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Glioblastoma (GBM) is the most common and aggressive primary brain
tumor, in which GBM stem cells (GSCs) were identified to contribute to
aggressive phenotypes and poor prognosis. Yet, how GSCs progress to
invasive cells remains largely unexplored. Here, we revealed the cell sub-
populations with distinct functional status and the existence of cells with
high invasive potential within heterogeneous primary GBM tumors. We
reconstructed a branched trajectory by pseudotemporal ordering of single
tumor cells, in which the root showed GSC-like phenotype while the end
displayed high invasive activity. Thus, we further determined a path along
which GSCs gradually transformed to invasive cells, called the ‘stem-to-in-
vasion path’. Along this path, cells showed incremental expression of GBM
invasion-associated signatures and diminishing expression of GBM stem
cell markers. These findings were validated in an independent single-cell
data set of GBM. Through analyzing the molecular cascades underlying
the path, we identify crucial factors controlling the attainment of invasive
potential of tumor cells, including transcription factors and long noncoding
RNAs. Our work provides novel insights into GBM progression, especially
the attainment of invasive potential in primary tumor cells, and supports
the cancer stem cell model, with valuable implications for GBM therapy.

1. Introduction
Glioblastoma (GBM) is

status of GBM treatment

progression.

Abbreviations

the most common and
highly aggressive primary tumor of the central ner-
vous system with extremely poor prognosis despite
intensive treatment (Murray et al.,
characteristically exhibits aggressive proliferation and
highly invasive properties with high mortality (Kle-
ber et al., 2008). It can spread to spinal cord and
other parts of the brain, which presents huge chal-
lenges to the current therapies. The dismal clinical
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understanding of molecular mechanisms of disease

In the traditional model, invasion and metastasis
were the late events during tumor development and
progression, which is considered to be attributed to
cancer stem cells (CSCs) by many studies (Jaraiz-
Rodriguez et al., 2017; Liu et al., 2015; Miao et al.,
2015). However, increasing evidence has shown that
epithelial-mesenchymal transition (EMT) and dissemi-
nation can actually occur early during cancer progres-
sion (Eyles et al., 2010; Hosseini et al., 2016; Linde
et al., 2018; Rhim et al., 2012). These studies suggest
that cells may acquire the invasive and metastatic abil-
ity in primary tumors, which have been ready to dis-
seminate to distant sites and also contribute to the
high heterogeneity of tumors especially GBM (Meyer

2014). GBM
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et al., 2015). Thus, detailed investigation of these pro-
cesses can reveal the important events during GBM
progression and identify the molecular determinants of
invasion.

Although traditional bulk tumor analyses have iden-
tified key genes and pathways that drive invasion of
GBM cells (Galavotti et al., 2013), they provide lim-
ited insight into molecular mechanisms underlying
GBM invasion. Instead, single-cell RNA sequencing
(scRNA-seq) generates gene expression profiles at the
resolution of an individual cell (Tang et al., 2009),
which has been comprehensively applied to reveal the
heterogeneity of diverse cancers (Chung et al., 2017; Li
et al., 2017; Patel et al., 2014). It provides an unprece-
dented chance to capture and subtly dissect the molec-
ular cascades, and to determine the key molecular
determinants during the acquisition of invasive poten-
tial for GBM cells, similar to its application to studies
on differentiation and development (Deng et al., 2014,
Trapnell et al., 2014).

In this study, we took advantage of scRNA-seq data
to provide a detailed analysis of cellular heterogeneity,
reveal the invasion-associated progression path
through which cells gradually acquire the invasive
potential, and identify key factors involved in GBM
progression.

2. Materials and methods
2.1. Single-cell RNA-seq data preprocessing

2.1.1. Quantification and quality control

The raw data for most of analysis in this study were
downloaded from GEO database (GSE57872). These
data were published by Patel ez al. (2014) and included
576 cells from five primary GBM patients (MGH?26,
MGH28, MGH29, MGH30, and MGH31). Reads
were mapped to the reference transcriptome by BOWTIE
(version 1.1.1) (Langmead et al., 2009), and gene
expression levels were quantified as transcripts per mil-
lion (TPM) using rseEM (version 1.2.28) (Li and Dewey,
2011) with the option estimate-rspd and default
parameters. We excluded low-quality cells based on
two quality measures: the number of aligned reads
< 2e5 or number of genes detected < 3000. In the sub-
sequent analysis, we excluded all cells of MGH31 for
their relatively lower percentages of mappable reads.

