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Glioblastoma (GBM) is the most common and aggressive primary brain

tumor, in which GBM stem cells (GSCs) were identified to contribute to

aggressive phenotypes and poor prognosis. Yet, how GSCs progress to

invasive cells remains largely unexplored. Here, we revealed the cell sub-

populations with distinct functional status and the existence of cells with

high invasive potential within heterogeneous primary GBM tumors. We

reconstructed a branched trajectory by pseudotemporal ordering of single

tumor cells, in which the root showed GSC-like phenotype while the end

displayed high invasive activity. Thus, we further determined a path along

which GSCs gradually transformed to invasive cells, called the ‘stem-to-in-

vasion path’. Along this path, cells showed incremental expression of GBM

invasion-associated signatures and diminishing expression of GBM stem

cell markers. These findings were validated in an independent single-cell

data set of GBM. Through analyzing the molecular cascades underlying

the path, we identify crucial factors controlling the attainment of invasive

potential of tumor cells, including transcription factors and long noncoding

RNAs. Our work provides novel insights into GBM progression, especially

the attainment of invasive potential in primary tumor cells, and supports

the cancer stem cell model, with valuable implications for GBM therapy.

1. Introduction

Glioblastoma (GBM) is the most common and

highly aggressive primary tumor of the central ner-

vous system with extremely poor prognosis despite

intensive treatment (Murray et al., 2014). GBM

characteristically exhibits aggressive proliferation and

highly invasive properties with high mortality (Kle-

ber et al., 2008). It can spread to spinal cord and

other parts of the brain, which presents huge chal-

lenges to the current therapies. The dismal clinical

status of GBM treatment urgently needs novel

understanding of molecular mechanisms of disease

progression.

In the traditional model, invasion and metastasis

were the late events during tumor development and

progression, which is considered to be attributed to

cancer stem cells (CSCs) by many studies (Jaraiz-

Rodriguez et al., 2017; Liu et al., 2015; Miao et al.,

2015). However, increasing evidence has shown that

epithelial–mesenchymal transition (EMT) and dissemi-

nation can actually occur early during cancer progres-

sion (Eyles et al., 2010; Hosseini et al., 2016; Linde

et al., 2018; Rhim et al., 2012). These studies suggest

that cells may acquire the invasive and metastatic abil-

ity in primary tumors, which have been ready to dis-

seminate to distant sites and also contribute to the

high heterogeneity of tumors especially GBM (Meyer
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et al., 2015). Thus, detailed investigation of these pro-

cesses can reveal the important events during GBM

progression and identify the molecular determinants of

invasion.

Although traditional bulk tumor analyses have iden-

tified key genes and pathways that drive invasion of

GBM cells (Galavotti et al., 2013), they provide lim-

ited insight into molecular mechanisms underlying

GBM invasion. Instead, single-cell RNA sequencing

(scRNA-seq) generates gene expression profiles at the

resolution of an individual cell (Tang et al., 2009),

which has been comprehensively applied to reveal the

heterogeneity of diverse cancers (Chung et al., 2017; Li

et al., 2017; Patel et al., 2014). It provides an unprece-

dented chance to capture and subtly dissect the molec-

ular cascades, and to determine the key molecular

determinants during the acquisition of invasive poten-

tial for GBM cells, similar to its application to studies

on differentiation and development (Deng et al., 2014;

Trapnell et al., 2014).

In this study, we took advantage of scRNA-seq data

to provide a detailed analysis of cellular heterogeneity,

reveal the invasion-associated progression path

through which cells gradually acquire the invasive

potential, and identify key factors involved in GBM

progression.

2. Materials and methods

2.1. Single-cell RNA-seq data preprocessing

2.1.1. Quantification and quality control

The raw data for most of analysis in this study were

downloaded from GEO database (GSE57872). These

data were published by Patel et al. (2014) and included

576 cells from five primary GBM patients (MGH26,

MGH28, MGH29, MGH30, and MGH31). Reads

were mapped to the reference transcriptome by BOWTIE

(version 1.1.1) (Langmead et al., 2009), and gene

expression levels were quantified as transcripts per mil-

lion (TPM) using RSEM (version 1.2.28) (Li and Dewey,

2011) with the option estimate-rspd and default

parameters. We excluded low-quality cells based on

two quality measures: the number of aligned reads

< 2e5 or number of genes detected < 3000. In the sub-

sequent analysis, we excluded all cells of MGH31 for

their relatively lower percentages of mappable reads.

2.1.2. Screen tumor cells by copy number alterations

We inferred copy number variations (CNVs) for each

cell as previously described (Patel et al., 2014). Briefly,

all genes were ordered by their chromosomal location,

and the copy number of each gene was calculated as

the sliding average of log2-transformed TPM values

with a window of 100 flanking genes within each chro-

mosome, which was then centered across all cells. Sim-

ilarly, we inferred a CNV vector using normal brain

data from GTEx portal (GTEx Consortium, 2013) as

a control. Then, we performed hierarchical clustering

and removed the nontumor cells which showed few

CNVs, similar to the control. Finally, we remained

350 tumor cells.

2.1.3. Normalization

For each of the remaining four patients, we identified

the genes that were not expressed in at least 95% of

cells for that respective patient, and removed their

intersection. A total of 14 919 genes remained.

