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Abstract

Background: For most patients, pancreatic adenocarcinoma responds poorly to treatment, and novel therapeutic
approaches are needed. Standard-of-care paclitaxel (PTX), combined with birinapant (BRP), a bivalent mimetic of the
apoptosis antagonist SMAC (second mitochondria-derived activator of caspases), exerts synergistic killing of PANC-1
human pancreatic adenocarcinoma cells.

Methods: To investigate potential mechanisms underlying this synergistic pharmacodynamic interaction, data
capturing PANC-1 cell growth, apoptosis kinetics, and cell cycle distribution were integrated with high-quality
lonStar-generated proteomic data capturing changes in the relative abundance of more than 3300 proteins as the
cells responded to the two drugs, alone and combined.

Results: PTX alone (15 nM) elicited dose-dependent G2/M-phase arrest and cellular polyploidy. Combined BRP/PTX
(150/15 nM) reduced G2/M by 35% and polyploid cells by 45%, and increased apoptosis by 20%. Whereas BRP or
PTX alone produced no change in the pro-apoptotic protein pJNK, and a slight increase in the anti-apoptotic
protein Bcl2, the drug combination increased pJNK and decreased Bcl2 significantly compared to the vehicle
control. A multi-scale, mechanism-based mathematical model was developed to investigate integrated birinapant/
paclitaxel effects on temporal profiles of key proteins involved in kinetics of cell growth, death, and cell cycle
distribution.

Conclusions: The model, consistent with the observed reduction in the Bcl2/BAX ratio, suggests that BRP-induced
apoptosis of mitotically-arrested cells is a major contributor to the synergy between BRP and PTX. Coupling
proteomic and cellular response profiles with multi-scale pharmacodynamic modeling provides a quantitative
mechanistic framework for evaluating pharmacodynamically-based drug-drug interactions in combination
chemotherapy, and could potentially guide the development of promising drug regimens.
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Background

Eighty percent of pancreatic adenocarcinoma (PDAC) pa-
tients are not surgery candidates at diagnosis, leaving radi-
ation and chemotherapy as their only treatment options
[1]. First-line standards-of-care include multi-drug combin-
ation regimens such as FOLFIRINOX (fluorouracil, leucov-
orin, irinotecan, and oxaliplatin), which has been limited by
its toxicity to patients of high performance status, and gem-
citabine (GEM) plus nanoparticle-bound paclitaxel (Abrax-
ane’, ABX; nab-paclitaxel) [2, 3]. Given the limited efficacy
of standard therapy, identification of new drug targets and
combinations is urgently needed to provide better thera-
peutic outcomes for PDAC. Drug combination therapies
ideally should eliminate tumor cells and overcome single-
agent drug resistance by combining compounds having
complementary mechanisms of action. The NCI ALMA
NAC (A Large Matrix of Anti-Neoplastic Agent Combina-
tions) project screened over 5000 pairs of 104 FDA-
approved oncology drugs against the NCI-60 panel of hu-
man tumor cell lines to identify new, synergistic combina-
tions [4]. However, PDAC is not represented in the NCI-60
panel [5], and there is a paucity of data for PDAC, which
typically harbors large numbers of mutations in numerous
core signaling pathways [6—8]. Smaller-scale screening
studies have shown that few single agents or combinations
show activity in PDAC [9]. Transcriptomic signatures of
patient-derived organoids suggest potential biomarkers to
predict chemosensitivity to FOLFIRINOX or GEM/ABX
combinations [10]. However, this approach has yet to iden-
tify novel, clinically deployed combinations.

To address the need for positive modulators of standard-
of-care therapy, we employed comprehensive label-free
proteomic analysis of cell-level chemotherapy responses,
combined with quantitative pharmacological systems ana-
lysis, in order to investigate drug interaction mechanisms
that might underlie synergistic drug interactions in PDAC.
Paclitaxel (PTX) is a broad-spectrum oncology drug, and a
phase III study showed that PTX (as ABX) combined with
GEM increased both overall- and progression-free survival
by an average of 27% (1.8 mos) in metastatic PDAC pa-
tients compared to GEM alone [2]. PTX disrupts spindle
dynamics during mitosis, thus inducing cell cycle delay or
arrest, activation of the spindle assembly checkpoint, and
accumulation of cyclin B1 [11]. The arrested cells undergo
intrinsic apoptosis or mitotic slippage, depending on the
balance of cellular pro- and anti-apoptotic signals [11], such
as mitochondrial membrane permeability and expression of
inhibitor of apoptosis (IAP) proteins such as survivin [12,
13]. Cells that pass through mitotic slippage without div-
ision may undergo further DNA replication and become
polyploid, which has been associated with drug resistance
[14-16]. Therefore, combination therapies that synergize
with PTX to reduce the abundance of chemoresistant cells
could provide therapeutic benefits in PDAC.
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Birinapant (BRP) is a bivalent mimetic of the endogen-
ous IAP antagonist SMAC (second mitochondria-derived
activator of caspases) that binds to cellular inhibitor of
apoptosis (cIAP) proteins 1/2 and leads to their degrad-
ation through the ubiquitin-proteasome pathway [17, 18].
The cIAPs are incorporated into TNF receptor complexes
to promote pro-survival signals through NF-«B [19, 20].
Conversely, degradation of cIAPs by birinapant leads to
extrinsicc, TNF-mediated apoptosis [21]. These findings
suggest that combination of BRP with PTX might syner-
gize because they induce apoptosis by distinct yet conver-
gent mechanisms. Indeed, combined BRP/PTX reduces
PDAC cell proliferation synergistically in vitro [22], and
proteome-level responses suggested qualitatively that
metabolic-, cell cycle-, and apoptosis pathways could be
involved in enhanced cell killing by this combination [22].
However, a quantitative regulatory framework linking
intracellular protein expression changes to the kinetics of
apoptosis and cell proliferation is lacking. Here, the phar-
macodynamic interactions of BRP/PTX were investigated
in the Kras ™" PANC-1 cell line by employing mathem-
atical modeling to integrate temporal, proteome-level drug
responses quantitatively with treatment-mediated transi-
tions in intracellular signaling networks and regulation of
the cell cycle and apoptosis. A novel approach, involving
cluster analysis to identify temporal patterns of protein-
level drug responses, was investigated as a means of iden-
tifying and modeling different drug response patterns. The
clustering approach grouped proteins having similar tem-
poral expression patterns, and was used to identify key
proteins to represent the overall kinetics of protein fam-
ilies governing similar biological functions. This quantita-
tive analysis of multiscale data provides new insights into
the mechanisms of birinapant/paclitaxel interaction, iden-
tifies key protein-level response pathways that potentially
underlie their synergistic interactions, and provides quan-
titative estimates of the contribution of specific protein ex-
pression changes to cell cycle progression.