2.1.2. Screen tumor cells by copy number alterations

We inferred copy number variations (CNVs) for each
cell as previously described (Patel et al., 2014). Briefly,
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all genes were ordered by their chromosomal location,
and the copy number of each gene was calculated as
the sliding average of log2-transformed TPM values
with a window of 100 flanking genes within each chro-
mosome, which was then centered across all cells. Sim-
ilarly, we inferred a CNV vector using normal brain
data from GTEx portal (GTEx Consortium, 2013) as
a control. Then, we performed hierarchical clustering
and removed the nontumor cells which showed few
CNVs, similar to the control. Finally, we remained
350 tumor cells.

2.1.3. Normalization

For each of the remaining four patients, we identified
the genes that were not expressed in at least 95% of
cells for that respective patient, and removed their
intersection. A total of 14 919 genes remained.

Then, we followed the normalization steps as previ-
ously described (Karaayvaz et al., 2018). Briefly, we
first used the Census algorithm (Qiu et al., 2017) to
transform the TPM values into relative counts which
were negative binomially distributed. We performed
this step by function relative2abs from the R package
Monocle (Qiu et al., 2017). Then, scran (Lun et al.,
2016) was used to normalize the Census counts with
cell-specific scaling factors. The r package scran specif-
ically considers the high dropout rate of scRNA-seq
and divides the expression of each cell by the scaling
factors. In this step, three cells were removed as their
low transcriptomic diversity, resulting in 347 cells for
subsequent analysis. Finally, we removed additional
sources of unwanted variation with RUVSeq (Risso
et al., 2014). RUVSeq uses a generalized linear model
to regress out the variation estimated from the expres-
sion of the housekeeping genes. We used a list of 98
housekeeping genes compiled by Tirosh er al. (2016a)
(Table S1). We performed this step by function RUVg
with parameter k = 1, which was not performed when
processing IncRNA expression profiles, since there
were no long noncoding RNAs (IncRNAs) which
showed constant expression levels among samples like
housekeeping genes.

2.1.4. Extra data preprocessing

The raw data (GSE84465) for validation were down-
loaded from GEO database, which contains 3589 cells.
These data were published by Darmanis et al. (2017)
and preprocessed with the same steps as the data from
Patel et al. Finally, 882 tumor cells remained for sub-
sequent analysis. We also obtained the oligoden-
droglioma data (GSE70630) published by Tirosh er al.
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(2016b) and a set of single-cell data of the normal
brain (GSE67835) published by Darmanis et al.
(2015), in which 4044 and 277 cells, respectively,
remained after the similar filtration.

2.2. Clustering of tumor cells

Tumor cells were clustered using the method developed
by Monocle with regressing out the patient effect.
Based on the assumption that the expressions of one
gene in cells of the same group fit the same linear
model, we used the least square to fit a linear model
for each gene in the cells of each patient. Therefore,
the patient-specific effects could be measured by the
differences between linear models of different patients.
Given the expression matrix and patient labels of each
cell, the function ImFit in R package limma (Ritchie
et al., 2015) could be used to calculate the differences
between fitted linear models (coefficients matrix),
which was then subtracted from original expression
matrix to remove the patient effect on gene expression.
In this study, we followed the approach used by
Karaayvaz et al. (2018) and did the regression of the
patient effect via the function reduceDimension in the
R package Monocle, which actually used the ImFit
function. Genes with mean expression > 0.1 and high
dispersion were used for clustering. We clustered cells
by the function clusterCells in R package Monocle
with parameters rho_threshold = 2 and delta_thresh-
old =4. Monocle wuses a density-based approach
(Rodriguez and Laio, 2014) to cluster cells based on
each cell’s local density (rho_threshold) and the near-
est distance (delta_threshold) to another cell with
higher distance and automatically determine the num-
ber of clusters. Any cell with a higher local density
and distance than the thresholds is considered as the
density peaks, which are then used to define the clus-
ters for all cells. We finally identified six clusters in the
data from Patel et al. and 12 clusters in the data from
Darmanis et al.