Then, we followed the normalization steps as previ-

ously described (Karaayvaz et al., 2018). Briefly, we

first used the Census algorithm (Qiu et al., 2017) to

transform the TPM values into relative counts which

were negative binomially distributed. We performed

this step by function relative2abs from the R package

Monocle (Qiu et al., 2017). Then, scran (Lun et al.,

2016) was used to normalize the Census counts with

cell-specific scaling factors. The R package scran specif-

ically considers the high dropout rate of scRNA-seq

and divides the expression of each cell by the scaling

factors. In this step, three cells were removed as their

low transcriptomic diversity, resulting in 347 cells for

subsequent analysis. Finally, we removed additional

sources of unwanted variation with RUVSeq (Risso

et al., 2014). RUVSeq uses a generalized linear model

to regress out the variation estimated from the expres-

sion of the housekeeping genes. We used a list of 98

housekeeping genes compiled by Tirosh et al. (2016a)

(Table S1). We performed this step by function RUVg

with parameter k = 1, which was not performed when

processing lncRNA expression profiles, since there

were no long noncoding RNAs (lncRNAs) which

showed constant expression levels among samples like

housekeeping genes.

2.1.4. Extra data preprocessing

The raw data (GSE84465) for validation were down-

loaded from GEO database, which contains 3589 cells.

These data were published by Darmanis et al. (2017)

and preprocessed with the same steps as the data from

Patel et al. Finally, 882 tumor cells remained for sub-

sequent analysis. We also obtained the oligoden-

droglioma data (GSE70630) published by Tirosh et al.
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(2016b) and a set of single-cell data of the normal

brain (GSE67835) published by Darmanis et al.

(2015), in which 4044 and 277 cells, respectively,

remained after the similar filtration.

2.2. Clustering of tumor cells

Tumor cells were clustered using the method developed

by Monocle with regressing out the patient effect.

Based on the assumption that the expressions of one

gene in cells of the same group fit the same linear

model, we used the least square to fit a linear model

for each gene in the cells of each patient. Therefore,

the patient-specific effects could be measured by the

differences between linear models of different patients.

Given the expression matrix and patient labels of each

cell, the function lmFit in R package limma (Ritchie

et al., 2015) could be used to calculate the differences

between fitted linear models (coefficients matrix),

which was then subtracted from original expression

matrix to remove the patient effect on gene expression.

In this study, we followed the approach used by

Karaayvaz et al. (2018) and did the regression of the

patient effect via the function reduceDimension in the

R package Monocle, which actually used the lmFit

function. Genes with mean expression > 0.1 and high

dispersion were used for clustering. We clustered cells

by the function clusterCells in R package Monocle

with parameters rho_threshold = 2 and delta_thresh-

old = 4. Monocle uses a density-based approach

(Rodriguez and Laio, 2014) to cluster cells based on

each cell’s local density (rho_threshold) and the near-

est distance (delta_threshold) to another cell with

higher distance and automatically determine the num-

ber of clusters. Any cell with a higher local density

and distance than the thresholds is considered as the

density peaks, which are then used to define the clus-

ters for all cells. We finally identified six clusters in the

data from Patel et al. and 12 clusters in the data from

Darmanis et al.

2.3. Differential expression analysis and

functional annotation

We used the SCDE software package (version 2.2.0)

(Kharchenko et al., 2014) to identify the significantly

highly expressed genes in each cell cluster. Briefly, this

probabilistic method takes raw count data as input

and fits cell-specific error models to estimate the poste-

rior probability of expression magnitude for a gene in

each cell. Then differential expression analysis was per-

formed using the joint posterior probability of expres-

sion in each cell cluster. We considered the genes with

absolute cZ more than 2.58 (P < 0.01) as the signifi-

cantly differentially expressed genes. Then, the func-

tional annotations for these genes were implemented

by the Molecular Signatures Database (MSigDB)

(Liberzon et al., 2011; Subramanian et al., 2005) with

hypergeometric test and the threshold of FDR < 0.05.

2.4. Estimation of activity for diverse signatures

and pathways

GSVA algorithm (Hanzelmann et al., 2013) was imple-

mented to evaluate the relative activation status for a

signature or pathway. GSVA scores for cancer hall-

mark and glioma-related signatures as well as signaling

pathways were calculated using predefined gene sets

extracted from the MSigDB. For G1/S, G2/M, CSC,

and invasive scores, we calculated the mean expression

levels of that respective gene set. Gene sets reflecting

the expression program of the G1/S and G2/M phases

of the cell cycle were taken from Tirosh et al. (2016a).

And here, we used data-derived thresholds of 3 median

absolute deviations above the median to define 45

cycling cells and 302 noncycling cells. CSC and inva-

sive signatures were manually extracted from previous

studies (Table S1).

2.5. Single-cell trajectory reconstruction and

analysis

Single-cell pseudotime trajectories were constructed

with MONOCLE (version 2.6.4) (Qiu et al., 2017). Briefly,

we first selected a set of ordering genes which showed

differential expression between clusters. Then, Mono-

cle uses reversed graph embedding, a machine learning

technique to learn a parsimonious principal graph,

reduces the given high-dimensional expression profiles

to a low-dimensional space. Single cells are projected

onto this space and ordered into a trajectory with

branch points. As called in Monocle, cells in the same

segment of the trajectory have the same ‘state’.

