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Abstract

Background: Quantitative analysis of brain positron-emission tomography (PET) depends on structural
segmentation, which can be time-consuming and operator-dependent when performed manually. Previous
automatic segmentation usually registered subjects’ images onto an atlas template (defined as RSIAT here) for
group analysis, which changed the individuals’ images and probably affected regional PET segmentation. In
contrast, we could register atlas template to subjects’ images (RATSI), which created an individual atlas template
and may be more accurate for PET segmentation. We segmented two representative brain areas in twenty
Parkinson disease (PD) and eight multiple system atrophy (MSA) patients performed in hybrid positron-emission
tomography/magnetic resonance imaging (PET/MR). The segmentation accuracy was evaluated using the Dice
coefficient (DC) and Hausdorff distance (HD), and the standardized uptake value (SUV) measurements of these two
automatic segmentation methods were compared, using manual segmentation as a reference.

Results: The DC of RATSI increased, and the HD decreased significantly (P < 0.05) compared with the RSIAT in PD, while
the results of one-way analysis of variance (ANOVA) found no significant differences in the SUVmean and SUVmax among
the two automatic and the manual segmentation methods. Further, RATSI was used to compare regional differences in
cerebral metabolism pattern between PD and MSA patients. The SUVmean in the segmented cerebellar gray matter for the
MSA group was significantly lower compared with the PD group (P < 0.05), which is consistent with previous reports.

Conclusion: The RATSI was more accurate for the caudate nucleus and putamen automatic segmentation and can be
used for regional PET analysis in hybrid PET/MR.
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Background
Positron-emission tomography (PET) is a molecular imaging
method that uses the annihilation reactions of different posi-
tron emitters in radiotracers to generate images from the
511 keV gamma rays emitted. The positron emitters used,
such as 18F and 11C, are bound to physiologically active

substances to detect disease. Because physiologic images are
relatively low in spatial resolution, computed tomography
(CT) has been combined with PET for both anatomical loca-
tion and attenuation correction. PET/CT scanning is widely
applied in the evaluating of tumors, cardiac disease, CNS
disorders, and infection/inflammation [1, 2].
Compared with CT, magnetic resonance imaging

(MRI) has better soft tissue contrast and can obtain mul-
tiparametric images, e.g., T1-weighted images (T1WI),
T2-weighted images (T2WI), proton density-weighted
images (PDWI), or diffusion-weighted imaging (DWI),
without ionizing radiation exposure. Therefore, the
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combination of PET and MRI should provide much
more functional and structural information than CT
without CT’s contribution to the overall radiation dose
[3–5]. Combining PET with MRI was initially considered
in the 1990s [6, 7]. Until 2010, with the advent of a
magnet-compatible avalanche photodiode detector
(APD), the first commercial whole-body hybrid PET/MR
system (Siemens Biograph MRI scanner, Siemens
Healthcare, Erlangen, Germany) [8] was introduced. In
2014, the latest generation of clinical whole-body hybrid
PET/MR scanner (SIGNA PET/MR, GE Healthcare,
Waukesha WI, USA) emerged with silicon photomulti-
pliers (SiPMs), which digitize and process the signal dir-
ectly within the magnetic field, which resulted in a
thousand-fold improvement in time resolution, permit-
ting time-of-flight (TOF) imaging [9].
PET/MR can simultaneously obtain images from the

two modalities and is very useful for applications in neu-
roimaging. Catana et al. summarized the potential clin-
ical application of PET/MR in patients with neurological
disorders [10]. Previous studies have shown that the
metabolic patterns of Parkinson’s disease (PD) and atyp-
ical Parkinson’s syndrome, e.g., multiple system atrophy
(MSA), progressive supranuclear palsy (PSP), and corti-
cobasal degeneration (CBD), were different [11]. How-
ever, it is usually difficult to quantitatively analyze
abnormalities in different brain regions accurately [12].
Because of PET’s relatively low spatial resolution and the
complexities of brain anatomy, the analysis of regional
PET quantification relies on MRI. Brain structural seg-
mentation based on MRI is very useful to localize re-
gional CNS metabolism for clinical diagnosis.
Segmentation is one of the fundamental challenges in