2.3. Differential expression analysis and
functional annotation

We used the scpe software package (version 2.2.0)
(Kharchenko et al., 2014) to identify the significantly
highly expressed genes in each cell cluster. Briefly, this
probabilistic method takes raw count data as input
and fits cell-specific error models to estimate the poste-
rior probability of expression magnitude for a gene in
each cell. Then differential expression analysis was per-
formed using the joint posterior probability of expres-
sion in each cell cluster. We considered the genes with
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absolute ¢Z more than 2.58 (P < 0.01) as the signifi-
cantly differentially expressed genes. Then, the func-
tional annotations for these genes were implemented
by the Molecular Signatures Database (MSigDB)
(Liberzon et al., 2011; Subramanian et al., 2005) with
hypergeometric test and the threshold of FDR < 0.05.

2.4. Estimation of activity for diverse signatures
and pathways

GSVA algorithm (Hanzelmann ez al., 2013) was imple-
mented to evaluate the relative activation status for a
signature or pathway. GSVA scores for cancer hall-
mark and glioma-related signatures as well as signaling
pathways were calculated using predefined gene sets
extracted from the MSigDB. For G1/S, G2/M, CSC,
and invasive scores, we calculated the mean expression
levels of that respective gene set. Gene sets reflecting
the expression program of the G1/S and G2/M phases
of the cell cycle were taken from Tirosh er al. (2016a).
And here, we used data-derived thresholds of 3 median
absolute deviations above the median to define 45
cycling cells and 302 noncycling cells. CSC and inva-
sive signatures were manually extracted from previous
studies (Table S1).

2.5. Single-cell trajectory reconstruction and
analysis

Single-cell pseudotime trajectories were constructed
with MoNocLE (version 2.6.4) (Qiu et al., 2017). Briefly,
we first selected a set of ordering genes which showed
differential expression between clusters. Then, Mono-
cle uses reversed graph embedding, a machine learning
technique to learn a parsimonious principal graph,
reduces the given high-dimensional expression profiles
to a low-dimensional space. Single cells are projected
onto this space and ordered into a trajectory with
branch points. As called in Monocle, cells in the same
segment of the trajectory have the same ‘state’.
Branched expression analysis modeling was used to
further test for branch-dependent gene expression.

2.6. Gene expression states by HVIM

We used an hidden Markov model (HMM) to predict
gene expression states (on or off) throughout pseudo-
time as described elsewhere (Shin er al., 2015). Briefly,
we divided pseudotime into 20 bins, in which cells
have identical states for most genes. We calculated the
mean expression level in each bin as the observed vari-
ables for HMM. Then, a Baum—Welch algorithm was
used to extract the most likely emission matrix and
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transition probability. Finally, the Viterbi algorithm
used the observed variables along with output from
the Baum-Welch algorithm to predict binary gene
expression states.

2.7. Cell lines and cell culture

Human GBM cell lines U887, U251, LN229 were
obtained from Shanghai Cell Bank of the Chinese
Academy of Sciences (Shanghai, China). All cells were
routinely cultured in Dulbecco’s modified Eagle’s med-
ium supplemented with 10% FBS (PAA Laboratories
GmbH, Pasching, Austria) at 37 °C in humidified
atmosphere of 5% CO, in air.

2.8. RNA interference

Short-interfering RNAs (siRNAs) specifically against
EPASI were purchased from RiboBio (Guangzhou,
China) and then transfected into GBM cells using
Lipofectamine 2000 reagent (Invitrogen, Shanghai,
China) according to the manufacturer’s protocol. Cells
transfected with corresponding scrambled siRNA were
used as controls. The gene silencing effect was mea-
sured by Western blotting 48 h post-transfection.

2.9. Western blotting

Proteins were extracted from cell lysates with RIPA buf-
fer (Thermo Fisher Scientific, Waltham, MA, USA) and
were separated by 10% SDS/PAGE and then trans-
ferred onto PVDF membranes (Millipore, Billerica,
MA, USA). Immunoblots were blocked with 5% BSA
in TBS/Tween-20 and incubated with primary antibod-
ies overnight at 4 °C. The following primary antibodies
were used: B-catenin (Proteintech, Wuhan, China) and
EPASI (Affinity Biosciences, Cincinnati, OH, USA).