Methods

Reagents

Paclitaxel, sulforhodamine B sodium salt (SRB),
trichloroacetic acid, dimethylsulfoxide (DMSO), and Tris
were from Sigma-Aldrich (St. Louis, MO). Propidium iod-
ide (PI)/RNase Staining Buffer and the AnnexinV-
phycoerythrin (PE)/7-aminoactinomycin D (7-AAD) Apop-
tosis Detection Kit were from BD Pharmingen (San Diego,
CA). The ACCUTASE cell detachment solution was from
EMD Millipore (Temecula, CA). Birinapant was a gift of
TetraLogic Pharmaceuticals (Malvern, PA). Stock solutions
of PTX (10mM) and BRP (30 mM) were prepared in
DMSO and stored at —20°C until use. When diluted to
final concentrations in cell culture medium, the DMSO
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concentration was below 0.1% (v/v) and did not perturb cell
growth.

Cell culture

The human pancreatic cancer cell line PANC-1 was ob-
tained from the American Type Culture Collection
(Rockville, MD). It harbors several common mutations
in pancreatic cancer, including KRAS®'?P, TP53%*73H,
and homozygous deletion of CDKN2A [23]. Cells were
cultured in Dulbecco’s Modified Eagle’s Medium (Cell-
gro, Manassas, VA) containing 10% (v/v) fetal bovine
serum (Atlanta Biological, Lawrenceville, VA) in a hu-
midified atmosphere with 5% CO, at 37 °C. Cells were
passaged at 80 ~90% confluence using 0.05% trypsin
with 0.53 mM EDTA (Gibco BRL, Gaithersburg, MD).

Cell proliferation assay
Cells were seeded in 96-well plates at a density of 3.0 x
10° cells/well, allowed to adhere overnight, and at TO
(approx. 18 h later), they were treated with varied con-
centrations of PTX (2.5-60 nM) and/or BRP (15-1000
nM). The vehicle control was treated with 0.1% (v/v)
DMSO. At intervals after initiation of treatment (24, 48,
72, 96, 120 h), cell proliferation was quantified by SRB
assay [24], which exhibited good linearity over the op-
tical density range of 0.036-2.22 (R*=0.97). Cell prolif-
eration was normalized to the mean cell density at the
initiation of treatment (T0). Because the SRB assay
quantifies total cellular protein, rather than cell number,
it may overestimate cell number when drug treatment
conditions generate a significant proportion of polyploid
cells. To estimate the effect of polyploid cells on cell
count, we used the cell cycle model (below) to simulate
the number of diploid and polyploid cells in each treat-
ment group, based on experimental data for the fraction
of polyploid cells. Assuming that the protein content of
a polyploid cell is twice that of diploid cells (given the
short duration of the experiment), the “apparent” cell
number is calculated as Nyjpioiad + 2 - Npoypioia- A correc-
tion factor (CF) was then calculated as:
CF — true number _ Ndiploid + Npolyploid
apparant number N gipioia + 2+ N polypioid

and was applied to the measured optical densities for
each experimental group. The range of the CF was 0.70—
1.0 for PTX-treated group and 0.73-1.0 for the BRP/
PTX combination group. The effect of this correction to
cell number is described in Results.

Cell cycle analysis

Cell cycle distribution was analyzed as previously de-
scribed [25]. Cells were seeded in 6-well plates (2.0 x 10
cells/well), allowed to adhere overnight, and at TO were
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exposed to PTX (5-50 nM) and/or BRP (0.1-3 uM). The
vehicle control was treated with 0.1% (v/v) DMSO. Just
before drug exposure at TO, and after 17, 48, and 72 h of
drug exposure, adherent cells were harvested, counted
by Coulter counter (Hialeah, FL) and stained with PI/
RNase staining buffer. At least 10,000 events from tripli-
cate samples were collected using a FACSCalibur flow
cytometer (Becton—Dickinson, Mansfield, MA), and cell
cycle distributions were analyzed using ModFit 3.2 (Ver-
ity Software House, Topsham, ME). The fitted ModFit
curves were smooth, and debris and aggregates were <
5%. Cells in the GO/G1- and G2/M-phases were identi-
fied based upon DNA content of 2N and 4N, and the
intensity ratio for G2/G1 was 1.8—1.9. DNA content for
cells in S-phase was between 2N to 4 N; content >4 N
was defined as polyploid. The sub-G1 population was
minimal and excluded from quantification.

AnnexinV/7-AAD apoptosis assay

The apoptotic cell fraction was quantified using Annex-
inV/7-AAD staining and flow cytometry as previously
described [25]. PANC-1 cells were seeded as above and
exposed to BRP (0.1-3 uM) and/or PTX (15-50 nM),
with 0.1% DMSO-treated controls. At intervals, cells
were harvested as described above for flow cytometry.
Data were analyzed using FCS Express5 Flow Cytometry
software (DeNovo Software, Los Angeles, CA). Four cell
populations were identified based on their fluorescence
staining: (i) live (AnnexinV™/7-AAD"), (ii) early apop-
totic (AnnexinV*/7-AAD"), (iii) necrotic/late apoptotic
(AnnexinV*/7-AAD"), and (iv) ‘other’ (AnnexinV /7-
AAD") which was <1% for all samples. Apoptotic cells
were quantified as the total AnnexinV" population.

Large-scale temporal proteomic expression analysis

Quantitative proteomic data were obtained at intervals over
72h of exposure to BRP and PTX, alone and combined,
using the label-free IonStar workflow, as described previ-
ously [26], and 4069 proteins were quantified according to
stringent criteria: >2 quantified peptides per quantified pro-
tein; False Discovery Rate for peptide identification <0.1%,
for protein identification <1%, with p <0.05 [22]. Unper-
turbed baseline temporal expression profiles of 4110 pro-
teins were quantified in control cells using the same
workflow [27]. A total of 3325 proteins were quantified in
all samples in two experiments. A quantile normalization
method was applied to correct for between-batch differ-
ences, and provided relative change in expression for treat-
ment vs. control [28]. Normalization is essential for
comparative proteomic analysis, and numerous approaches
to normalization exist, including normalization of each
treatment group to its own ‘time zero’ point, or
normalization of treated vs. vehicle control samples at each
time point. All normalization approaches possess strengths
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and weaknesses. Here, the latter approach was employed,
and data were then transformed to log2 scale. This
normalization approach was chosen because it reveals the
effect of drug intervention as cells proliferate in culture. A
disadvantage is that unperturbed control cells eventually
transition from exponential growth to contact inhibition
when approaching confluency, and sub-confluent, drug-
treated cells may not experience confluency effects on cell
cycle progression. Previously we evaluated the effect of
normalization upon the quantitative conclusions drawn
from data analysis by modeling [29], and observed that
the normalization strategy did not affect the robustness of
estimation of turnover and drug effect parameters, nor
their interpretation.

