 0.05 * * * * * *
Riboterm 5.4 2.8 * * * Free Free Free
Ribo 7.3 4.2 * Free Free Free Free Free
RNAseKd 9.2 15.6 * * * * * *
RNAsecat �4.4 �0.2 * * * * * *
RNAse 6.5 8.6 * 9.2 * * * *
satp 9.2 8.9 * 10.1 * 9.7 * *
datp �9.5 �9.7 * * * * * *
polF; tet Fixed: 1.5 * * * * *
polKd; tet Free Free Free Free Free Free
repKd Free �2.7 * �0.5 * *
repF 1.3 * * * * *
aTcKd Free �6.0 * Free �2.0 *
aTcF 1.6 * * * * *
dimKd �10.0 * * * * *
dimF 1.4 * * * * *
polF; las Fixed: 0 * * *
polKd; las Free Free Free Free
3OC12Kd Free 13.0 * *
3OC12F Fixed: 0 * * *
pLas� polTF; F Fixed: 0 * * *
pLas� polTF; Kd Free Free Free Free
pLasTF; F Fixed: 0 * * *
pLasTF; Kd Free Free Free Free
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mimics the species, reactions and chemical reaction network
dynamics of TX–TL.

In particular, txtlsim has a number of specific features that
make it suited as a tool for circuit behavior prediction in TX–TL.
First, it explicitly models the usage of enzymes like RNA poly-
merases and ribosomes using mass action kinetics. Unlike Hill
or Michaelis–Menten kinetics, this accounts for the loading of
enzymatic or consumable resources once the binding reactions
involving these resource species are specified. Accounting for
the usage of amino acids and nucleotides usually requires
modeling transcription and translation at the single base or
amino acid resolution (50, 51), making the genetic circuit mod-
els large and unwieldy. We avoid this by modeling these pro-
cesses in a single-step reaction, while accounting for the
resource usage by a separate consumption reaction, with a reac-
tion rate that maintains the correct stoichiometry.

This toolbox also has a library of parts that can be composed
to build a spectrum of circuits. As discussed in this study, the
circuit models built out of part models that have characterized
reaction rate parameters should be predictive of the in vitro be-
havior of the corresponding circuits. We demonstrated this us-
ing the IFFL circuit. We first characterized the parameters
associated with the core transcription, translation and mRNA
degradation mechanics of the toolbox, followed by the parame-
ters associated with the parts of the IFFL. The characterized
models were then combined into a model of the IFFL, and we
verified that the predicted model behavior matched the corre-
sponding experimental data.

Parameter inference of the individual circuit parts may be
performed using MATLAB’s in-built optimization tools, or using
the MCMC based consensus Bayesian inference tools provided
with this toolbox. The Bayesian approach gave estimates of the
joint distribution of the part-parameters, conditioned on the
data, models and any fixed parameters. Visualizing the (mar-
ginalized) probability densities can be used to indicate which
parameters might be non-identifiable, or even co-varying with
other parameters. This allowed us to fix the values of highly
non-identifiable parameters, making otherwise computation-
ally intractable inference problems tractable. Furthermore, the
ability to visualize the co-variation (52) between parameters
allows us to perform this fixing while respecting the relation-
ships between parameters. These considerations were crucial
for performing the inference of both the core model parameters
and the circuit-part specific parameters.

We note that while the behavior of the circuit predicted by
the model is qualitatively correct, it is often far from the behav-
ior in a quantitative sense. Furthermore, we note that we had to
split the parameter inference into multiple stages, where sub-
sets of parameters were estimated at each stage, with parame-
ters from previous stages fixed. The decisions about which
parameters to fix, and which ones to estimate at each stage re-
lied on notions of parameter identifiability, but were also very
much determined heuristically. This point is related to the fact
that, in general, inference and optimization over high dimen-
sional parameter spaces is still very much an art, requiring sig-
nificant trial and error on the part of the modeler. With regards
to both of these points, we note that the emphasis here is on
the toolbox itself as a tool for approximate circuit behavior
modeling during the initial stages of circuit design, as opposed
to the precision of the parameter inference as presented here
per se, or the presented parameter inference approach as a gen-
eral prescription.