biomedical image analysis in that brain morphological char-
acteristics are very complicated. This has been widely inves-
tigated to help diagnosis or surgery, e.g., deep brain
stimulation (DBS) [13, 14]. Brain structural segmentation
can be performed manually or automatically. Manual seg-
mentation is highly time-consuming, requires expert ana-
tomical knowledge [15, 16], and is subject to operator-
dependence, especially when the signal-to-noise ratio or
resolution is suboptimal. However, manual segmentation is
still often employed, and the results are always used to es-
tablish a valid ground truth against which to assess auto-
mated segmentation results [17]. Automatic segmentation
methods depending on algorithms can be very convenient,
and the results are usually objective and reproducible [17].
Automatic segmentation methods must show accurate im-
aging co-registration, including the co-registration of im-
ages from different modalities, and accurate co-registration
with a common reference template, such as the Montreal
Neurological Institute (MNI) brain template [18].
For PET quantitative analysis, previous studies usually

extracted the regional cerebral standardized uptake values

(SUVs) directly based on an atlas, e.g., the widely used 3D
stereotactic surface projection (3D SSP), or acquired the
PET/CT and MRI data sequentially, registered the PET
and MRI by postprocessing [19–21], and performed quan-
titative SUV analysis. In hybrid PET/MR, the two modal-
ities are acquired simultaneously, which avoids image
misregistration. The main difficulty is registering the sub-
jects’ images with a referenced brain atlas. Many studies
have focused on developing or optimizing algorithm per-
formance for cortical structures in support of the func-
tional MRI literature [22, 23]. However, the evaluation of
effects of different automatic segmentation methods on
PET SUV quantification is lacking. To label brain regions
for group analysis, automatic segmentation RSIAT always
fits the subjects’ images to a common reference space [24,
25], and PET quantification is performed in the trans-
formed space, which fits the individual image data to
adapt to the common reference frame and probably influ-
ences the accuracy of regional SUVs [26].

Materials and methods
In this study, we inversely registered the atlas in the
template space to the original PET/MR data space and
calculated the SUV—defined as registering atlas template
to subjects’ images (RATSI) method—then compared
the quantification with that of the traditional RSIAT
method of fitting the clinical image data to the template
space. Using the two automatic methods, we segmented
two representative brain areas containing four regions:
the left caudate (CAU_L), right caudate (CAU_R), left
putamen (PUT_L), and right putamen (PUT_R) in
twenty PD patients, then compared the SUVmean and
SUVmax in the corresponding brain regions. The manual
segmentation method was also performed and used as
the ground truth. For quantitatively evaluating the two
atlas-based automatic methods, the segmented results
from the three methods (including the manual method)
were normalized into the same MNI space in the end;
then, the Dice coefficient (DC) and Hausdorff distance
(HD) were calculated to evaluate inter-rater variability.
The RATSI method was applied to quantify the differ-
ences in 18F-FDG uptake between PD and MSA groups
in multiple brain regions, including caudate, putamen,
and the cerebellar gray matter.

Subjects and data
We retrospectively studied patients who had undergone
18F-FDG PET/MR brain examinations for diagnosing or
evaluating neurodegenerative diseases in our PET center
(Wuhan Union Hospital, Wuhan, China). The study was
approved by the Ethics Committee of Tongji Medical
College, Huazhong University of Science and Technol-
ogy. Patients provided written informed consent.
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Twenty typical PD (60 ± 5 years) and eight MSA pa-
tients (60 ± 8 years) were involved in this study. The
diagnosis was according to the diagnostic criteria for PD
in China in 2016 and the MSA diagnostic criteria of
a Chinese expert consensus in 2017. The exclusion
criteria were as follows: (1) a clear history of stroke,
with brain MRI examination revealing large cortical
infarction or hemorrhagic manifestations; (2) CNS in-
fectious disease; (3) brain tumors or history of head
trauma; (4) history of craniocerebral surgery; and (5)
suboptimal image quality.

Image acquisition and reconstruction
All patients underwent 18FDG-PET and MRI brain im-
aging simultaneously in a hybrid PET/MR scanner (3.0
T, SIGNA TOF-PET/MR, GE Healthcare). The 18F-FDG
was produced in our center by a Minitrace cyclotron
(GE Healthcare, USA) and automatic synthesizer (PAT
Biotechnology Company, Beijing, China). The radio-
chemical purity was > 95%.
All participants fasted for at least 6 h and stopped any

drugs that could affect brain glucose metabolism for at
least 12 h before the 18F-FDG injection. The intravenously
injected dose was 0.1 mCi/kg (3.7MBq/kg) after ensuring
the blood glucose level was ≤ 200mg/dL. The scan began
40min post 18F-FDG injection, during which the subject
rested in a quiet and dimly lit room. The total scanning
time for PET was 15min, and the 3D T1WI (three-dimen-
sional gradient echo sequence, flip angle = 12°, time of
echo [TE]/time of repetition [TR] = 2.6/6.9 ms, bandwidth
= 50 KHz, FOV = 24 cm × 24 cm, matrix = 384 × 384) se-
quence was simultaneously acquired.
The PET data were reconstructed using the ordered

subsets expectation maximum (OSEM) algorithm with
TOF technique. The parameters were as follows: FOV
= 30 cm × 30 cm, matrix = 192 × 192, filter cutoff =
3.0 mm, subsets = 28, iterations = 3. The PET at-
tenuation correction was atlas-based MRI attenuation

correction, combined with Dixon water-fat separation
methods [27].