Temporal proteomic profiles were clustered into 9 time-
series using a k-means clustering method (Short Time-
series Expression Miner software, STEM [30];), under the
assumption that proteins collaborating mechanistically in
different phases of drug response would share similar tem-
poral expression patterns [31]. The temporal profile of
each cluster is represented as mean values over time. Pro-
tein expression was validated orthogonally using Western
blots that were quantified using Image]J; bands were nor-
malized to GAPDH or [B-actin expression [22]. Analysis of
protein expression changes based upon Gene Ontology
(GO) annotation for biological process, cellular compo-
nent, and molecular function was performed using the
DAVID (Database for Annotation, Visualization and Inte-
grated Discovery) Bioinformatics Resource v6.7 (https://
david.ncifcrf.gov/) as described previously [22].

Mathematical modeling

Cell growth kinetic model

A pharmacodynamic model that included an exponential
cell growth function with concentration-dependent cyto-
toxicity was developed to quantify the nature of interaction
between PTX and BRP on PANC-1 cell growth kinetics,
(Fig. 1a). The unperturbed growth of PANC-1 cells in the
control group is represented by the first-order growth rate
constant kg. Nonlinear Hill functions with time-dependent
signal transduction delays were used to describe the tem-
poral effects of the two drugs [32—-34]. A signal distribution
model was parameterized with the maximum killing rate
constant (K,,,) for each drug, the concentration to achieve
50% of the maximum killing (KCs), and a mean transit
time 1 for the signal transduction delay. An interaction
term ¥ was included to characterize the nature of the
drug-drug interaction: for W < 1, the combination is syner-
gistic (supra-additive); for ¥ = 1, it is additive; for ¥ > 1, it is
antagonistic (sub-additive). Zero to five transduction delay
compartments were tested during model development,
and model selection was based on the lowest Akaike
information criterion (AIC) value and visual examin-
ation of the weighted residuals (WRES) distribution.

Page 4 of 19

The variance model was constructed as Var=(8 + o -
Y(t))%, with Y(t) as the model-predicted value, and &
and o as estimated variance model parameters. ADAP
T5 [35] was used for model fitting, using the max-
imum likelihood estimation method. Supplementary
Table S1 shows the complete set of equations.

Cell cycle and apoptosis model based on large-scale
proteomics analysis

A multi-scale, mathematical network model was developed
using a sequential model-fitting strategy to integrate quanti-
tatively pharmacodynamic endpoints such as the temporal
changes in cell cycle progression, expression of drug-
responsive proteins, and apoptosis of cells during exposure
to BRP/PTX (Fig. 1b). First, a model for protein interactions
was constructed (Fig. 1b, boxes) based on literature describ-
ing relevant proteins that contribute to the mechanisms of
action of PTX and BRP, and their known interactions (Sup-
plementary Table S2). For example, cIAP1 was included in
the model as it is a known direct target of BRP [18]. Tem-
poral clustering of the proteomic expression profiles
showed that mitotic spindle and kinetochore proteins ex-
hibited similar temporal profiles after PTX treatment.
Therefore, one representative protein, the kinetochore/nu-
clear pore complex protein ELYS, was selected to represent
the proteins in this functional group that are proximal tar-
gets of PTX. NF-kB was included because it is a key protein
involved in BRP-induced apoptosis signaling pathways me-
diated by cIAP in pancreatic cancer [25]. Additional pro-
teins were included if their expression in the BRP/PTX
combination group differed from their expression in either
single-agent treatment group. For example, mitochondrial
protein VDACI (voltage- dependent anion channel 1) was
not perturbed by PTX or BRP alone, but was increased by
the combination of BRP/PTX. The dynamics of individual
proteins were then described using an indirect response
model [36], with a first-order degradation rate constant kyeg
for the turnover of each protein. The baseline or initial
value for any protein is 1 in the absence of treatment, and
thus the synthesis rate constant (k) is a fixed function de-
fined as:

Keyn = kgeg X baseline = kgeg

In the model, BRP leads to cIAP1 degradation and sub-
sequently induces phosphorylation of the p65 NF-kB sub-
unit, which regulates the transcription of both pro-
apoptotic BAX and anti-apoptotic Bcl2. All down- or up-
regulated processes were represented with a factor multi-
plied by the protein’s synthesis rate as: kg, x (1 - Inhg) or
keyn x (1 + Stip), where Inh or Sti represent inhibition or
stimulation, and B and P indicate BRP and PTX (Supple-
mentary Table S3, Egs. 4-12). BAX regulates the expres-
sion of itself through feedback mechanisms. In the model,
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PTX induces accumulation of ELYS, a kinetochore and
nuclear pore complex protein, and subsequently activates
ASPP2 (apoptosis-stimulating protein of p53), which can
activate intrinsic apoptosis after it binds to p53 family pro-
teins. Both BRP and PTX are assumed to induce IRAK4
expression, which leads to STAT3 phosphorylation and
activation. Phosphorylated STAT3 then induces Bcl2 ex-
pression. Only when the two drugs are combined, the
pro-apoptotic signal protein JNK is phosphorylated and
induces the expression of VDACI. VDACI then inhibits
Bcl2 expression, and its expression represents mitochon-
drial activities such as oxidative phosphorylation.

This structural model was used to fit the large-scale
temporal protein expression data from PANC-1 cells ex-
posed to BRP (100 nM) and/or PTX (10 nM) for up to 72
h. A constant error model (Var = §,) was used for all fold-
changes in log scale. Model fitting was conducted sequen-
tially with Matlab 2018a, using the nonlinear regression
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function “nlinfit”. Parameters associated with upstream re-
lationships were estimated first, and then fixed for model-
ing downstream processes. For example, parameters for
BRP effects on its direct targets (e.g., cIAP) were estimated
and then fixed to the estimated value for modeling the
downstream interaction between cIAP and NF-«B.