2.10. Cell invasion and migration assays

Invasion and migration assays were performed using
Corning chambers (Corning, Tewksbury, MA, USA)
with Matrigel (for invasion assay) or without Matrigel
(for migration assay) following the manufacturer’s pro-
tocol. The cells were suspended in media containing 2%
FBS and were seeded on upper chambers, while media
containing 20% FBS was placed in the lower chambers.
After incubation for 24 or 48 h at 37 °C, the remaining
cells on the upper surface were gently removed by a cot-
ton swab. Then, cells that had invaded or migrated to
the lower surface of the membrane were fixed with
methanol and stained with hematoxylin and eosin. Cells
in three randomly visual fields (at 100x magnification)
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were counted. Both experiments were repeated in tripli-
cate independently.

3. Results

3.1. Cellular heterogeneity within glioblastoma

Tumor heterogeneity contributes to cancer progression
and therapy failure (Kreso and Dick, 2014). We ini-
tially downloaded single-cell RNA-seq data from five
GBM patients (published by Patel et al. (2014) in
order to delineate the cellular heterogeneity. After
stringent quality control and normalization, we ana-
lyzed a total of 347 cells from four patients (see Mate-
rials and methods). Then, we clustered all the tumor
cells through excluding patient-specific effects with lin-
ear regression (see Materials and methods). We identi-
fied six clusters of cells, all of which derived from all
four patients (Fig. 1A-C and Fig. SIA). Cluster 2 was
represented by a substantial proportion of cells, which
was prominent in patients MGH28 and MGH?29. Clus-
ter 3 was prominent in patient MGH30 which lacked
cluster 1 cells, while clusters 5 and 6 were most promi-
nent in patient MGH?26.

We next sought to investigate the common biology
of cells in each cluster through identifying cluster-
specific genes using a Bayesian method SCDE
(Kharchenko et al., 2014) (Fig. 1D). Except for cluster
4, we identified different numbers of significantly
upregulated genes in clusters ranging from 4 to 336
(Table S2). Functional enrichment analysis of these
genes revealed significant enrichment for cell cycle pro-
cesses in cluster 1 (Fig. 1E). Genes specific in cluster 2
were involved in cell adhesion, response to stress, and
development, while upregulated genes in cluster 6 were
mainly related to brain development such as central
nervous system development, forebrain, and telen-
cephalon development. We did not identify functional
annotations for clusters 3, 4, and 5 due to the small
number of genes. These findings implied the existence
of cell subpopulations with high heterogeneity in
GBM.

3.2. Cell clusters reflect diverse tumor-related
status

Distinct transcriptional profiles between cell clusters
suggested divergent tumor cell behavior. We next used
the predefined gene sets to estimate and compare the
cancer hallmark-associated status between clusters, in
which Wilcoxon rank-sum test was used to calculate
the statistical significance. We found that cluster 1 was
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Fig. 1. The cell clusters identified in data from Patel et al. (2014) (A) T-SNE plot of tumor cells showing six clusters, in which patient effects
have been regressed out. (B) T-SNE plot showing the distribution of the patients matching (A). (C) The cell numbers of each cluster in each
patient. (D) Heatmap depicting the expression of top upregulated genes in each cluster identified by SCDE. No such genes have been
identified for cluster 4. (E) Functional annotations by MSigDB for genes highly expressed in clusters 1, 2, and 6. The colors are the same as

those for cell clusters.

strongly associated with G2M checkpoint and DNA
repair, both of which control the cell cycle (Fig. 2A).
To confirm this, we used validated gene signatures pre-
viously shown to identify G1/S and G2/M cell cycle
phases and distinguishing high cycling from low
cycling cells to determine their cell cycle status. Com-
pared with other clusters, cluster 1 showed higher
expressions of G1/S and G2/M signatures. All cells in
cluster 1 were cycling cells (see Materials and methods)
and MKI67 exclusively expressed in this cluster
(Fig. S1B-D), suggesting their high proliferative activ-
ity. Cluster 2 showed relatively higher expression of
EMT and angiogenesis-associated genes (Fig. 2B),
implying it may contain tumor cells with invasive
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potential. Consistently, it was also enriched for hypox-
ia- and inflammation-associated genes (Fig. 2C), both
of which can induce cancer cell migration and promote
cancer progression (Bald er al., 2014; Joseph et al.,
2015).