Brain segmentation and SUV quantification
Automatic brain segmentation was based on an atlas
template from the automated anatomical labeling atlas
(http://www.gin.cnrs.fr/en/tools/aal-aal2/) shown in
Fig. 1. There are 70 segmented regions labeled from
1 to 70 in this brain atlas, which were used for both
the two atlas-based automatic methods. By registra-
tion of 3D T1-weighted MRI to MNI space with
SPM12 segmentation (http://www.fil.ion.ucl.ac.uk/spm/
download/), the forward and inverse deformation
fields could be produced. The RSIAT spatially fitted
the 18F-FDG PET images to the atlas template with
the forward deformation field directly and produced
the PET images in the MNI space, which could be
segmented directly with the brain atlas. In contrast,
the RATSI fitted the acquired inverse deformation
field to the brain atlas template, generating a person-
alized brain atlas for every subject, which then was
used for regional 18F-FDG PET image quantification,
as shown in Fig. 2.
For the two automatic brain segmentations, the de-

tailed steps were as follows:

1. The medicine (DICOM) format of 3D T1 MRI and
18F-FDG PET images was converted to the
neuroimaging informatics technology initiative
(NIfTI) format using SPM12 for following
processing.

2. The 3D T1 images were normalized to MNI space.
The results would produce the inverse deformation
field (for RATSI) and forward deformation field (for
RSIAT), which extracted the information of
transformation between the data acquisition space
and MNI space.

Fig. 1 The brain atlas template, which segments the brain into 70 regions, labeled with numbers from 1 to 70 and showed with different colors.
It was used for the following automatic segmentations
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3. For RATSI, by utilizing the inverse deformation
filed, the anatomical labeling atlas in the MNI
space was transformed into the data acquisition
space and produced the personalized atlas
template, which was in the same space with FDG
images. For RSIAT, by utilizing the forward
deformation field, the FDG-PET images could be
normalized to the MNI space.

4. For RATSI, the regional FDG images were
segmented according to the personalized atlas
template, and further, the mean or max SUV
values in different regional brain could be
calculated. For RSIAT, the normalized FDG
images were registered with the atlas template,
then were segmented directly according to the
regions-labeled brain atlas. At last, the regional
SUV values could be calculated.

Manual segmentation was performed by a clinical neu-
roimaging expert using ITK-SNAP (http://www.itksnap.
org) section by section, using the 3D T1 structural images.
As the manual method was time-consuming, only two
cerebral nuclei containing four regions (left caudate, right
caudate, left putamen, and right putamen) were extracted
and used for evaluation of the automatic segmented re-
sults. The extracted regions based on structural images
produced the corresponding binary mask, which used for
18F-FDG PET images segmentation.

The regional SUV calculations were performed with
Matlab 2016a (Mathworks, Natick, MA, USA). The
SUVs were calculated by [28]

SUV ¼ r
a0=w

; ð1Þ

where r is the radioactivity concentration [kBq/mL], a′

is the decay-corrected amount of injected radiolabeled
18F-FDG [kBq], and w is the weight of the patient [g].

Inter-rater reliability
The four brain regions were segmented with the manual
method on twenty PD subjects for inter-rater variability
evaluation by using the parameters DC and HD. The DC
evaluates the similarity between two volumes by measur-
ing their overlap [29].

DC ¼ 2 A⋂Bj j
Aj j þ Bj j ; ð2Þ

where A and B represent the segmentation volumes of
the automatic methods and manual method, respect-
ively. A∩B represents the intersection of the two vol-
umes. A DC value of 1 represents two identical
segmentations while a DC value of 0 represents no over-
lap between the two segmentations. HD usually mea-
sures how far two subsets of a metric space are from
each other, and here, determines on average how much

Fig. 2 The diagram displaying the processing steps of the two atlas-based automatic methods for whole brain automatic segmentation and
regional 18F-FDG PET quantification
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the two segmented volumes differ. A smaller HD repre-
sents a closer agreement between two volumes.