An additional component of the cell cycle and apop-
tosis model (Fig. 1b) was developed to capture the kinet-
ics of cell cycle progression and estimate the rate
constants controlling cell cycle progression, density-
dependent inhibition, and naturally-occurring apoptosis
in untreated controls. In the absence of treatment, pro-
liferating cells progress through Go/G;, S, and G,/M
phases, and then cytokinesis, according to the first-order
transition rate constants kj,, ks3, and ks;. The values of
these rate constants are established by co-modeling all
cell cycle data, and govern the mean transit time through
each phase. In the model, cells can undergo spontaneous
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birinapant. a Model structure for PANC-1 cell growth inhibition by paclitaxel and birinapant, alone and combined. B: birinapant; P: paclitaxel. The
cell number N (blue circle) increases as cells proliferate in an exponential manner, with net growth rate constant kg. Concentration-dependent
cytotoxic signals for the two drugs are modeled by nonlinear Hill functions with transduction delays (rounded rectangles), and mediate removal
of cells (cell killing; downward blue arrow) from the population. The killing signals are additive. The ¥ drug interaction term is fixed to 1 for
single-drug treatment but is fitted for drug combinations. b Structure of the proteomics-based cell cycle and apoptosis model for cells exposed
to birinapant (B) and paclitaxel (P). The BRP/PTX combination is represent as B&P. Pink boxes: proteins quantified by proteomics; grey boxes:
proteins measured by western blot; circles: cells in different cell cycle stages or undergoing apoptosis. Activation of a protein/signal is denoted by
a black arrow, inhibition by a red bar. Each live cell progresses through Go/G;, S, and G,/M phases and divides into two progeny cells. Live cells
can also undergo spontaneous apoptosis (Apo). Birinapant acts by accelerating degradation of clAP1, an inhibitor of apoptosis. Paclitaxel-induced
mitotic arrest (MA) is mediated by ELYS, and the mitotically-arrested cells are prone to apoptosis, regulated by clAP1, BAX, Bcl2, and the delayed
signal of ASPP2. The mitotically-arrested cells may also undergo mitotic slippage and become polyploid cells (PL). The transition rate constants
between the cell cycle stages and to apoptosis are represented by the k" parameters, described in Table 1
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apoptosis according to a first-order rate constant, k,,, and
the apoptotic cell pool (Apo) undergoes turnover accord-
ing to k,p,. As cell density increases, nutrients and growth
factors are consumed, which cause cells to exit the cell
cycle and accumulate in Gy phase [37]. Therefore, cell
density-dependent inhibition (Ip), which slows the Go/G;
to S phase progression gradually, is modeled with a Gom-
pertz differential equation [38], in which the capacity par-
ameter N,,,,, represents the maximum number of cycling
cells under the culture conditions. The parameters of this
model were estimated by fitting it to unperturbed vehicle
control data for PANC-1 cell cycle progression, apoptosis,
and cell proliferation over 72h. A constant error model
was used for cell cycle- and apoptosis percentages, and the
variance model for total cell count was Var= (6, + 0, x
Y(©)% Model fitting was conducted with ADAPTS5 using
the maximum likelihood estimation.

The temporal protein interaction network and cell cycle/
apoptosis models were ultimately linked. Because cIAP1 is
a natural inhibitor of apoptosis, the abundance of cIAP1
modifies the natural progression of apoptosis and is repre-
sented as kg, x cIAPY#", where ycap <0 indicates inhib-
ition. The kinetochore forms during mitosis and the
response of the protein ELYS is used to represent the group
of kinetochore proteins that stimulates the unperturbed
cells in G2/M phase to transition into a mitotically-arrested
(M,) stage when ELYS expression is upregulated from
baseline. This stimulation is represented as Kk, = kyuao0
x (ELYS)"2x x (ELYS > 1), where k,,, is the rate constant
controlling the transition from G2/M phase to M,. When
ELYS expression is less than or equal to the baseline, ,,,, =
0 and cells progress without mitotic arrest. Mitotically-
arrested cells either undergo apoptosis with a rate constant
of Kgpmo» which is modified by BAX, Bcl2, cIAP1 and
ASPP2 expression, or they escape apoptosis through mi-
totic slippage and form polyploid cells according to a first-
order rate constant k,;. The models of both direct- or de-
layed signals were tested for proteins that stimulate k.0
in order to capture the temporal dynamics of the apoptotic
cell fraction. Incorporating a delayed signal for ASPP2 in-
duction improved model fitting based on the lowest mean
squared error and visual inspection of observed and pre-
dicted values. Polyploid cells were assumed to be apoptosis-
resistant and were quantified experimentally as having a
cellular DNA content of >4 N. The sum of G2/M and
mitotically-arrested cell populations was quantified as tetra-
ploid cells (DNA content =4 N). Initially, drug effects on
cell cycle and apoptosis were constructed to link drug con-
centrations directly to the rate constants for mitotic arrest
and apoptosis induction. All other parameters for cell cycle
progression were fixed to the estimated values obtained
from the control group. These concentration-dependent
relationships were subsequently replaced with power
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coefficients on corresponding proteins to stimulate apop-
tosis or mitotic arrest (e.g., yap and ygrys), and parameters
from the protein interaction network were fixed to esti-
mated values. Model fitting was conducted with Matlab
2018a, using “nlinfit” function. All model equations are
listed in Supplementary Table S3.

Major assumptions in the models

Several major assumptions were employed in the devel-
opment of the models. One is that both drugs are stable
in the cell culture medium for at least 72 h. Paclitaxel
was reported to undergo < 10% hydrolysis in cell culture
medium over 96 h [39]. The stability of birinapant in cell
culture media was not available in the literature, but can
be inferred from the expression of cIAP1 (see Results). A
second assumption is that the drug-mediated changes in
protein expression are concentration-dependent, and
that protein interactions, and cell cycle and apoptosis
transitions, are dependent on the fold-change in expres-
sion of the relevant protein. A third assumption is that it
was appropriate to represent protein expression as fold-
change relative to control, rather than as an absolute
concentration. Thus the turnover parameter kqeg is for
protein fold-change, as opposed to representing the
turnover of the actual protein molecules. Fourth, addi-
tive and independent mechanism(s) of action were as-
sumed for the two drugs. In the cell growth kinetic
model (Fig. 1a), for example, the cytotoxic signals of
BRP and PTX are added to each other, with an add-
itional interaction term y to represent the effect of one
drug on the KCs value of the other. In the proteomics-
based cell cycle and apoptosis model (Fig. 1b), it was as-
sumed that the points of interaction between BRP and
PTX were revealed by those proteins whose expression
profiles in the combination group could not
be accounted for by the single-agent treatment re-
sponses. Finally, biological processes in the model, such
as the transition of cells through the cell cycle phases,
were described with first-order reactions for both the
entry and exit reactions of the process (cycle phase).
That is, the total quantity exiting would be the first-
order rate constant x the quantity of the species, and the
quantity transitioning into that phase would be calcu-
lated in similar manner. For example, cells exit M phase
at the rate of k3; x M, and at the same time, the number
of cells that reenter the subsequent GO/G1 phase follow-
ing cell division is described by a rate of 2 x k3; x M.