We then obtained glioma-related signatures to inves-
tigate cell clusters. Compared with cluster 1, cluster 6
demonstrated lower expression of plasticity genes but
relatively higher expression of stem cell-related genes
(Fig. 2D). Moreover, we selected pathways closely
involved in cancer progression to evaluate their activa-
tion status and revealed that mTOR signaling was
enriched in cluster 1, cluster 3 highly expressed FGFR
and PI3K-AKT signaling-related genes, while clusters
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capture the main transformed processes of CSCs dur-
ing tumor progression. To address this, Monocle was
used to reconstruct a trajectory which mainly con-
tained four branches (denoted ‘B1’, ‘B2’, ‘B3’, and
‘B4’) and grouped cells into seven states (Fig. 3A, see
Materials and methods). Notably, the trajectory’s root
(B1) was populated by the majority of cluster 6 cells
(Fig. 3B), consistent with the functional annotation
and status characterization of cluster 6. To confirm
the stem cell-like identity of cluster 6, we used the
well-known markers of GBM stem cell (GSCs; such as
SOX2, PROMI1/CDI33, SOX4, THYI, and ASCLI)
to define a CSC score for each cell (see Materials and
methods). We found that the CSC scores were high in
Bl (state 1; Fig. 3C), similar to the dynamic changes
of these markers (Fig. S2A).

Most interestingly, B3 (refers to cells of states 4 and
5) was populated by cells from cluster 2 (Fig. 3B),
implying the cells in this branch may acquire invasive
potential. To validate this, we collected experimentally
confirmed genes which could contribute to the inva-
sion of GBM cells (such as ZEBI, HNRNPC,
WNT5A, and DRAM]I) to evaluate the invasive scores
for each cell (see Materials and methods). As shown in
Fig. 3D, cells in states 4 and 5 showed the highest
invasive scores, followed by state 2 cells which located
between two main branch points. This observation
was supported by the high scores for cluster 2 cells
and low scores for cells in clusters 5 and 6 (Fig. S2B).
Based on the above findings, we considered that the
cells travelled from Bl through branch point 2, state
2, and then to B3, representing the tumor progression
from GSCs to invasive cells (denoted ‘stem-to-invasion
path’), during which the CSC scores gradually
decreased and invasive scores gradually increased as a
function of pseudotime (Fig. 3E,F and Fig. S2C). The
‘stem-to-invasion paths’ were also identified when we
performed the pseudotime analysis for each patient
separately and similar change patterns of CSC and
invasive scores along these paths were observed in
most patients except for MGH29 (Figs S3-S6).

In order to further explore our assumption, we first
identified 26 and 110 genes with branch-dependent
expression (false discovery rate < le-4, see Materials
and methods) for branch points 2 and 1, respectively
(Fig. 3G,H). Cells traveling from Bl to state 2 highly
expressed genes involved in both cell cycle and tumor
invasion at the later stage (Fig. 3G), which was accor-
dant with its mixed status facing the selection of two
paths (B3 or B4). Among those genes, CAV'I, a princi-
pal structural component of caveolar membrane
domains, has been widely reported to promote tumor
invasion and metastasis (Huang et al., 2012; Joshi

B. Pang et al.

et al., 2008). There is also evidence for association of
SAA2 (serum amyloid A2) with invasiveness of glioma
cells (Knebel er al., 2013). Notably, the expression of
both genes further increased when cells travelled to B3
from state 2 (Fig. 3H). During this process, genes such
as SOD2, MMPI9, SLC2A43, and SLPI were also
upregulated, all of which were related to the invasion
and migration of tumor cells (Mikami et al., 2016;
Muller et al., 2010; Ren et al., 2017).