Branched expression analysis modeling was used to

further test for branch-dependent gene expression.

2.6. Gene expression states by HMM

We used an hidden Markov model (HMM) to predict

gene expression states (on or off) throughout pseudo-

time as described elsewhere (Shin et al., 2015). Briefly,

we divided pseudotime into 20 bins, in which cells

have identical states for most genes. We calculated the

mean expression level in each bin as the observed vari-

ables for HMM. Then, a Baum–Welch algorithm was

used to extract the most likely emission matrix and
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transition probability. Finally, the Viterbi algorithm

used the observed variables along with output from

the Baum–Welch algorithm to predict binary gene

expression states.

2.7. Cell lines and cell culture

Human GBM cell lines U87, U251, LN229 were

obtained from Shanghai Cell Bank of the Chinese

Academy of Sciences (Shanghai, China). All cells were

routinely cultured in Dulbecco’s modified Eagle’s med-

ium supplemented with 10% FBS (PAA Laboratories

GmbH, Pasching, Austria) at 37 °C in humidified

atmosphere of 5% CO2 in air.

2.8. RNA interference

Short-interfering RNAs (siRNAs) specifically against

EPAS1 were purchased from RiboBio (Guangzhou,

China) and then transfected into GBM cells using

Lipofectamine 2000 reagent (Invitrogen, Shanghai,

China) according to the manufacturer’s protocol. Cells

transfected with corresponding scrambled siRNA were

used as controls. The gene silencing effect was mea-

sured by Western blotting 48 h post-transfection.

2.9. Western blotting

Proteins were extracted from cell lysates with RIPA buf-

fer (Thermo Fisher Scientific, Waltham, MA, USA) and

were separated by 10% SDS/PAGE and then trans-

ferred onto PVDF membranes (Millipore, Billerica,

MA, USA). Immunoblots were blocked with 5% BSA

in TBS/Tween-20 and incubated with primary antibod-

ies overnight at 4 °C. The following primary antibodies

were used: b-catenin (Proteintech, Wuhan, China) and

EPAS1 (Affinity Biosciences, Cincinnati, OH, USA).

2.10. Cell invasion and migration assays

Invasion and migration assays were performed using

Corning chambers (Corning, Tewksbury, MA, USA)

with Matrigel (for invasion assay) or without Matrigel

(for migration assay) following the manufacturer’s pro-

tocol. The cells were suspended in media containing 2%

FBS and were seeded on upper chambers, while media

containing 20% FBS was placed in the lower chambers.

After incubation for 24 or 48 h at 37 °C, the remaining

cells on the upper surface were gently removed by a cot-

ton swab. Then, cells that had invaded or migrated to

the lower surface of the membrane were fixed with

methanol and stained with hematoxylin and eosin. Cells

in three randomly visual fields (at 1009 magnification)

were counted. Both experiments were repeated in tripli-

cate independently.

3. Results

3.1. Cellular heterogeneity within glioblastoma

Tumor heterogeneity contributes to cancer progression

and therapy failure (Kreso and Dick, 2014). We ini-

tially downloaded single-cell RNA-seq data from five

GBM patients (published by Patel et al. (2014) in

order to delineate the cellular heterogeneity. After

stringent quality control and normalization, we ana-

lyzed a total of 347 cells from four patients (see Mate-

rials and methods). Then, we clustered all the tumor

cells through excluding patient-specific effects with lin-

ear regression (see Materials and methods). We identi-

fied six clusters of cells, all of which derived from all

four patients (Fig. 1A-C and Fig. S1A). Cluster 2 was

represented by a substantial proportion of cells, which

was prominent in patients MGH28 and MGH29. Clus-

ter 3 was prominent in patient MGH30 which lacked

cluster 1 cells, while clusters 5 and 6 were most promi-

nent in patient MGH26.

We next sought to investigate the common biology

of cells in each cluster through identifying cluster-

specific genes using a Bayesian method SCDE

(Kharchenko et al., 2014) (Fig. 1D). Except for cluster

4, we identified different numbers of significantly

upregulated genes in clusters ranging from 4 to 336

(Table S2). Functional enrichment analysis of these

genes revealed significant enrichment for cell cycle pro-

cesses in cluster 1 (Fig. 1E). Genes specific in cluster 2

were involved in cell adhesion, response to stress, and

development, while upregulated genes in cluster 6 were

mainly related to brain development such as central

nervous system development, forebrain, and telen-

cephalon development. We did not identify functional

annotations for clusters 3, 4, and 5 due to the small

number of genes. These findings implied the existence

of cell subpopulations with high heterogeneity in

GBM.

3.2. Cell clusters reflect diverse tumor-related

status

Distinct transcriptional profiles between cell clusters

suggested divergent tumor cell behavior. We next used

the predefined gene sets to estimate and compare the

cancer hallmark-associated status between clusters, in

which Wilcoxon rank-sum test was used to calculate

the statistical significance. We found that cluster 1 was
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strongly associated with G2M checkpoint and DNA

repair, both of which control the cell cycle (Fig. 2A).