Results

Effects of paclitaxel and birinapant on PANC-1 cell
proliferation

Initial proteome-level analysis revealed the impact of
combined PTX and BRP on a wide range of vital cellular
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functions that could inhibit cell proliferation and pro-
mote cell death [22]. In order to identify key points of
drug interaction that underlie the observed drug synergy
on pancreatic cancer cells, we developed quantitative
pharmacodynamic and network interaction models as an
approach to extract a more mechanistic understanding
of the synergy from temporal changes in large-scale
proteomic data. PANC-1 cell growth kinetics were quan-
tified over 5 days of exposure to a range of 6 PTX con-
centrations, 4 BRP concentrations, and 24 paired BRP/
PTX combinations that encompass the concentration
ranges over which synergistic drug interactions were ob-
served. A mathematical pharmacodynamic model (Fig.
la) that assumes exponential cell growth and delayed,
concentration-dependent cytotoxicity was fitted to the
data. A comparison of representative observed- and
model-fitted growth kinetics is shown in Fig. 2a, with ex-
panded results and estimated parameters shown in Sup-
plementary Fig. S1 and Table S4. The net growth rate
constant for PANC-1 cells was estimated as 0.0225h™ ",
corresponding to a doubling time of 30.8h, which is
consistent with the literature [40]. PTX exerted greater
cytotoxicity than did BRP, with a greater killing capacity
Kpmax Of 0.0233 h™ ! for PTX, compared to 0.0153h™ " for
BRP. PTX potency was also greater (KCso=18.3 nM for
PTX vs. 277 nM for BRP). Because K,,..p > kg > K,yuxn
ie, the PTX Kkilling rate was greater than the cell prolif-
eration rate, PTX as a single agent could eliminate cells
completely under these culture conditions, given a suffi-
ciently high concentration and duration of exposure,
whereas BRP as a single agent can only retard cell
growth. When growth kinetics were analyzed with the
cell growth kinetic model of Fig. 1a over concentration
ranges of the two drugs, combined BRP/PTX exhibited
synergy, with a time-independent drug interaction term
¥ of 0.69 (95% confidence interval for ¥ = 0.64-0.74).
Combining PTX with BRP decreased the KCjs, for each
drug by 31% compared to single-drug treatment. Be-
cause ¥ =1 (additive interaction) is outside the 95% con-
fidence interval, the probability to observe additive
interaction is < 5%, which is a typical threshold for stat-
istical hypothesis testing. The total cell numbers ob-
tained by the SRB assay could overestimate the true cell
counts for treatments with high PTX concentrations;
SRB measures protein mass and not cell number, and a
fraction of cells transitioned into the polyploid state. We
investigated the impact of potential overestimation on
cell numbers (Methods), and used the cell cycle analysis
model to simulate corrected cell number data (Fig. 2a,
dashed lines, Supplement Table S5). The simulation
confirmed not only that the impact of polyploid cells on
cell number was similar for the PTX and BRP/PTX
treated groups, but also that the correction changed cell
numbers in those groups by <10%. Thus, estimation of
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the BRP-PTX interaction parameter ¥ is virtually un-
affected by the emergence of polyploid cells.

Synergistic interactions were not observed with shorter
(<48h) durations of drug exposure because of the tem-
poral delay of the drug effect signal, and because the assay
dynamic range is small at early exposure times. The model
was used to estimate when drug synergy might be ob-
served experimentally. The ratios of observed vs. predicted
cell growth were calculated for all BRP/PTX combina-
tions, assuming additive interaction (¥ = 1). The mean of
these ratios was <1 on days 3-5 of drug exposure (Fig.
2b), indicating that synergistic effects emerged at >72 h.

BRP/PTX effects at the proteome level

Temporal profiles were obtained for 3325 quantified pro-
teins quantified in all samples in four data sets derived
from two experiments investigating PANC-1 cells exposed
to 100nM BRP and 10nM PTX, alone and combined,
along with a vehicle control [22]. The expression change
of each of the quantified proteins was normalized to the
vehicle control at the corresponding time point. To dis-
cover underlying temporal patterns within this large data-
set, these expression profiles were analyzed using STEM
software [30]. A total of 9 temporal clusters was identified
based on the lowest absolute value of the maximum devi-
ation from a cluster mean (Fig. 2c, Supplementary Fig.
S2). Each cluster consisted of between 30 and 508 tem-
poral protein expression profiles, and the mean time-
course of each cluster was calculated.

Expression data for 10 drug-responding proteins con-
sidered central to specific cell functional groups, based
on DAVID analysis (https://david.ncifcrf.gov/), were ex-
tracted from relevant clusters of proteomic data or from
Western Blot analysis. The cell cycle/apoptosis network
model developed for protein interactions (Fig. 1b) was
fitted to the expression data, and the observed and
model-fitted profiles are shown in Fig. 3. The temporal
responses of cIAP1 were also analyzed, owing to its
apoptosis-inhibiting function and role as a direct target
for BRP [18]. PTX alone had little effect upon cIAP1
abundance, but BRP or BRP/PTX led to its rapid dis-
appearance (<6h; Fig. 3a). The estimated degradation
rate constant was 0.649 h™' (Table 1), corresponding to
a half-life of 1.07h, which is consistent with rapid
birinapant-induced degradation of cIAP1/2 [18]. The in-
hibition of cIAP1 by 100 nM BRP was nearly complete
(Inhp= 97%), and it remained suppressed for 72 h of ex-
posure. The concentration dependence of BRP-mediated
supression of cIAP1 was not investigated here, but in
birinapant-sensitive breast cancer cells, BRP concentra-
tions as low as 10nM have achieved 90% cIAP1 loss
[18]. Temporal responses of other mediators of apop-
tosis were analyzed. NF-xB has a complex role in apop-
tosis, especially in apoptosis induced by BRP via cIAP
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Fig. 2 PANC-1 cell growth and clustering of proteomic expression during exposure to paclitaxel and birinapant. a Representative model-fitted profiles
(solid lines) of PANC-1 cell proliferation measured experimentally (symbols) over 120 h of exposure to vehicle control (blue circles), single-agent BRP
(green squares), PTX (red triangles), and BRP/PTX combined (black crosses). Observed cell proliferation is normalized to t=0h, and all observations are
in triplicate. Dashed lines are cell number after correction for the polyploid cells. b The ratio of observed data to values computed assuming additive
drug interaction for the BRP/PTX combinations. White circles represent median values, vertical black bars represent the 2nd to 3rd quartiles, the grey
shapes of violins represent histograms of the data, and horizontal bars at the ends of violins show data ranges. ¢. The clustering of temporal protein
expression responses to birinapant/paclitaxel treatment. The k-means clustering algorithm was applied to quantitative proteomics data for PANC-1
cells exposed to vehicle (0.1% DMSQ), or 100 nM birinapant and 10 nM paclitaxel, alone or combined, for 6, 24, 48 and 72 h

degradation [18, 27]. Both BRP and BRP/PTX mediated
a 2.8-fold increase (equal to 1.5 on log2 scale) in the
phosphorylation of the p65 subunit of NF-kB compared
to its baseline control (Fig. 3b), which is consistent with
reports that BRP increased phosphorylated p65 in the
absence of TNFa ligand, but decreased it below baseline
in the presence of TNFa [41, 42]. NF-kB induces mito-
chondrial proteins BAX and Bcl2, both of which influ-
ence mitochondria-mediated apoptosis. Over the first