Next, we sought to delineate the molecular events
underlying the stem-to-invasion path. We generated a
list of the top 1000 positively correlated genes with
pseudotime along this path (Spearman correlation
coefficient > 0.28), as well as the top 1000 negatively
correlated genes (Spearman correlation coefficient
< —0.22). A HMM was used to determine the binary
on/high or off/low expression state of each gene along
pseudotime with an unbiased fashion (see Materials
and methods). Plots of the top 150 genes each from
the two lists showed distinct but sequential transition
patterns of gene expression (Fig. 4A,B). To obtain bio-
logical insights into these dynamic processes, we per-
formed gene ontology analysis using ClueGO (Bindea
et al., 2009). Positively correlated genes revealed
enrichment for invasion-associated processes such as
cell migration, cell adhesion, and ECM-receptor inter-
action (Fig. 4C), while negatively correlated genes
enriched for neuron development and RNA metabolic
process (Fig. 4D).

Taken together, these results demonstrated that the
stem-to-invasion path can partially represent the trans-
formed process from GBM stem-like cell to invasive
cells, and reflect the molecular cascades during GBM
progression.

3.4. Extra data reproduces similar ‘stem-to-
invasion path’ in glioblastoma progression

To validate whether the stem-to-invasion path could be
recaptured in other GBM data, we obtained another
single-cell RNA-seq data set of GBM (published by
Darmanis et al. (2017) which contains 3589 cells from
four patients. Following the same data processing, the
final number of tumor cells for validation was 882.

In validation data, we identified 12 clusters
(Fig. 5A). Then, a trajectory was reconstructed by
Monocle, which contained six main branches (denoted
‘B1” to ‘B6’) and four paths between branch points
(denoted ‘P1’ to ‘P4’), which grouped cells into eleven
states (Fig. 5B). We found B1 (state 1) contained most
of cluster 11 cells and part of cluster 6 cells, B3 (state
9) contained most of cells in clusters 9, 10, and 12,
while most of cluster 3 and 7 cells located in B4

2594 Molecular Oncology 13 (2019) 2588-2603 © 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
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(Fig. 5C). To determine whether this trajectory had enrichment of cycling cells (Fig. 5E and Fig. S7A,B).
similar structure with that in data from Patel et al., we Notably, compared with state 8 (B4), state 1(BI)
first evaluated the expression of EMT- and angiogene- showed higher CSC scores (Fig. 5F), and similar to
sis-associated genes, which showed that clusters 3, 4, 7, data from Patel et al., the CSC scores gradually
and 9 have higher scores (Fig. 5D). Notably, cells in decreased as pseudotime increased for all cells
these clusters mainly enriched in B4, corresponding to (Fig. S7C). Therefore, we considered the path where
state 8, which consistently displayed the highest inva- cells travelled from the root Bl through P1, P2, P3,
sive score with an incremental pattern (Fig. 5G). Next, and P4 and finally to B4 as the ‘stem-to-invasion path’
we detected the expression patterns of G1/S and G2/ here (Fig. 5B). As expected, the CSC scores were also
M signatures and found their enrichment in clusters 8, decreased and the invasive scores were gradually
10, and 12, corresponding to B3, consistent with the upregulated as a function of pseudotime along this

Molecular Oncology 13 (2019) 2588-2603 © 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. 2595
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path, with an accelerating climb in the late stage
(Fig. 5H,I). Similar functions were also enriched by
top correlated genes (Fig. STD-G). These results sug-
gested that we observed similar branched structure and
further recaptured the ‘stem-to-invasion path’ in an
independent single-cell data of GBM.

3.5. Identify crucial factors involved in the
acquisition of invasive potential

Given the stepwise changes of genes observed in the
trajectory analysis, we sought to identify the molecules
that drive the acquisition of invasive potential and fur-
ther promote the ‘stem-to-invasion’ progression. We