We also note that the uncertainty in the data, in the parame-
ter estimates, and in the final predictions are intertwined. At

the simplest level, uncertainty propagates forward through the
process: the uncertainty in the data (both due to measurement
and intrinsic noise) leads to uncertainty in the parameter esti-
mates. This, along with structural non-identifiability of the
parameters (49) leads to uncertainty in the prediction, especially
when parameters from different models are combined. More
complex models of uncertainty propagation can also be consid-
ered. For example, when parameters covary with respect to
each other, and different combinations of these parameters are
taken from different models and experiments (as was done in
this article), the final predictions can have uncertainty in them
because of parameter inconsistencies (52). We leave a formal in-
vestigation of this issue as future work.

Despite the features present in this version of txtlsim, there
are several directions it can be extended in. Most simply, vari-
ous new circuit features may be added to the library of parts,
such as antisense RNA-mediated transcriptional regulation (11)
or integrase-mediated DNA recombination (53). Capabilities for
accounting and correcting for extract batch variation (52, 54),
studying the identifiability of the circuits, for modeling TX–TL
circuits in vesicle (15, 24, 55), paper based (16), mucrofluidic (17)
or clay microgel (56) based modes, or for predicting the in vivo
behavior from the in vitro behavior may also be added, although
these tasks present significant research challenges.

As the field of synthetic biology matures, we expect compu-
tational modeling to play an increasingly predictive role in the
design of genetic circuits, just as it has played in electrical, me-
chanical and aeronautical engineering.

6. Materials and methods
6.1 TX–TL extract and buffer preparation

Preparation and execution of TX–TL was according to previously
described protocols (13), with a modification of the strain used
to ExpressIQ (New England Biolabs).

Briefly, the cells were grown to an OD600 of 1.5, pelleted and
washed. They were then lysed using bead beating, and centri-
fuged to remove the beads and cell debris. The supernatant was
incubated at 37

�
C for 80 min, and then centrifuged to remove en-

dogenous nucleic acids. The supernatant was dialyzed against a
pH8.2 buffer containing Mg-glutamate, K-glutamate, Tris and
DTT. Finally, the extract was centrifuged and the supernatant
was flash-frozen in liquid nitrogen and stored at�80

�
C.

The buffer had the following components: 9.9 mg/ml protein,
9.5 mM Mg-glutamate, 95 mM K-glutamate, 0.33 mM DTT,
1.5 mM each amino acid except leucine, 1.25 mM leucine, 50 mM
HEPES, 1.5 mM ATP and GTP, 0.9 mM CTP and UTP, 0.2 mg/ml
tRNA, 0.26 mM CoA, 0.33 mM NAD, 0.75 mM cAMP, 0.068 mM
folinic acid, 1 mM spermidine, 30 mM 3-PGA, 2% PEG-8000.

Both the extract and buffer were stored at �80
�
C in separate

tubes, with enough volume for seven reactions per tube.

6.2 TX–TL experiment

A 384-well microplate (Nunc) was used for the experiments, and
the appropriate concentrations and volumes of DNA and
inducers to be used in each reaction were calculated using the
spreadsheets provided in (13). The extract and buffer were
thawed for 20 min on ice, mixed in the prescribed ratios, and
pipetted into each well being used in the microplate, which
was also placed on ice. The DNA was then added to each well
according to the spreadsheet. All the pipetting was done to
avoid bubbles, the plate was sealed, and spun at 4000g for 45 s
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at 4
�
C to distribute the mix evenly at the bottom of the wells

and remove any bubbles that might have been introduced. The
plate was placed in a Synergy H1/MF microplate reader (Biotek).
Settings used for deGFP measurement were: excitation/emis-
sion 485 nm/515 nm, at gain 61, measured every 8 min for 8 h.

6.3 Plasmid construction

DNA was cloned using standard molecular biology procedures
(29, 30, 31) and propagated in a JM109 recA- lacIQ (Zymo
Research) strain for purification. Small-scale purifications were
done by miniprep (PureYield, Promega) followed by a PCR purifi-
cation for desalting (QiaQuick, Qiagen). Large-scale purifications
were done by midiprep or maxiprep (NucleoBond Xtra Midi or
NucleoBond Xtra Maxi, Macherey-Nagel). All plasmids were iso-
lated in stationary phase and sequenced before use.