24h, BRP or BRP/PTX increased pro-apoptotic BAX
1.5-fold over control (0.58 on log2 scale; Fig. 3c),
followed by a return toward baseline that was likely
driven by auto-feedback regulation [43]. Pro-survival
protein Bcl2 increased to 1.9-fold over controls in re-
sponse to BRP or PTX alone, but after 24 h of exposure,
the BRP/PTX combination alone decreased its abun-
dance to 0.4-fold of control at 48-72 h (Fig. 3d). The ini-
tial increase in Bcl2 may reflect increased transcription
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fold-change of a protein, whereas lines represent the fitting results from the protein interaction model. Blue: 100 nM BRP; red: 10 nM PTX; magenta:
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driven by phosphorylated p65, but the later decrease in
Bcl2 likely results from other mechanism(s). Bcl2 is reg-
ulated by transcription factor STAT3 [44] and mito-
chondrial membrane protein VDAC1 [45], as well as by
their upstream regulators IRAK4 and JNK. In this study,
IRAK4 increased 2-fold over control with any drug treat-
ment (Fig. 3e). Only the BRP/PTX combination in-
creased phosphorylated JNK (1.7-fold; ig. 3F) and
VDAC1 (1.5-fold; Fig. 3g). Whereas phosphorylated
STAT3 increased by 2-fold with BRP or PTX treatment
(Fig. 3h), combined BRP/PTX prevented the increase,
because phosphorylated JNK, which inhibits STAT3
phosphorylation [46], was increased. Overall, the prote-
omic data are consistent with the main mechanism of
action of BRP being promotion of cIAP degradation,
which initiates NF-kB signaling. The NF-«kB signal then
propagates to mitochondrial proteins such as BAX and
Bcl2, thereby increasing intrinsic apoptosis. The data
also suggest that the BRP/PTX combination drives the

balance of apoptosis regulators toward a pro-apoptotic,
anti-survival status.

PTX mediates effects on cell cycle progression that can
promote apoptosis. The nucleoporin/kinetochore protein
ELYS, which is required for cell division, was selected as
representative of a group of proteins that share similar
temporal expression patterns in response to PTX. GO
analysis, using the hypergeometric test with Benjamini-
Hochberg correction, annotates this group of proteins as
spindle-related (p <0.01) or as regulating mitosis (p <
0.05). BRP alone had no effect on ELYS expression, but
PTX or BRP/PTX exposure increased ELYS 1.5-fold over
24 h (Fig. 3i), followed by a return to baseline, likely be-
cause of PTX activation of spindle assembly checkpoint
signals and delayed degradation of mitotic proteins [47].
Stalled mitosis, as suggested by the ELYS proteomic re-
sponse, could activate the p53-mediated intrinsic apop-
tosis pathway [48]. Notably, the apoptosis-stimulating
p53-binding protein ASPP2, selected as representative of
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regulators of apoptosis during a stalled mitosis, showed a
similar expression pattern to ELYS in response to PTX or
BRP/PTX (Fig. 3j). Supplementary Table S2 provides
interaction details among these 10 proteins, along with
literature-supported evidence, and Table 1 shows esti-
mated model parameters for these proteins.

Proteomic data for each of the quantified proteins in
treatment groups were normalized to their cognate protein
in the vehicle control at the corresponding time point. This
strategy was chosen because proliferating cells undergo
changes as they approach confluency and contact inhibition,
for which this approach would account. However, because
some treatment groups reached confluency at different
rates, we compared this approach to normalization of pro-
teins in each group by their pretreatment time zero value.
Supplementary Fig. S3 shows the temporal expression pro-
files for select proteins in Fig. 3 re-normalized in this man-
ner. For most proteins, temporal regression changes in the
control group were small compared to those in the drug-
treated groups. Exceptions were BAX and ASPP2, in which
the control group data was relatively similar in magnitude
to the drug-treated groups. Nonetheless, the temporal re-
sponse profiles remained similar between the two methods,
despite some differences in the magnitude.

Modeling combined effects of BRP/PTX on cell cycle
distribution and apoptosis

Because the proteomic analysis suggested that drug treat-
ment perturbed mitosis, drug effects on both cell cycle distri-
bution and apoptosis were measured over 72 h for single-
and combined drug exposures. Data for the vehicle control
group showed a degree of cell cycle synchronization at the
initiation of drug exposure (T0) when the cell cycle distribu-
tion was first evaluated. Figure 4a-c shows a relatively high
fraction of G2/M phase cells at TO that declined over the
first 17 h, whereas the GO/G1 and S phase populations rose.
The partial synchrony likely resulted from plating cells from
nearly-confluent cultures approx. 18 h before treatments
were started. A substantive population of quiescent GO cells
may have existed at the time of plating and resumed cycling
in a relatively synchronous fashion. From 17 to 72 h, a time-
dependent increase of cells in Gyo/G; and a decrease in S and
G,/M cells were observed in the vehicle control group, sug-
gesting normal progression to contact inhibition.

The cell cycle component of the model in Fig. 1b was used
initially to characterize unperturbed PANC-1 cell prolifera-
tion. The cycle phase transition rate constants k;,, ko3, and
kz; determine the steady-state distribution of cells in G0/G1,
S, and G2/M. Figure 4a-c shows the percentage of cells in
each phase if the capacity limitation of cell division, repre-
senting contact inhibition as cells approach confluency, was
not implemented in the model. After 72h of unperturbed
growth, the maximum live cell number had increased to a
capacity limit of 7.43-fold (Table 1, Np,) from the
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beginning of the experiment, corresponding to 1.48 x 10°
cells/9.6cm? well for 6-well plates. As the density of live cells
increased, there was a gradual accumulation of cells in Gy/
G; phase (Fig. 4a) as the Go/G;- to S-phase transition was
prolonged. This natural inhibition of cell growth was mod-
eled using the Gompertz function [38] as Iy = In(N. - fiveo)
— In(live) and was multiplied by k;,, the first-order rate con-
stant for the Go/G;- to S-phase transition. The doubling
time of PANC-1 was approximated as i1~ + I 4 51—, and
increased from 25.1 to 53.6 h over 72 h, which is consistent
with literature reports [23, 40]. The first-order rate constant
for naturally-occurring apoptosis in proliferating cells (k)
was 2.18 x1073h™! (Table 1), corresponding to ~ 8% of
apoptotic cells over 72 h, and was constant over time.

The model then was applied to evaluate the effects of
BRP and PTX as single and combined treatments, and
model-estimated parameters are listed in Table 1. For BRP
alone, the total apoptotic cell population increased from a
baseline of <10% to approx. 50% over 72 h, whereas cell
number at 72 h was diminished by only 12—-30% compared
to untreated controls (Fig. 4e,f), and even at concentrations
>10,000 nM BRP, the maximum reduction in cell number
was only approx. 36% [22]. The mechanism of BRP is pro-
motion of apoptosis.; it had minimal effect on the cell cycle
(Fig. 4a-c) and mediated only slight inhibition of the total
cell number (Fig. 4e and f). Thus, the continuing rise in cell
number, despite increasing commitment to apoptosis, re-
sulted from a temporal delay in completion of apoptosis,
and the asynchronous initiation of the apoptotic process by
cells treated with BRP alone. The fraction of late-stage
apoptotic cells (annexin®/7-AAD") cells increased continu-
ously throughout the experiment, suggesting that early-
stage apoptotic cells (annexin®/7-AAD") progressed to cell
death (Supplementary Fig. S4 A-B).