first focused on transcription factors (TFs) in the two
lists of top correlated genes identified above, which
were obtained from AnimalTFDB (Zhang et al.,
2012). A total of 77 upregulated and 144 downregu-
lated TFs were extracted in data from Patel et al.
(Fig. 6A,B). Similarly, we also screened 32 upregulated
and 96 downregulated TFs in data from Darmanis
et al. (Fig. S8A,B). Notably, there were significant
overlaps of these two sets of TFs between both data
sets (Fig. 6C and Table S3). Interestingly, EPASI was
the most positively correlated TF shared in both data
sets (Fig. 6D and Fig. S8C). Although some reports
correlated it with tumor biology (Cruzeiro et al.,
2018), few studies revealed its role in the invasion of
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GBM cells. On the contrary, many of the top down-
regulated TFs control cell cycle and stemness, such as
MYTI, SOX6, and SOX4, among which OLIGI was
the top one in shared TFs. These accordant findings
between both data sets indicated that these TFs, espe-
cially EPASI, may indeed play crucial roles in control-
ling the invasive potential of GBM cells. To further
validate the impact of EPAS1 on GBM cell invasive-
ness in vitro, we first analyzed endogenous EPASI
expression in a panel of GBM cell lines (U87, U251,
and LN229) by Western blotting (Fig. 7A). U251 and
LN229 cell lines showed relative higher endogenous
EPASI expression and therefore were selected for the
knockdown study. The EPASI gene was silenced by
RNA interference using two targeted siRNAs (siRNAI

Cluster « 2

Component 2

 Component 2
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and siRNA2) in U251 and LN229. Both siRNAs could
efficiently knock down EPASI in GBM cells (Fig. 7B).
Further, migration and Matrigel invasion assays also
demonstrated that knockdown of EPASI significantly
reduced the migration and invasion potential of both
U251 and LN229 cell lines (P < 0.01, Student’s ¢ test,
Fig. 7C,D) as compared to control cells. Collectively,
these results provided evidence that EPASI silencing
could inhibit GBM cell migrative and invasive capacity
in vitro.

Previous studies have revealed the close relationship
between IncRNAs and tumor progression (Li er al.,
2016). At single-cell level, we found that IncRNAs
had much more variable expression as shown by the
high coefficient of variation for averaged expression
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Fig. 6. TFs and IncRNAs identified in data from Patel et al. (2014). List of upregulated (A) and downregulated (B) TFs as well as their
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than PCGs (Fig. S9A,B), suggesting their functional
relevance. Thus, we calculated the correlations
between IncRNA expression and pseudotime along
the ‘stem-to-invasion path’ in both data sets of GBM.
Among the top 100 correlated IncRNAs (Fig. 6E.F,
Fig. S8D.E), we identified seven upregulated and six
downregulated IncRNAs shared by both data sets
(Table S4). For example, one of the positively corre-
lated IncRNA SNHGI16 showed significantly higher
expression levels in GBM compared with normal
brain cells (Fig. S9C), although its cell proportion
was lower (Fig. S9D). Here, besides studies reporting
the roles of SNHGI16 in glioma tumorigenesis (Lu

2598

et al., 2018; Mastrangelo et al., 2018), we provided
more evidence of SNHG16 as oncogene to promote
GBM invasion. Moreover, most of the top upregu-
lated IncRNAs showed significantly higher expressions
in GBM than those in normal cells. These results
indicated that IncRNAs may also play important
roles in controlling the invasive potential of GBM
cells.

4. Discussion

Ninety percent of solid tumor-associated deaths have
been attributed to the invasion and metastatic

Molecular Oncology 13 (2019) 2588-2603 © 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
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dissemination of cancer cells, including GBM. There-
fore, we utilized scRNA-seq data to explore the molec-
ular cascades during GBM invasive progression at a
high resolution, which provided new insights into the
mechanism underlying the achievement of invasive
potential of GBM cells.

Glioblastoma comprises morphologically and pheno-
typically diverse cells (Singh ez al., 2004), which pro-
moted us to presume the existence of cells with high
invasive potential, combining the fact of early occur-
rence of EMT in many cancer types. We indeed found
that a group of cells showed high invasive scores.
Interestingly, there seems to be a mutually exclusive
pattern between G1/S scores and EMT scores, which
were observed in both data sets of GBM (Fig. S10).
That is, cells with high proliferative activity tend not
to have invasive potential, and vice versa, which is
supported by the observation that cells with high pro-
liferative activity and those with high invasive scores
located in different branches of the trajectory (Figs 3A
and 5B). Moreover, we also performed functional
enrichment analysis for genes upregulated in B2 (state
11), B3 (state 9), BS (state 7), and B6 (state 4) of the
constructed trajectory in data from Darmanis er al.
We found that B2- and B3-enriched genes were

Molecular Oncology 13 (2019) 2588-2603 © 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

associated with glial cell differentiation, metabolic pro-
cess, and cell cycle (Fig. S11). BS5-enriched genes were
mainly involved in response to stress, regulation of cell
motility, cell death, and protein location. B6-enriched
genes were associated with cell differentiation, cell pro-
liferation, and mRNA catabolic process. These results
indicate that different mechanisms may determine cells
progressing to distinct outcomes during GBM progres-
sion.