Statistical analysis
The differences in parameters DC and HD were ana-
lyzed by a paired t-test. The four segmented brain re-
gions used as binary masks were overlapped on the PET
images to extract the regional SUVmean and SUVmax.
One-way analysis of variance (ANOVA) was used to
compare the differences in quantitative SUVs among the
three segmentation methods. The F-test was used to test
whether the variance was homogeneous, and the two-
tailed t-test was used to compare the differences in
SUVs in the different regions in the basal ganglia and
cerebellar gray matter between the PD group and MSA
group. P > 0.05 was considered variance homogeneous
for F-test. P < 0.05 was considered statistically signifi-
cant for t-test.

Results
The DC and HD for the RSIAT method (green boxplots)
and RATSI method (red boxplots) are displayed in Fig.
3. The mean DCs of RATSI were much larger than those
of the RSIAT method, while the mean HD of RATSI
was much smaller. The quantitative values are listed in
Table 1. The corresponding two-tailed t-test results are
also shown. Significant differences in DC and HD were
found between the two methods (P < 0.05). The max-
imum DC was nearly 0.8 for right caudate nucleus seg-
mentation in the RATSI method.
Figure 4 shows the representative segmented caudate

and putamen ROIs on the left and right side with the
three segmentation methods, which were overlain on
T1WI and displayed with different colors for better
visualization, including coronal, sagittal, and axial views.
Visually, the segmented volumes from the RSIAT
method were larger than the manual and RATSI

segmentation volumes, especially for the right caudate
nucleus as indicated by the white arrows.
The distributions of SUVmean and SUVmax extracted

with the three segmentation methods in the caudates and
putamina from all twenty PD patients are box-plotted in
Fig. 5. For SUVmax, the quantification was nearly the same,
while the SUVmean of both the automatic segmentation
methods was slightly lower than those of the manual seg-
mentation. The corresponding quantitative SUV and
ANOVA results are listed in Table 2. No significant differ-
ences were found in SUVmean or SUVmax among the three
segmentation methods (P > 0.05).
The consistencies of SUVmean obtained from manual

and automatic methods were evaluated with Bland-
Altman plots. As shown in Fig. 6, the transverse and lon-
gitudinal axis represents, respectively, the mean and dif-
ferential values calculated by the two automatic
methods. Most (94%) of the dots were within the two
95% consistency limit lines, which indicated that it is
feasible to measure the SUVmean with the automatic seg-
mentation method based on the atlas template.
The SUVmean extracted with RATSI in brain nuclei be-

tween the PD group and MSA group is summarized in
Table 3. All the SUVmean were decreased in the MSA
group compared with those in the PD group. The differ-
ence in SUVmean in the cerebellar gray matter was statis-
tically significant between the two groups (P < 0.05).

Discussion
The quantitative analysis of regional cerebral metabolism
is very meaningful for diagnosis of nervous system dis-
eases and exploring brain function. In this study, by using
hybrid PET/MR, the registration of PET functional images
and MRI structural images was avoided. Furthermore, the
personalized templates, which were finally used for 18F-
FDG PET regional segmentation and quantification, were
built based on an inverse deformation field obtained by

Fig. 3 The boxplots displaying distributions of the Dice coefficient (a) and Hausdorff distance (b), which were used to evaluate the brain
segmentation accuracy in compared with the ground truth, the manual segmentation results. The red and green boxplots represented the results
of RSIAT method and RATSI, respectively. Representative nuclei including caudate nucleus (left: CAU_L, right: CAU_R) and putamen (left: PUT_L,
right: PUT_R) were segmented for analysis
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registering the atlas template to 3D T1WI in SPM12.
Compared with the RSIAT method, the RATSI could ac-
quire larger DCs, more consistent with those of the man-
ual method. For the RSIAT, it was the registration process
to normalize the PET/MR images to fit the atlas template,
which probably change the personalized images, especially

for some subjects whose brain structure have changed. In
contrast, the RATSI normalized the atlas template to fit
the PET/MR images, for producing the personalized atlas,
which could avoid the problem from the RSIAT. There-
fore, the RATSI registration method is probably advanta-
geous for PET quantitative analysis, especially for point-

Table 1 The Dice coefficient (DC) and Hausdorff distance (HD) (mean ± SD) for evaluating the accuracy of automatic brain
segmentation quantitatively