PTX alone elicited increasing, concentration-dependent
G,/M phase arrest that peaked at 17 h (Fig. 4c), followed
by an accumulation of polyploid cells (Fig. 4d). At 17 h,
50 nM PTX more than doubled the percentage of G,/M-
phase cells (77.2 +£1.48% vs. 33.4+6.49% in the control
group; values expressed as mean + standard deviation; Fig.
4c and Supplementary Fig. S4). At 72 h, polyploid cells in-
creased from 0% for controls to 48.4+1.11% for 50 nM
PTX (Fig. 4d). Low concentrations of PTX (5nM), and
single-agent BRP (50-300 nM), showed minimal perturb-
ation of cell cycle distribution (Fig. 4a-d). Mitotically-
arrested cells induced by PTX developed into polyploid
cells with a first-order rate constant (k,) of 1.97 x 1072
h™ !, which is slower than ki, (4.48 x 10" 2h™ 1), the rate
constant for proliferating cell progression from G0/G1 to
S-phase. Consistent with the literature, polyploid cells ap-
peared resistant to drug-induced apoptosis [14—16], be-
cause the percentage of PTX-induced polyploid cells
increased over 72 h (Fig. 4d).
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Fig. 4 Temporal profiles of cell cycle distribution, proliferation, and apoptotic progression during birinapant/paclitaxel exposure. PANC-1 cells were
exposed to vehicle, 5-50 nM PTX (P), 100-3000 nM BRP (B) or the indicated BRP/PTX (Bx/Py) combinations for up to 72 h. a-d Percentage of cells in
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transient increase in G2/M phase, followed by the accumulation of polyploid cells. Compared to PTX alone, the BRP/PTX combination decreased cells
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Compared to PTX or BRP alone, combined BRP/PTX
decreased both the percentage and number of G,/M
phase cells (Fig. 4c and Supplementary Fig. S4D). At 17
h, combined BRP/PTX (150/15 nM) resulted in a 34.3%
reduction in G,/M cells compared to PTX alone (3.87 +
0.58 vs. 5.88 +0.97 x 10* cells, p < 0.05 with Student’s t-
test). By 72h, the BRP/PTX combination produced a
43.7% decrease in polyploid cells (1.56 + 0.23 vs. 2.78 +
0.26 x 10* cells, p<0.05). Single-agent PTX and BRP
alone both induced apoptosis, but combined BRP/PTX
(e.g., 150/15nM) increased apoptotic cells significantly
at 72 h, from 49.0 £ 0.96% for PTX alone to 70.8 + 2.32%
for the combination (Fig. 4d; p < 0.01). In terms of mech-
anisms underlying these combination drug effects, the

most likely explanation for the reduction of the G,/M
population and subsequent increase in apoptosis by
combined BRP/PTX is that BRP lowers the barriers to
apoptosis of cells mitotically-arrested by PTX, which is
consistent with its mechanism of action.

The following protein-mediated drug effects were inte-
grated into the cell cycle/apoptosis regulatory model: (i)
stimulation of apoptosis by a reduction in the effect of
anti-apoptotic protein cIAP1 on the rate of cell transi-
tion from proliferating to apoptotic (k,p), (ii) incorpor-
ation of the cytostatic effect of mitotic arrest via the
accumulation of kinetochore protein ELYS and its effect
of increasing the transition rate (ky,) from cycling G,/
M to mitotically arrested cells, and (iii) stimulation of
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the transition rate (kypm) of mitotically-arrested cells to
apoptotic via the increase of pro-apoptotic proteins BAX
or ASPP2, and decrease of anti-apoptotic proteins cIAP1
and Bcl2. The final model was able to capture quantita-
tively the drug-mediated changes in protein expression
patterns, as well as effects upon cell cycle distribution
and apoptosis. The BRP-mediated down-regulation of
cIAP1 stimulated the transition to apoptosis (k,,) ac-
cording to a power coefficient, represented as kg, - (
cIAP)’, where y =-0.531, and this cIAP1 down-
regulation mediated a 6.1-fold increase in the apoptosis
rate. The k,, - (cIAP)” rate was the same in cells exposed
to combined BRP/PTX. PTX-mediated induction of
ELYS-stimulated mitotic arrest, according to a mitosis
arrest rate constant (k,,,) of 2.4 x 10"2h~ ! at 17 h, which
was only 30% of kz; (8.07 x 10 2h™ 1), the rate constant
for normal mitotic division, and k., was similar for
BRP/PTX. The fate of mitotically-arrested cells was
dependent on the apoptosis-regulating proteins ASPP2,
BAX, Bcl2, and cIAP1. For combined BRP/PTX, the rate
constant for arrested cells undergoing apoptosis nearly
tripled over 72h, from 0.10 to 0.29h™', compared to
0.12h™ ! for PTX treatment alone. This increase was pri-
marily attributable to the gradual decrease in Bcl2 that
was observed only with combined BRP/PTX exposure.
The temporal response of ASPP2, BAX, Bcl2, and cIAP1
to Kupm, in response to BRP/PTX (100/10 nM), is shown
in Fig. 5. The down-regulation of cIAP1, and up-
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Fig. 5 Model-simulated contribution of proteins stimulating apoptosis
of mitotically-arrested cells. Simulation of the effect of combined 10
nM PTX and 100 nM BRP to stimulate apoptosis of mitotically-arrested
cells. The simulation is based on the final protein-based cell cycle and
apoptosis model of Fig. 1b, in which the k,pm stimulation term is
regulated by ASPP2, BAX, Bcl2, and clAP1. Each stimulation term was
modeled by a power function, with the protein expression raised to a
power coefficient y, i.e, sti = (i)". The y-axis shows the strength of
the kypm stimulation over time, expressed as the fold change for each
protein i over time to the power coefficient y (kgmp = kapmo - ASPP2;

-CIAPY#e . BEXEE with parameter values listed in Table 1),
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regulation of ASPP2 and BAX, initiated an apoptotic sig-
nal at times <24h. Bcl2 down-regulation then domi-
nated the induction of mitotically-arrested apoptosis at
times >48 h. Table 1 shows the estimated model param-
eters. With the mechanistic components added to the
model as described above, it captured the experimental
data well. An additional ¥ drug interaction parameter, if
included in the final model, would reveal that no add-
itional, significant, unexplained drug-drug interactions
exist, i.e., that a Y parameter for unaccounted drug inter-
actions would be estimated as ¢ = 1 if tested.