To confirm this, we used validated gene signatures pre-

viously shown to identify G1/S and G2/M cell cycle

phases and distinguishing high cycling from low

cycling cells to determine their cell cycle status. Com-

pared with other clusters, cluster 1 showed higher

expressions of G1/S and G2/M signatures. All cells in

cluster 1 were cycling cells (see Materials and methods)

and MKI67 exclusively expressed in this cluster

(Fig. S1B–D), suggesting their high proliferative activ-

ity. Cluster 2 showed relatively higher expression of

EMT and angiogenesis-associated genes (Fig. 2B),

implying it may contain tumor cells with invasive

potential. Consistently, it was also enriched for hypox-

ia- and inflammation-associated genes (Fig. 2C), both

of which can induce cancer cell migration and promote

cancer progression (Bald et al., 2014; Joseph et al.,

2015).

We then obtained glioma-related signatures to inves-

tigate cell clusters. Compared with cluster 1, cluster 6

demonstrated lower expression of plasticity genes but

relatively higher expression of stem cell-related genes

(Fig. 2D). Moreover, we selected pathways closely

involved in cancer progression to evaluate their activa-

tion status and revealed that mTOR signaling was

enriched in cluster 1, cluster 3 highly expressed FGFR

and PI3K-AKT signaling-related genes, while clusters

−10

−5

0

5

10

−15 −10 −5 0 5 10
Component 1

C
om

po
ne

nt
 2

Cluster
1

2

3

4

5

6

0

25

50

75

100

MGH26 MGH28 MGH29 MGH30
Patient

C
el

l n
um

be
r

Cluster

C1

C2

C3

C4

C5

C6

STMN1
HMGN2
CDCA8
KIF2C
CDC7
NUF2

UBE2T
CENPF
RRM2

NCAPH
BUB1

CKAP2L
HJURP
SGOL1

KIF15
POC1A

ECT2
RFC4

NCAPG
H2AFZ
SOD2
CTSB
GFAP

FN1
CD44
CLIC4
CNN3

NAMPT
C1R

WARS
SAT1

GBP2
PIRT
UBC

ALDOA
TAGLN2

SPARCL1
TNC

ZFP36L1
LAMP2

FAXDC2
PCDH9
ITGB8

ARAP2
LANCL2
SEC61G

CRIP2
APOD
GPS1
DBN1
LSM7
BEX1

ATP6V0E2
C8orf46

EIF4EBP1
CTTNBP2

SEC11C
CBX3

ZNF462
NCALD

MARCKS
SRSF6
LPPR1

SEC61G
LANCL2
LHFPL3

PCMTD2
PTPRS
APOD

DCX
TNR

CHD7
SOX4

REV3L
TM4SF1

Cluster

Cluster
C1
C2
C3
C4
C5
C6

−6

−4

−2

0

2

4

6

GO_CELL_CYCLE
GO_CELL_CYCLE_PROCESS

GO_MITOTIC_CELL_CYCLE
GO_CHROMOSOME_ORGANIZATION

GO_DNA_METABOLIC_PROCESS
GO_ORGANELLE_FISSION

GO_CELL_DIVISION
GO_MITOTIC_NUCLEAR_DIVISION

GO_CELLULAR_RESPONSE_TO_DNA_DAMAGE_STIMULUS
GO_DNA_REPAIR

GO_CHROMOSOME_SEGREGATION
GO_DNA_REPLICATION

GO_REGULATION_OF_CELL_CYCLE
GO_SISTER_CHROMATID_SEGREGATION

GO_NUCLEAR_CHROMOSOME_SEGREGATION

−log P value
0 50 100 150 200

−log P value

GO_CENTRAL_NERVOUS_SYSTEM_DEVELOPMENT
GO_HEAD_DEVELOPMENT

GO_TELENCEPHALON_DEVELOPMENT
GO_NEUROGENESIS

GO_FOREBRAIN_DEVELOPMENT
GO_BIOLOGICAL_ADHESION

GO_REGULATION_OF_PEPTIDE_SECRETION

−log P value
0 1 2 3 4

A B C

D E

0 2 4 6 8 10 12

GO_TISSUE_DEVELOPMENT
GO_IMMUNE_SYSTEM_PROCESS
GO_RESPONSE_TO_WOUNDING

GO_REGULATION_OF_CELL_PROLIFERATION
GO_REGULATION_OF_CELL_DEATH

GO_NEGATIVE_REGULATION_OF_CELL_DEATH
GO_EPITHELIUM_DEVELOPMENT

GO_WOUND_HEALING
GO_BLOOD_VESSEL_MORPHOGENESIS

GO_ANGIOGENESIS
GO_CIRCULATORY_SYSTEM_DEVELOPMENT

GO_REGULATION_OF_CELL_ADHESION
GO_VASCULATURE_DEVELOPMENT

GO_REGULATION_OF_IMMUNE_SYSTEM_PROCESS
GO_REGULATION_OF_CELL_DIFFERENTIATION

−10

−5

0

5

10

−15 −10 −5 0 5 10
Component 1

C
om

po
ne

nt
 2

Patient MGH26 MGH28 MGH29 MGH30

Fig. 1. The cell clusters identified in data from Patel et al. (2014) (A) T-SNE plot of tumor cells showing six clusters, in which patient effects

have been regressed out. (B) T-SNE plot showing the distribution of the patients matching (A). (C) The cell numbers of each cluster in each

patient. (D) Heatmap depicting the expression of top upregulated genes in each cluster identified by SCDE. No such genes have been

identified for cluster 4. (E) Functional annotations by MSigDB for genes highly expressed in clusters 1, 2, and 6. The colors are the same as

those for cell clusters.