1CAU_L 2CAU_R 3PUT_L 4PUT_R

DC Methods Traditional 0.48 ± 0.13 0.51 ± 0.06 0.62 ± 0.09 0.49 ± 0.12

RATSI 0.64 ± 0.06 0.70 ± 0.05 0.75 ± 0.05 0.69 ± 0.05

P < 0.001

DH (pixels) Methods Traditional 11.80 ± 0.74 12.42 ± 1.19 11.03 ± 0.88 12.73 ± 1.87

RATSI 9.61 ± 0.75 9.56 ± 0.69 8.89 ± 0.68 9.39 ± 0.75

P < 0.001
1CAU_L: left caudate nucleus
2CAU_R: right caudate nucleus
3PUT_L: left putamen
4PUT_R: right putamen

Fig. 4 Representative visualization of segmented brain nuclei including caudate nucleus (green: CAU_L, red: CAU_R) and putamen (blue: PUT_L,
yellow: PUT_R) by using manual segmentation (b), RSIAT method (c), and RATSI (d). The areas in the white box in T1 images (a) were the regions
shown below. And the segmented regions of interest (ROIs) for nuclei were overlapped on T1 images in coronal (left), sagittal (middle), and axial
views (right), respectively, for better visualization
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to-point image analysis. In addition to 18F-FDG PET, this
method could also be used for cerebral PET analysis with
other tracers.
The ability to distinguish between PD and Parkinson

syndrome is very difficult, especially in the early stage.
Previous reports suggested the diagnostic accuracy rate
of early PD was only 53% [30]. In our study, the RATSI
method was used for calculation and comparisons of re-
gional brain SUVs between the PD and MSA groups.
The results suggested the method can effectively quan-
tify the regional SUVs and find the differences of 18F-
FDG PET metabolic pattern between the PD and MSA
groups. The SUVmean was significantly lower in the cere-
bellar gray matter in the MSA group compared with the
PD group. The results are consistent with previous clin-
ical studies and meta-analyses that use the metabolic
brain network based on 18F-FDG-PET for the differential
diagnosis of Parkinson syndrome [31, 32].
The quantitative evaluation of segmentation accuracy

with DC and HD suggested the RATSI can generate better
segmented results than the RSIAT method. However, the
SUVmax was not significantly different, due to that the

SUVmax usually was less related with the edge of seg-
mented regions. Also, there were no significant differences
in the SUVmean among the three segmentation methods in
the caudate and putamen. We speculate that because the
caudate and putamen are relatively large and contain so
many voxels; the marginal differences caused by the two
automatic segmentation methods had little influence on
the SUVmean. Therefore, the RATSI method probably
would be more advantageous for smaller areas.
There are still some limits in the study. Firstly, the

personalized atlas template was very important for seg-
mentation in the RATSI method, which depended on
the deformation field. In this study, for generating the
deformation field consistently, the default parameters
were used on the SPM12. The parameters for every
registration should be optimized to acquire more precise
and personalized deformation field data. Secondly, be-
sides the SPM12, lots of other software could be used
for realizing the two segmented methods, i.e., FSL or
FreeSurfer. The results of the comparison from other
software were unknown. Ewert et al. practically opti-
mized parameters and compared subcortical alignment

Fig. 5 The boxplots displaying the distribution of the SUVmean (a) and SUVmax (b) in caudate nucleus (left: CAU_L, right: CAU_R) and putamen
(left: PUT_L, right: PUT_R) from twenty PD patients with manual segmentation (red), the RSIAT method (green), and RATSI (blue)

Table 2 The lists of mean and max 18F-FDG-SUVs in segmented regions extracted with manual segmentation, RSIAT, and RATSI

CAU_L CAU_R PUT_L PUT_R

SUV_mean 1Manual segmentation 7.45 ± 1.39 7.42 ± 1.42 9.03 ± 1.69 9.08 ± 1.76
2Traditional 6.61 ± 1.38 6.72 ± 1.37 8.60 ± 1.63 8.44 ± 1.71
3RATSI 6.60 ± 1.37 6.84 ± 1.36 8.59 ± 1.72 8.48 ± 1.67