The strength of scRNA-seq derives from its high
resolution. Here, we introduced the pseudotime
method to capture and dissect transcriptional changes
in cells along GBM progression, since we considered it
as a continuous and heterogeneous process involving
cancer initiation, proliferation, invasion, and metasta-
sis (Hanahan and Weinberg, 2011). We identified a
trajectory with branched structure in data from Patel
et al. One branch represents the root of the trajectory,
which showed relatively high CSC scores. Another two
branches enriched proliferative cells and those with
high invasive potential, respectively. These results are
consistent with the complexity and heterogeneity of
tumor progression. Further, we determined a path (the
stem-to-invasion path) along which cells travelled from
the root to the invasive branch, representing the
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progression of GSCs transforming to invasive cells.
Consistently, the CSC scores gradually decreased while
the invasive scores gradually increased during this pro-
cess. Branch-dependent expression analysis found that
many known invasion-associated genes, such as CAV1,
MMPI19, and SLC2A43, also showed gradual increase
of expression. Notably, we discovered a similar
branched trajectory as well as the ‘stem-to-invasion
path’ in another validation data. The difference is that
the trajectory in validation data has more complex
structures because of the more number of tumor cells.
Moreover, we expanded our research into the data of
oligodendroglioma published by Tirosh et al. (2016b).
We identified 11 clusters and constructed a trajectory
containing five states (Fig. SI12A,B). The CSC and
invasive scores of cells showed a few differences across
different states, although cells of states 1 and 2 showed
significantly higher CSC scores, while cells of state 5
showed significantly higher invasive scores (Fig. S12C,
D). Along the defined ‘stem-to-invasion path’ (defined
as cells traveling from state 1 through state 2, state 3,
and then to state 5), the CSC scores did not exhibit
obvious differences, while the invasive scores present a
weak increasing trend (Fig. S12E,F). Since these cells
were taken from grade II oligodendrogliomas at early
stage of clinical progression, we considered that in the
initial steps of gliomagenesis, cells have not obtained
evident potential to invade the surrounding tissues. All
these observations made us believe that the ‘stem-to-
invasion path’ identified in GBM data could veritably
reflect the molecular events underlying GBM progres-
sion and help to identify the molecular determinants
of invasion.

Therefore, we further identified the top correlated
TFs, among which EPAS! (HLF2A, hypoxia-in-
ducible factor 2A) was the first and second TF
ordered by correlation coefficients in both GBM data
sets. Although previous studies have mentioned its
involvement in brain tumors such as neuroblastoma
(Mohlin et al., 2015) and GBM (Wang et al., 2018),
few studies focused on the roles of EPASI in GBM
invasion. Our analyses revealed its dynamic transcrip-
tional pattern during GBM progression, providing
new evidence and insight into the contribution of
EPASI to achievement of invasion potential of GBM
cells. But the detailed mechanism needs further inves-
tigation of future studies. Besides EPASI, we also
identified other six common TFs, including FOSL2,
PREB, YBX3, RELA, KLF6, and MYC. Notably,
expect for MYC, few researches have reported the
correlation of most of these TFs with GBM, espe-
cially invasion. Moreover, given the important roles
of IncRNAs in tumor biology, we also identified the
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top correlated IncRNAs, which also need further
investigation and validation of their functional mech-
anisms in GBM invasion.

5. Conclusions

In summary, our study used single-cell RNA-seq to
provide a subtle delineation of cellular heterogeneity in
GBM, reveal the invasive path, and determine key fac-
tors contributing to GBM invasion at a high resolu-
tion. The new insights into GBM progression may be
useful for the clinical treatment, and the identified cru-
cial factors may offer a selective and efficient therapeu-
tic target for GBM, and possibly other solid malignant
tumors.
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