6.4 IFFL part screening in TX–TL

We first characterized a LasR-responsive promoter, pRsaL (Porig),
from previously published work by testing its ability to express
deGFP in the presence of LasR and 3OC12HSL (Supplementary
Figure S8A) (32). While the promoter was responsive to LasR, the
Vmax of the promoter was lower than anticipated and the dynamic
range was under 6-fold (Supplementary Figure S8B, C). To find a
more robust part, we used TX–TL to screen four more promoters
taken from the Registry of Standard Biological Parts or from
RNAseq data of known responsive elements (33). Out of our
screen, P1 showed a 7-fold improved Vmax over Porig and a 29-fold
dynamic range (Supplementary Figure S8B, C). We also character-
ized the basal leakiness of the promoters without LasR present
(Supplementary Figure S8D). Finally, we confirmed the result from
our extract was generalizable by testing all 5 promoters for Vmax in
11 independently made extracts using the same method (13) but
over four E. coli strains (Supplementary Figure S8E). We then used
P1 for the downstream LasR-responsive promoter due to its high
Vmax. To engineer a TetR-repressible, LasR activatable combinato-
rial promoter, we tried two placements of the tetO operator sites
(Supplementary Figure S8F-I) and characterized the response of
these variants under aTc activation.

6.5 Modeling framework

We assume mass action kinetics, along with a well stirred, con-
stant temperature and volume assumption on our reactions.
This allows us to model the chemical equations as a set of ordi-
nary differential equations (ODEs) with the reaction rate param-
eters and the unknown initial concentrations as the parameters
of the system. Formally, we define an experiment H ¼ ðS; x0; yÞ
to be the execution of a system S under initial conditions x0 and
output measurements y, where the bar denotes the assumption
that experimental data reflects the ground truth. With each ex-
periment, we associate an initialized, parametrized ODE model
Mi, with the general structure

_x ¼ f ðx; hÞ;
y ¼ hðx; hÞ; xð0Þ ¼ x0ðhÞ;

(6)

where the state vectors, which encode the species concentra-
tions, are x; x0 2 Rn

þ, and are assumed to exist for all t � 0. The
parameter vector symbol is h 2 X � Rp, where X is the set of all
possible parameter points of interest. The output is denoted
y 2 RS, where S is the number of output variables.

6.6 Experiment ensemble and consensus parameter
inference

In general, we have multiple experiments informing some com-
mon set of parameters, where a given experiment may not in-
form every parameter, but every parameter is informed by at
least one experiment.

Consider an ensemble of experiments fH1; . . . ;HIg, and an
associated ensemble of models fM1; . . . ;MIg, where model Mi

with parameters hðiÞ 2 Rpi captures the evolution of the system
in experimentHi under the specified initial conditions.

The different experiments range over different doses (initial
conditions), replicates and genetic circuits (systems). The data
are collected at a given sampling rate, which discretizes the tra-
jectories. For the i-th experiment, the discretization of yðiÞ may
be written as a matrix, Y

ðiÞ 2 R
TðiÞ�SðiÞ , where we note that the

number of time points TðiÞ and measured output variables SðiÞ

will in general depend on i. We concatenate the set of these
matrices into a block matrix

Y¢ Y
ð1Þ

Y
ð2Þ

. . . Y
ðIÞ

��� i
;

������
�

with the appropriate padding of zeros when the number of time
points differ between experiments.

We collect all the parameters from the ensemble into a master
vector, W 2 R

ptot , counting a parameter that appears in multiple

hðiÞ’s only once, so that ptot �
PI

i¼1 pi. The individual parameter

vectors can be related to the master vector via a binary member-

ship matrix C 2 f0; 1gptot�I, where the (k, j)-th entry is 1 if the k-th

element of W is present in hðjÞ, and 0 otherwise.
If we group the individual parameter vectors into a matrix

H¢½ hð1Þ . . . hðIÞ �, and consider diagðWÞ as the square matrix with
the elements of W on the diagonal, and zeros elsewhere, then
the matrix equation H ¼ diagðWÞ 	 C relates the master vector to
the individual models’ parameters via the membership matrix.
Consensus parameter inference is described visually in Figure 6.