P (among groups) 0.090 0.233 0.642 0.419

P 1 vs 2 0.059 0.111 0.419 0.239

1 vs 3 0.055 0.187 0.415 0.272

2 vs 3 0.974 0.778 0.995 0.937

SUV_max Manual segmentation 11.29 ± 2.04 11.73 ± 2.32 12.95 ± 2.47 12.90 ± 2.59

Traditional 11.29 ± 2.12 11.68 ± 2.38 12.92 ± 2.44 12.90 ± 2.63

RATSI 11.32 ± 1.93 11.74 ± 2.32 12.97 ± 2.47 12.78 ± 2.66

P > 0.90
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for the following nonlinear image registration tools:
Normalization Tools ANTs 2.2.0, SPM12 software, and
FSL 5.0.10 for atlas-based segmentation of DBS target
nuclei [17]. The corresponding process could be refer-
enced in the future for more detailed research. Thirdly,
partial volume effect is a common phenomenon in the
medical imaging equipment, especially for PET images
due to the relatively low spatial space. In this study, we
did not perform the partial volume effect correction in
consideration that the two segmentation methods were
mainly based on 3D T1 MRI. However, the partial vol-
ume effect may reduce the accuracy of PET quantitative
analysis and have some influence for comparing regional
differences in cerebral metabolism pattern between PD
and MSA patients. Therefore, partial volume effect
should be noted in the future study.
In this study, we focused on manual and automatic seg-

mentation and quantification evaluation of the caudate and
putamen. The automatic method could be theoretically ex-
tended to other structures according to the atlas templates.
However, some deep brain structures show poor contrast

and are typically difficult to be visualized on T1WI, e.g., the
red nucleus and substantia nigra, but are better visualized
on T2WI. Fonov et al. [33] and Xiao et al. [34] demon-
strated better segmentation results from non-rigidly warp-
ing the T1WI and T2WI to a common template space. In
the future, multi-modality data, that is, T1WI, T2WI, and
PDWI, might be used for automatic segmentation. This
needs to be explored in the future.

Conclusions
We utilized two automatic segmentation methods for re-
gional PET analysis. Comparing with the traditional
RSIAT method, the RATSI was more accurate for the
caudate nucleus and putamen automatic segmentation,
while has little effects for their max and mean SUV cal-
culation in hybrid PET/MR. And it could be theoretic-
ally extended to other structures according to the atlas
templates. Further, the regional PET results from the
RATSI method have been demonstrated useful for the
differential diagnosis between the PD and MSA.

Abbreviations
PET: Positron-emission tomography; RATSI: Registering atlas template to
subjects’ images; RSIAT: Registering subjects’ images to atlas template;
PD: Parkinson disease; MSA: Multiple system atrophy; PET/MR: Positron-
emission tomography/magnetic resonance imaging; DC: Dice coefficient;
HD: Hausdorff distance; SUV: Standardized uptake value; ANOVA: One-way
analysis of variance; CT: Computed tomography; MNI: Montreal Neurological
Institute

Acknowledgements
Not applicable

Authors’ contributions
Dr. Xiaoli Lan: substantial contributions to conception and design, analysis
and interpretation of data, and revising the manuscript critically for
important intellectual content. Dr. Weiwei Ruan: contributions to conception
and design, acquisition of data, analysis and interpretation of data, and

Fig. 6 Bland–Altman graphs to evaluate the SUVmean consistency of the RSIAT method (a) and RATSI (b) in comparison with the manual
segmentation in the four representative regions including the left, right caudate nucleus, and putamen. The SD represents the standard deviation

Table 3 The SUVmean quantification in brain nuclei for PD and
MSA patients

CAU_L CAU_R PUT_L PUT_R 1CGM_
L

2CGM_
R

SUV_
mean

PD 6.60 ±
1.37

6.84 ±
1.36

8.59 ±
1.72

8.48 ±
1.67

5.49 ±
0.70

5.32 ±
0.79

MSA 5.46 ±
1.78

5.87 ±
1.77

7.27 ±
1.81

7.32 ±
1.83

3.93 ±
1.05

3.59 ±
1.06

F 0.50 0.39 0.80 0.83 0.19 0.34
3P 0.07 0.21 0.15 0.15 0.00 0.00

1CGM_L: left cerebral gray matter
2CGM_R: right cerebral gray matter
3P < 0.05 was considered statistically significantly different for comparisons

Ruan et al. EJNMMI Research           (2020) 10:60 Page 8 of 9



drafting the article. Dr. Xun Sun, Ms. Xuehan Hu, Dr. Fang Liu, Ms. Fan Hu,
and Dr. Yongxue Zhang: analysis and interpretation of data and drafting the
article. Dr. Jinxia Guo: analysis of data. The authors read and approved the
final manuscript.

Funding
This work was supported by the National Natural Science Foundation of
China (No. 81901735 and 81701759) and Key Project of Hubei Province
Technical Innovation (No. 2017ACA182).

Availability of data and materials
The datasets used and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Ethics approval and consent to participate
The authors declare that they have no conflict of interest. All procedures
performed in studies were approved by the Ethics Committee of Tongji
Medical College, Huazhong University of Science and Technology. Informed
consent was obtained from all individual participants included in the study.