2592 Molecular Oncology 13 (2019) 2588–2603 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Single-cell RNA-seq reveals GBM invasive mechanism B. Pang et al.



4 and 5 showed high RAF signaling pathway activity

(Fig. 2E). These results indicated that different cell

subpopulations in GBM displayed various status

which reflect distinct tumor biology, providing novel

insights into molecular signatures of GBM cell clus-

ters, including both intrinsic properties and regulation

of signaling pathways.

3.3. Branched structure of tumor cells reveals

the ‘stem-to-invasion path’ in glioblastoma

Based on the observation that cluster 6 showed stem

cell-like signatures while clusters 1 and 2 displayed

strong cell cycle activity and invasive potential, respec-

tively, we speculated that single-cell RNA-seq may
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Fig. 2. The status characterization of cell clusters. Boxplots showing the GSVA scores of each cell cluster for cell cycle-associated

signatures (A), invasion- and metastasis-associated signatures (B, C), GBM cell plasticity and GSC signatures (D), and key signaling pathway

genes (E). The diverse signatures and pathway genes were extracted from MSigDB. Heatmap in the bottom depicting the P value by

Wilcoxon rank-sum test for comparing each pair of clusters.
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capture the main transformed processes of CSCs dur-

ing tumor progression. To address this, Monocle was

used to reconstruct a trajectory which mainly con-

tained four branches (denoted ‘B1’, ‘B2’, ‘B3’, and

‘B4’) and grouped cells into seven states (Fig. 3A, see

Materials and methods). Notably, the trajectory’s root

(B1) was populated by the majority of cluster 6 cells

(Fig. 3B), consistent with the functional annotation

and status characterization of cluster 6. To confirm

the stem cell-like identity of cluster 6, we used the

well-known markers of GBM stem cell (GSCs; such as

SOX2, PROM1/CD133, SOX4, THY1, and ASCL1)

to define a CSC score for each cell (see Materials and

methods). We found that the CSC scores were high in

B1 (state 1; Fig. 3C), similar to the dynamic changes

of these markers (Fig. S2A).

Most interestingly, B3 (refers to cells of states 4 and

5) was populated by cells from cluster 2 (Fig. 3B),

implying the cells in this branch may acquire invasive

potential. To validate this, we collected experimentally

confirmed genes which could contribute to the inva-

sion of GBM cells (such as ZEB1, HNRNPC,

WNT5A, and DRAM1) to evaluate the invasive scores

for each cell (see Materials and methods). As shown in

Fig. 3D, cells in states 4 and 5 showed the highest

invasive scores, followed by state 2 cells which located

between two main branch points. This observation

was supported by the high scores for cluster 2 cells

and low scores for cells in clusters 5 and 6 (Fig. S2B).

Based on the above findings, we considered that the

cells travelled from B1 through branch point 2, state

2, and then to B3, representing the tumor progression

from GSCs to invasive cells (denoted ‘stem-to-invasion

path’), during which the CSC scores gradually

decreased and invasive scores gradually increased as a

function of pseudotime (Fig. 3E,F and Fig. S2C). The

‘stem-to-invasion paths’ were also identified when we

performed the pseudotime analysis for each patient

separately and similar change patterns of CSC and

invasive scores along these paths were observed in

most patients except for MGH29 (Figs S3–S6).
In order to further explore our assumption, we first

identified 26 and 110 genes with branch-dependent

expression (false discovery rate < 1e-4, see Materials

and methods) for branch points 2 and 1, respectively

(Fig. 3G,H). Cells traveling from B1 to state 2 highly

expressed genes involved in both cell cycle and tumor

invasion at the later stage (Fig. 3G), which was accor-

dant with its mixed status facing the selection of two

paths (B3 or B4). Among those genes, CAV1, a princi-

pal structural component of caveolar membrane

domains, has been widely reported to promote tumor

invasion and metastasis (Huang et al., 2012; Joshi

et al., 2008). There is also evidence for association of

SAA2 (serum amyloid A2) with invasiveness of glioma

cells (Knebel et al., 2013). Notably, the expression of

both genes further increased when cells travelled to B3

from state 2 (Fig. 3H). During this process, genes such

as SOD2, MMP19, SLC2A3, and SLPI were also

upregulated, all of which were related to the invasion

and migration of tumor cells (Mikami et al., 2016;

Muller et al., 2010; Ren et al., 2017).

Next, we sought to delineate the molecular events

underlying the stem-to-invasion path. We generated a

list of the top 1000 positively correlated genes with

pseudotime along this path (Spearman correlation

coefficient > 0.28), as well as the top 1000 negatively

correlated genes (Spearman correlation coefficient

< �0.22). A HMM was used to determine the binary

on/high or off/low expression state of each gene along

pseudotime with an unbiased fashion (see Materials

and methods). Plots of the top 150 genes each from

the two lists showed distinct but sequential transition

patterns of gene expression (Fig. 4A,B). To obtain bio-

logical insights into these dynamic processes, we per-

formed gene ontology analysis using ClueGO (Bindea

et al., 2009). Positively correlated genes revealed

enrichment for invasion-associated processes such as

cell migration, cell adhesion, and ECM–receptor inter-

action (Fig. 4C), while negatively correlated genes

enriched for neuron development and RNA metabolic

process (Fig. 4D).