6.7 Bayesian parameter inference

In general, there are two broad classes of methods for estimating
parameters of models: the optimization approach and the
Bayesian approach. In the optimization approach, one searches for
a point in the parameter space that minimizes an energy function,
which penalizes the difference between the model’s behavior and
the experimental data. Such methods are usually faster than the
Bayesian approach, and work best when the energy function has a
single global minimum or, if there are multiple minima, these min-
ima are isolated from one another. In contrast, the Bayesian ap-
proach involves estimating the probability distribution of the
parameters, given the data. While estimating these distributions
can be computationally demanding, this approach has the advan-
tage of giving insight into the joint distributions of the parameters,
and in doing so highlighting not just the presence of global or lo-
cally isolated minima, but also showing correlations between
parameters. As described in Section 3.2, this helps identify the
non-identifiability of the parameters, and helps the modeler un-
derstand how the data constrains the values of the parameters.
Another advantage of the Bayesian approach is for model selec-
tion. The probabilities associated with different parameter esti-
mates can be used to assign relative confidence to different
parameter values, something that is not possible with the point
estimates found via optimization based methods.
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We wish to determine the probability density of the parameters,
conditioned on the experiments, models, and consensus pattern,

pðW jfHigI
i¼1; fMigI

i¼1;CÞ; (7)

where the data for experiment i are included by virtue of being
an element of the experiment tuple, Hi. In what follows, we
simplify notation by replacing fHigI

i¼1 with the data matrix Y , as
defined in the previous section. We also drop C and fMigI

i¼1,
though these are assumed. Then, Bayes rule gives

pðWjYÞ ¼ pðY jWÞ 	 pðWÞ
pðYÞ

:

We assume the prior to be uninformative (uniform within a
hypercube, and zero outside). The likelihood function involves
data from all the experiments, measured species, replicates and
time points, and is defined as

LðWÞ ¢pðY jWÞ

¼ 1

ð2pr2ÞN=2
exp � jjrðWÞjj

2
2

2r2

� �
:

The vector rðWÞ is defined as

rðWÞ¢vec
�

W 

�

Y � ŶðWÞ
��
;

with the 
 symbol denoting the element-wise (Hadamard) prod-
uct, and vec denoting the column-wise reshaping of a matrix into
a vector. N denotes the total number of data points in the output
of the models. The model predictions Ŷ depend on the parameter
values W, and are arranged the same way as Y . The matrix W has
the same shape as Y , and contains weights to normalize for the
different magnitudes of different output variables. For example,
the concentrations of proteins are often much greater than those
of mRNA, and fitting performance can be improved greatly by
normalizing these data sets using W. Finally, we follow the stan-
dard practice of working with log-probabilities, which improves
both the speed and stability of the numerical computations [(34),
chapter 22]. We also note that all the parameter values were
transformed using log e, so that the nonnegative orthant (where
the parameters are naturally restricted to) mapped invertibly to
the entire Euclidean space. This allowed the parameter inference
to be performed without the nonnegativity constraint, greatly
simplifying the problem.

In general, there is no analytical description of the parame-
ter distributions associated with biochemical reaction networks.
The standard approach is to use Markov chain Monte Carlo
(MCMC) methods to sample from the desired parameter distri-
bution, and construct an approximation to this distribution.
This is done by constructing a Markov chain that has this distri-
bution as its stationary distribution. It does this by performing a
random walk in parameter space, such that the probability of
being in a given region is proportional to the desired probability
density in that region (35). We used the MATLAB implementa-
tion from (36) of the emcee sampler (37, 38), with some modifi-
cations for better walker initialization and handling of
numerical ill-conditioning.

Supplementary Data

Supplementary Data are available at SYNBIO Online.

Code, data and plasmid availability

The code for this toolbox is available at https://github.com/vipul
singhal02/txtlsim_buildacell, along with multiple tutorials, and
scripts to download the data and generate the figures in both
the paper and the supplementary information. Supplementary
section S1 gives information on the plasmids and their
availability.
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