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Nuclear Medicine, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, No. 1277 Jiefang Ave,
Wuhan 430022, China. 2Hubei Province Key Laboratory of Molecular Imaging,
Wuhan 430022, China. 3GE Healthcare, Shanghai 201203, China.

Received: 8 March 2020 Accepted: 21 May 2020

References
1. Cheng G, Fosse P, Zhuang H, Hustinx R. Applications of PET and PET/CT in

the evaluation of infection and inflammation in the skeletal system. Pet
Clinics. 2010;5(3):375–85.

2. Lemans JVC, Hobbelink MGG, Ijpma FFA, Plate JDJ, van den Kieboom J, Bosch
P, et al. The diagnostic accuracy of F-18-FDG PET/CT in diagnosing fracture-
related infections. Eur J Nucl Med Mol Imaging. 2019;46(4):999–1008.

3. Drew A, Torigian M, Habib ZP, Thomas C, Kwee M, Babak SM, et al. PET/MR
imaging: technical aspects and potential clinical applications. Radiology.
2013;267(1):26–44.

4. Bailey DL, Pichler BJ, Guckel B, Barthel H, Beer AJ, Bremerich J, et al.
Combined PET/MR: multi-modality multi-parametric imaging is here. Mol
Imaging Biol. 2015;17:595–608.

5. Besson FL, Lebon V, Durand E. What are we expecting from PET/MRI? Med
Médecine Nucléaire. 2016;40(1):31–40.

6. Christensen NL, Hammer BE, Heil BG, Fetterly K. Positron emission
tomography within a magnetic field using photomultiplier tubes and
lightguides. Phys Med Biol. 1995;40:691–7.

7. Shao Y, Cherry SR, Farahani K, Meadors K, Siegel S, Silverman RW, et al.
Simultaneous PET and MR imaging. Phys Med Biol. 1997;42:1965–70.

8. Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al.
Performance measurements of the Siemens mMR integrated whole-body
PET/MR scanner. J Nucl Med. 2011;52:1914–2022.

9. Schaart DR, Seifert S, Vinke R, van Dam HT, Dendooven P, Lohner H, et al.
LaBr(3):Ce and SiPMs for time-of-flight PET: achieving 100 ps coincidence
resolving time. Phys Med Biol. 2010;55:179–89.

10. Catana C, Drzezga A, Heiss W-D, et al. PET/MR for neurologic applications. J
Nucl Med. 2012;53:1916–25.

11. Meyer PT, Frings L, Rucker G, Hellwig S. 18-F-FDG PET in parkinsonism:
differential diagnosis and evaluation of cognitive impairment. J Nucl Med.
2017;58(12):1888–98.

12. Klyuzhin IS, Fu GJF, Hong A, Sacheli M, Shenkov N, et al. Data-driven, voxel-
based analysis of brain PET images: application of PCA and LASSO methods
to visualize and quantify patterns of neurodegeneration. PLoS One. 2018;
13(11). https://doi.org/10.1371/journal.pone.0206607.

13. Gonzalez-Villa S, Oliver A, Valverde S, Wang LP, Zwiggelaar R, Llado X. A
review on brain structures segmentation in magnetic resonance imaging.
Artif Intell Med. 2016;73:45–69.

14. Forstmann BU, Isaacs BR, Temel Y. Ultra high field MRI-guided deep brain
stimulation. Trends Biotechnol. 2017;35(10):904–7.

15. Zwirner J, Mobius D, Bechmann I, Arendt T, Hoffmann KT, Jager C, et al.
Subthalamic nucleus volumes are highly consistent but decrease age-
dependentlya combined magnetic resonance imaging and stereology
approach in humans. Hum Brain Mapp. 2017;38(2):909–22.

16. Chakravarty MM, Steadman P, van Eede MC, Calcott RD, Gu V, Shaw P, et al.
Performing label-fusion-based segmentation using multiple automatically
generated templates. Hum Brain Mapp. 2013;34(10):2635–54.

17. Ewert S, Horn A, Finkel F, Li NF, Kuhn AA, Herrington TM. Optimization and
comparative evaluation of nonlinear deformation algorithms for atlas-based
segmentation of DBS target nuclei. Neuroimage. 2019;184:586–98.

18. Ewert S, Plettig P, Li N, Chakravarty MM, Collins DL, Herrington TM, et al.
Toward defining deep brain stimulation targets in MNI space: a subcortical
atlas based on multimodal MRI, histology and structural connectivity.
Neuroimage. 2018;170:271–82.