Taken together, these results demonstrated that the

stem-to-invasion path can partially represent the trans-

formed process from GBM stem-like cell to invasive

cells, and reflect the molecular cascades during GBM

progression.

3.4. Extra data reproduces similar ‘stem-to-

invasion path’ in glioblastoma progression

To validate whether the stem-to-invasion path could be

recaptured in other GBM data, we obtained another

single-cell RNA-seq data set of GBM (published by

Darmanis et al. (2017) which contains 3589 cells from

four patients. Following the same data processing, the

final number of tumor cells for validation was 882.

In validation data, we identified 12 clusters

(Fig. 5A). Then, a trajectory was reconstructed by

Monocle, which contained six main branches (denoted

‘B1’ to ‘B6’) and four paths between branch points

(denoted ‘P1’ to ‘P4’), which grouped cells into eleven

states (Fig. 5B). We found B1 (state 1) contained most

of cluster 11 cells and part of cluster 6 cells, B3 (state

9) contained most of cells in clusters 9, 10, and 12,

while most of cluster 3 and 7 cells located in B4
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(Fig. 5C). To determine whether this trajectory had

similar structure with that in data from Patel et al., we

first evaluated the expression of EMT- and angiogene-

sis-associated genes, which showed that clusters 3, 4, 7,

and 9 have higher scores (Fig. 5D). Notably, cells in

these clusters mainly enriched in B4, corresponding to

state 8, which consistently displayed the highest inva-

sive score with an incremental pattern (Fig. 5G). Next,

we detected the expression patterns of G1/S and G2/

M signatures and found their enrichment in clusters 8,

10, and 12, corresponding to B3, consistent with the

enrichment of cycling cells (Fig. 5E and Fig. S7A,B).

Notably, compared with state 8 (B4), state 1(B1)

showed higher CSC scores (Fig. 5F), and similar to

data from Patel et al., the CSC scores gradually

decreased as pseudotime increased for all cells

(Fig. S7C). Therefore, we considered the path where

cells travelled from the root B1 through P1, P2, P3,

and P4 and finally to B4 as the ‘stem-to-invasion path’

here (Fig. 5B). As expected, the CSC scores were also

decreased and the invasive scores were gradually

upregulated as a function of pseudotime along this
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Fig. 3. Reconstruction of a trajectory reveals branched structure and the stem-to-invasion path. (A) The single-cell trajectory reconstructed

by Monocle contains four main branches. Cells start at B1 and progress to B2 through branch points 2. Cells travel to B3 or B4 through

branch point 1. Cells are colored based on cluster (left), state (middle), and pseudotime (right). Red arrows indicate the defined ‘stem-to-

invasion path’. (B) The proportion of cells for each cluster in seven states defined by Monocle. Boxplot showing the CSC (C) and invasive

(D) scores for each state with the P value shown as heatmap below. The CSC scores decrease (E) and the invasive scores increase (F) as a

function of pseudotime in path that contains states 1, 2, 4, and 5 cells. A natural spline was used to model gene expression as a smooth,

nonlinear function over pseudotime. (G) Heatmap depicting genes with a branch-dependent manner for branch point 2. Each row represents

the dynamic expression of a gene. The heatmap center represents the root of the trajectory, and proceeding to the left follows the kinetic
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path, with an accelerating climb in the late stage

(Fig. 5H,I). Similar functions were also enriched by

top correlated genes (Fig. S7D–G). These results sug-

gested that we observed similar branched structure and

further recaptured the ‘stem-to-invasion path’ in an

independent single-cell data of GBM.

3.5. Identify crucial factors involved in the

acquisition of invasive potential

Given the stepwise changes of genes observed in the

trajectory analysis, we sought to identify the molecules

that drive the acquisition of invasive potential and fur-

ther promote the ‘stem-to-invasion’ progression. We

first focused on transcription factors (TFs) in the two

lists of top correlated genes identified above, which

were obtained from AnimalTFDB (Zhang et al.,

2012). A total of 77 upregulated and 144 downregu-

lated TFs were extracted in data from Patel et al.

(Fig. 6A,B). Similarly, we also screened 32 upregulated

and 96 downregulated TFs in data from Darmanis

et al. (Fig. S8A,B). Notably, there were significant

overlaps of these two sets of TFs between both data

sets (Fig. 6C and Table S3). Interestingly, EPAS1 was

the most positively correlated TF shared in both data

sets (Fig. 6D and Fig. S8C). Although some reports

correlated it with tumor biology (Cruzeiro et al.,

2018), few studies revealed its role in the invasion of
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D

Fig. 4. Dynamic molecules underlying tumor cell progression. On (yellow) or off (black) binary states of top 150 positively correlated genes

(A) and negatively correlated genes (B). Functional annotations for top 1000 positively (C) and negatively (D) correlated genes are

implemented by ClueGO.

2596 Molecular Oncology 13 (2019) 2588–2603 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Single-cell RNA-seq reveals GBM invasive mechanism B. Pang et al.



GBM cells. On the contrary, many of the top down-

regulated TFs control cell cycle and stemness, such as

MYT1, SOX6, and SOX4, among which OLIG1 was

the top one in shared TFs. These accordant findings

between both data sets indicated that these TFs, espe-

cially EPAS1, may indeed play crucial roles in control-

ling the invasive potential of GBM cells. To further

validate the impact of EPAS1 on GBM cell invasive-

ness in vitro, we first analyzed endogenous EPAS1

expression in a panel of GBM cell lines (U87, U251,

and LN229) by Western blotting (Fig. 7A). U251 and

LN229 cell lines showed relative higher endogenous

EPAS1 expression and therefore were selected for the

knockdown study. The EPAS1 gene was silenced by

RNA interference using two targeted siRNAs (siRNA1

and siRNA2) in U251 and LN229. Both siRNAs could

efficiently knock down EPAS1 in GBM cells (Fig. 7B).

Further, migration and Matrigel invasion assays also

demonstrated that knockdown of EPAS1 significantly

reduced the migration and invasion potential of both

U251 and LN229 cell lines (P < 0.01, Student’s t test,

Fig. 7C,D) as compared to control cells. Collectively,

these results provided evidence that EPAS1 silencing

could inhibit GBM cell migrative and invasive capacity

in vitro.

Previous studies have revealed the close relationship

between lncRNAs and tumor progression (Li et al.,

2016). At single-cell level, we found that lncRNAs

had much more variable expression as shown by the

high coefficient of variation for averaged expression
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Fig. 5. Validation using an independent single-cell GBM data. (A) T-SNE plot of tumor cells showing 12 clusters. (B) The single-cell trajectory

reconstructed by Monocle contains six main branches. Cells travel from the root B1 to B4 through P1-P4. Cells are colored based on cluster

(left), state (middle), and pseudotime (right). Red arrows indicate the defined ‘stem-to-invasion path’. (C) The proportion of cells for each

cluster in 11 states. (D) Boxplots showing the GSVA scores of each cluster for EMT- and angiogenesis-associated signatures with P value

shown as heatmap below. (E) The cycling status of tumor cells. Red points represent identified cycling cells, and gray points represent

noncycling cells. Boxplots showing the CSC (F) and invasive (G) scores for each state. The CSC scores decrease (H) and the invasive scores

increase (I) as a function of pseudotime in path that contains cells of states 1, 2, 3, 5, 6, and 8.
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than PCGs (Fig. S9A,B), suggesting their functional

relevance. Thus, we calculated the correlations

between lncRNA expression and pseudotime along

the ‘stem-to-invasion path’ in both data sets of GBM.

Among the top 100 correlated lncRNAs (Fig. 6E,F,

Fig. S8D,E), we identified seven upregulated and six

downregulated lncRNAs shared by both data sets

(Table S4). For example, one of the positively corre-

lated lncRNA SNHG16 showed significantly higher

expression levels in GBM compared with normal

brain cells (Fig. S9C), although its cell proportion

was lower (Fig. S9D). Here, besides studies reporting

the roles of SNHG16 in glioma tumorigenesis (Lu

et al., 2018; Mastrangelo et al., 2018), we provided

more evidence of SNHG16 as oncogene to promote

GBM invasion. Moreover, most of the top upregu-

lated lncRNAs showed significantly higher expressions

in GBM than those in normal cells. These results

indicated that lncRNAs may also play important

roles in controlling the invasive potential of GBM

cells.

4. Discussion

Ninety percent of solid tumor-associated deaths have

been attributed to the invasion and metastatic
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RP11−282K24.3
AC003090.1
RP11−801F7.1
RP11−829H16.3
RP1−228H13.5
LINC01122
LHFPL3−AS1
AC099850.1
CTC−297N7.9
RP11−342M3.5
C6orf3
AC004540.4
CTD−2013N17.4
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RP11−344B2.3
KB−1107E3.1
RP11−345P4.10
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RP11−314C16.1
NAMA
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RP3−467N11.1
TRAF3IP2−AS1
CTD−2325M2.1
RP11−966I7.1
RP4−756G23.5
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RP11−782C8.1
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RP11−17L5.4

Correlation
−0.25 −0.20 −0.15 −0.10 −0.05 0.00

data from Patel et al. data from Darmanis et al.

Fig. 6. TFs and lncRNAs identified in data from Patel et al. (2014). List of upregulated (A) and downregulated (B) TFs as well as their

Spearman correlation coefficient with pseudotime. (C) Venn diagrams showed the significant overlaps of TFs between both GBM data sets.

P values were calculated by hypergeometric test. (D) Expression profiles of the most positively correlated TF EPAS1 and the most

negatively correlated TF OLIG1. Data points are fitted with local polynomial regression fitting (red lines) with 95% confidence interval (gray

area). Cells are colored based on their states. List of the top 100 upregulated (E) and downregulated (F) lncRNAs as well as their Spearman

correlation coefficient with pseudotime in GBM1.
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dissemination of cancer cells, including GBM. There-

fore, we utilized scRNA-seq data to explore the molec-

ular cascades during GBM invasive progression at a

high resolution, which provided new insights into the

mechanism underlying the achievement of invasive

potential of GBM cells.

Glioblastoma comprises morphologically and pheno-

typically diverse cells (Singh et al., 2004), which pro-

moted us to presume the existence of cells with high

invasive potential, combining the fact of early occur-

rence of EMT in many cancer types. We indeed found

that a group of cells showed high invasive scores.

Interestingly, there seems to be a mutually exclusive

pattern between G1/S scores and EMT scores, which

were observed in both data sets of GBM (Fig. S10).