19. Nozadi SH, Kadoury S, Alzheimers Dis N. Classification of Alzheimer’s and MCI
patients from semantically parcelled PET images: a comparison between AV45
and FDG-PET. Int J Biomed Imaging. 2018; https://doi.org/10.1155/2018/1247430.

20. Sun X, Liu F, Li Q, Gai Y, Ruan W, Wimalarathne DN, et al. Quantitative research of
C-11-CFT and F-18-FDG PET in Parkinson’s disease: a pilot study with NeuroQ
software. Front Neurosci. 2019. https://doi.org/10.3389/fnins.2019.00299.

21. Saint-Aubert L, Nemmi F, Peran P, Barbeau EJ, Payoux P, Chollet F, et al.
Comparison between PET template-based method and MRI-based method
for cortical quantification of florbetapir (AV-45) uptake in vivo. Eur J Nucl
Med Mol Imaging. 2014;41:836–43.

22. Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, et al.
Evaluation of 14 nonlinear deformation algorithms applied to human brain
MRI registration. Neuroimage. 2009;46(3):786–802.

23. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, et al. A
multi-modal parcellation of human cerebral cortex. Nature. 2016;536:171–8.

24. Karim HT, Andreescu C, MacCloud RL, Butters MA, Reynolds CF, Aizenstein
HJ, et al. The effects of white matter disease on the accuracy of automated
segmentation. Psychiatry Res Neuroimaging. 2016;253:7–14.

25. Kaneta T, Okamura N, Minoshima S, Furukawa K, Tashiro M, Furumoto S,
et al. A modified method of 3D-SSP analysis for amyloid PET imaging using
C-11 BF-227. Ann Nucl Med. 2011;25(10):732–739.25.

26. Angulakshmi M, Lakshmi Priya GG. Automated brain tumour segmentation
techniques-a review. Int J Imaging Syst Technol. 2017;27(1):66–77.

27. Leynes AP, Yang J, Shanbhag DD, Kaushik SS, Seo Y, Hope TA, et al. Hybrid
ZTE/Dixon MR-based attenuation correction for quantitative uptake
estimation of pelvic lesions in PET/MR. Med Phys. 2017;44(3):902–13.

28. Kinahan PE, Fletcher JW. Positron emission tomography-computed
tomography standardized uptake values in clinical practice and assessing
response to therapy. Sem Ultrasound Ct Mri. 2010;31(6):496–505.

29. Wang BT, Poirier S, Guo T, Parrent AG, Peters TM, Khan AR. Generation and
evaluation of an ultra-high-field atlas with applications in DBS planning.
Medical Imaging 2016: Image Processing, 97840H; doi:https://doi.org/10.
1117/12.2217126.

30. Adler CH, Beach TG, Hentz JG, Shill HA, Caviness JN, Driver-Dunckley E, et al.
Low clinical diagnostic accuracy of early vs advanced Parkinson disease
Clinicopathologic study. Neurology. 2014;83(5):406–12.

31. Wu P, Wang J, Peng SC, Ma YL, Zhang HW, Guan YH, et al. Metabolic brain
network in the Chinese patients with Parkinson’s disease based on F-18-
FDG PET imaging. Parkinsonism Relat Disord. 2013;19(6):622–7.

32. Gu SC, Ye Q, Yuan CX. Metabolic pattern analysis of 18F-FDG PET as a
marker for Parkinson’s disease: a systematic review and meta-analysis. Rev
Neurosci. 2019. https://doi.org/10.1515/revneuro-2018-0061.

33. Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, et al.
Unbiased average age-appropriate atlases for pediatric studies. Neuroimage.
2011;54(1):313–27.

34. Xiao YM, Fonov V, Beriault S, Al Subaie F, Chakravarty MM, Sadikot AF, et al.
Multi-contrast unbiased MRI atlas of a Parkinson’s disease population. Int J
Comput Assist Radiol Surg. 2015;10(3):329–41.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ruan et al. EJNMMI Research           (2020) 10:60 Page 9 of 9

https://doi.org/10.1371/journal.pone.0206607
https://doi.org/10.1155/2018/1247430
https://doi.org/10.3389/fnins.2019.00299
https://doi.org/10.1117/12.2217126
https://doi.org/10.1117/12.2217126
https://doi.org/10.1515/revneuro-2018-0061

	Abstract
	Background
	Results
	Conclusion

	Background
	Materials and methods
	Subjects and data
	Image acquisition and reconstruction
	Brain segmentation and SUV quantification
	Inter-rater reliability
	Statistical analysis

	Results
	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