That is, cells with high proliferative activity tend not

to have invasive potential, and vice versa, which is

supported by the observation that cells with high pro-

liferative activity and those with high invasive scores

located in different branches of the trajectory (Figs 3A

and 5B). Moreover, we also performed functional

enrichment analysis for genes upregulated in B2 (state

11), B3 (state 9), B5 (state 7), and B6 (state 4) of the

constructed trajectory in data from Darmanis et al.

We found that B2- and B3-enriched genes were

associated with glial cell differentiation, metabolic pro-

cess, and cell cycle (Fig. S11). B5-enriched genes were

mainly involved in response to stress, regulation of cell

motility, cell death, and protein location. B6-enriched

genes were associated with cell differentiation, cell pro-

liferation, and mRNA catabolic process. These results

indicate that different mechanisms may determine cells

progressing to distinct outcomes during GBM progres-

sion.

The strength of scRNA-seq derives from its high

resolution. Here, we introduced the pseudotime

method to capture and dissect transcriptional changes

in cells along GBM progression, since we considered it

as a continuous and heterogeneous process involving

cancer initiation, proliferation, invasion, and metasta-

sis (Hanahan and Weinberg, 2011). We identified a

trajectory with branched structure in data from Patel

et al. One branch represents the root of the trajectory,

which showed relatively high CSC scores. Another two

branches enriched proliferative cells and those with

high invasive potential, respectively. These results are

consistent with the complexity and heterogeneity of

tumor progression. Further, we determined a path (the

stem-to-invasion path) along which cells travelled from

the root to the invasive branch, representing the

Fig. 7. Knockdown of EPAS1 inhibited GBM cell migration and invasion in vitro. (A) Endogenous EPAS1 expression status in three GBM cell

lines. (B) EPAS1 expression was efficiently knocked down by two targeted siRNAs (siRNA1 and siRNA2) in U251 cells and LN229 cells as

detected by Western blotting. Silencing EPAS1 expression suppressed cell migration and invasion capacity of U251 (C) and LN229 (D) cells

in the Transwell migration and invasion assay (magnification 1009). Scale bars = 500 lm. Results were summarized as mean � SD of

three independent experiments (**P < 0.01; ***P < 0.001, independent Student’s t test).
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progression of GSCs transforming to invasive cells.

Consistently, the CSC scores gradually decreased while

the invasive scores gradually increased during this pro-

cess. Branch-dependent expression analysis found that

many known invasion-associated genes, such as CAV1,

MMP19, and SLC2A3, also showed gradual increase

of expression. Notably, we discovered a similar

branched trajectory as well as the ‘stem-to-invasion

path’ in another validation data. The difference is that

the trajectory in validation data has more complex

structures because of the more number of tumor cells.

Moreover, we expanded our research into the data of

oligodendroglioma published by Tirosh et al. (2016b).

We identified 11 clusters and constructed a trajectory

containing five states (Fig. S12A,B). The CSC and

invasive scores of cells showed a few differences across

different states, although cells of states 1 and 2 showed

significantly higher CSC scores, while cells of state 5

showed significantly higher invasive scores (Fig. S12C,

D). Along the defined ‘stem-to-invasion path’ (defined

as cells traveling from state 1 through state 2, state 3,

and then to state 5), the CSC scores did not exhibit

obvious differences, while the invasive scores present a

weak increasing trend (Fig. S12E,F). Since these cells

were taken from grade II oligodendrogliomas at early

stage of clinical progression, we considered that in the

initial steps of gliomagenesis, cells have not obtained

evident potential to invade the surrounding tissues. All

these observations made us believe that the ‘stem-to-

invasion path’ identified in GBM data could veritably

reflect the molecular events underlying GBM progres-

sion and help to identify the molecular determinants

of invasion.

Therefore, we further identified the top correlated

TFs, among which EPAS1 (HLF2A, hypoxia-in-

ducible factor 2A) was the first and second TF

ordered by correlation coefficients in both GBM data

sets. Although previous studies have mentioned its

involvement in brain tumors such as neuroblastoma

(Mohlin et al., 2015) and GBM (Wang et al., 2018),

few studies focused on the roles of EPAS1 in GBM

invasion. Our analyses revealed its dynamic transcrip-

tional pattern during GBM progression, providing

new evidence and insight into the contribution of

EPAS1 to achievement of invasion potential of GBM

cells. But the detailed mechanism needs further inves-

tigation of future studies. Besides EPAS1, we also

identified other six common TFs, including FOSL2,

PREB, YBX3, RELA, KLF6, and MYC. Notably,

expect for MYC, few researches have reported the

correlation of most of these TFs with GBM, espe-

cially invasion. Moreover, given the important roles

of lncRNAs in tumor biology, we also identified the

top correlated lncRNAs, which also need further

investigation and validation of their functional mech-

anisms in GBM invasion.

5. Conclusions

In summary, our study used single-cell RNA-seq to

provide a subtle delineation of cellular heterogeneity in

GBM, reveal the invasive path, and determine key fac-

tors contributing to GBM invasion at a high resolu-

tion. The new insights into GBM progression may be

useful for the clinical treatment, and the identified cru-

cial factors may offer a selective and efficient therapeu-

tic target for GBM, and possibly other solid malignant

tumors.
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