The final model is based on the simultaneous ana-
lysis of all data for PANC-1 cellular responses to 100
nM BRP and 10nM PTX, both alone and in combin-
ation. As an external qualification, model simulations
were performed for different combinations of drug
concentrations that were not used in construction of
the model, and could then be used in validation. Ob-
served total cell counts for 24 paired drug combina-
tions are overlaid with the model simulations in
Fig. 6a. All drug-specific parameters were converted
to concentration-dependent Michaelis-Menten equa-
tions for the purpose of extrapolation. For example,
the inhibition term Inhg, which indicates the inhib-
ition of cIAP1 by 100 nM BRP, was converted to Inhg

- _Cg __100
= CpHiCsos T0011¢5,;» and thus

ICso, p, the concentration of BRP causing cIAP1 to
decrease to half-maximal, is 3.41nM. By this ap-
proach, the inhibition term can be extrapolated to

Other drug-specific

, equivalent to 0.967 =

other concentrations as Cﬁscm.
parameters were converted in a similar manner, ex-
cept for IRAK4; its response was assumed to be dose-
independent, because both single-agent- and com-
bined BRP/PTX treatments resulted in the same
IRAK4 expression profile (Supplementary Table S6).
Several minor adjustments to the model were made
to accommodate changes in experimental format.
Cells were cultured in 96-well plates for investigation
of cell growth kinetics (surface area 0.32cm? per well),
but the larger numbers of cells used in cell cycle and
apoptosis assays required 6-well plates (surface area
9.5cm? per well), leading to minor changes in prolif-
eration kinetics. To account for the different
confluence-to-seeding ratios in 6-vs. 96-wells plates,
the capacity of live cells in the Gompertz function
was set to a relatively high number (N, =30), and
kmao was decreased by 0.3-fold for the conversion
(Supplementary Table S5). All other parameters were
the same as the model-estimated values in Table 1.
There was good agreement between the observed cell
proliferation and simulated values (Fig. 6b; R2:0.93),
and the final proteomics-based cell cycle/apoptosis
model predicted successfully the experimentally-
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Fig. 6 Extrapolation of the protein-based cell cycle and apoptosis model responses to drug exposure. PANC-1 cell proliferation responses to
vehicle (control; POBO) and different concentrations of BRP/PTX combinations were simulated using the final cell cycle and apoptosis model and
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observed synergistic inhibition of PANC-1 cell growth
kinetics in response to the BRP/PTX combination.

Discussion
Despite large-scale-, high-throughput screening efforts to
identify drug combinations having enhanced therapeutic
activity, such as the ALMANAC project that determined
whether a pair of drugs is synergistic or antagonistic em-
pirically [4], there exists a lack of mechanistic models for
evaluating the nature and source of pharmacodynamic
drug-drug interactions in oncology [49]. Consequently,
there are knowledge gaps in linking the molecular mecha-
nisms of anti-cancer drugs and treatment outcomes quan-
titatively. Here, a framework was developed for integrated
evaluation of pharmacodynamically-based drug-drug in-
teractions across organizational levels ranging from intra-
cellular proteomic responses, to the status of a cell within
cell cycle progression and apoptosis regulation, and to the
dynamics of overall cancer cell proliferation, using the
combination of BRP and PTX as proof-of-concept. As ex-
panded here from our initial report [22], these drugs exert
synergistic (supra-additive) interactions when combined.
However, the mechanisms by which targeted (BRP) and
non-targeted (PTX) chemotherapeutic agents act on the
complex pathophysiological system of cancer cells have
been unclear, along with how complex drug responses im-
pact their overall pharmacodynamics.

In this study, a large-scale, proteome-wide analysis was
employed to complement more traditional approaches

for capturing drug effects on cell proliferation and apop-
tosis, offering new insights into diverse and complex
mechanisms of drug action and interaction on a molecu-
lar level. These mechanisms, including cell cycle effects
and apoptosis induction, were incorporated into the
model to explain quantitatively the unidentified synergis-
tic interaction observed with the simple cell kinetic
model, based on the bioinformatic and functional anno-
tations analyses of proteomic data (including cell cycle
effects and apoptosis induction), and were tested experi-
mentally. With these mechanisms incorporated into the
model, the empirical interaction value approached 1,
suggesting the model accounts mathematically for the
main interactions driving the synergy. Because large
numbers of temporal drug response profiles were ob-
tained for many proteins involved in key cellular metab-
olism, growth, survival, and death, a clustering analysis
strategy was employed to group proteins based upon
their expression dynamics. Within these clusters, it was
possible to identify groups of proteins linked to key bio-
logical functions, thus increasing confidence in exploring
specific mechanism(s) of drug interaction. An essential
element of the approach was linking quantitative infor-
mation on protein dynamics to drug effects upon cell
cycle, proliferation, and apoptosis by means of mathem-
atical modeling of these cellular processes according to
response networks. The final mechanistic model not
only captured experimental data reflecting the drug-drug
interaction, but also, through model simulations,
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generated new hypotheses as to how cellular protein ex-
pression profiles modulate cellular phenotypes. For ex-
ample, simulations suggest that apoptosis-regulating
proteins are associated with stimulating death in
mitotically-arrested cells (Fig. 5). The decrease of Bcl2
from 48 to 72h appears to be a main driver forcing
PTX-arrested cells into apoptosis when combined with
BRP. Therefore, a Bcl2 inhibitor could be proposed as an
alternative option in combination with PTX. This ap-
proach could be extended to explore new pharmacological
targets (e.g., Bcl2 inhibition) in silico to generate hypoth-
eses identifying novel combination regimens. To develop
this quantitative drug interaction modeling strategy, the
interaction between paclitaxel and birinapant was first
characterized by employing an empirical interaction term
in a cell growth kinetic model that assumed additive cyto-
toxic effects of PTX and BRP, and enabled the model to
quantify the degree to which observed data for drug com-
binations are sub- or supra-additive. This approach identi-
fied quantitatively that combined BRP/PTX is synergistic
in terms of cell growth. To investigate the mechanisms of
drug action underlying the apparent synergy between
PTX and BRP, integrated analyses of the temporal changes
in cell cycle, apoptosis, and protein expression were con-
ducted, and all data were integrated quantitatively via
pharmacodynamic modeling. Zhu el al. investigated the
synergistic interaction between GEM and BRP by develop-
ing a mathematical model that hypothesized BRP potenti-
ates GEM-induced S-phase arrest through an extended
response network involving cell cycle regulation, DNA
damage response, DNA repair, apoptosis, NF-«kB, and
mitogen- activated protein kinase (MAPK)-p38 signaling
[25, 29]. We hypothesized PTX would exert stronger,
more rapid, and more direct apoptotic drive than GEM,
and thus better synergize with BRP. The previous ap-
proach was therefore extended to capture data for mecha-
nisms such as mitotic arrest and emergence of a drug-
resistant polyploid cell population, and was supplemented
with large-scale, comprehensive proteomic analysis to pro-
vide the relevant temporal protein expression profiles that
would inform as to the activity of cellular response net-
works. Based upon the data and modeling, a cellular re-
sponse network was developed. In the model, the fate of
cells mitotically-arrested by PTX was sensitive to the bal-
ance of pro-apoptotic (e.g., ASPP2 and BAX) and anti-
apoptotic (e.g., cIAP1 and Bcl2) signals. The rationale for
this model feature is that transcriptional activity is inhib-
ited temporarily during mitosis, the intracellular protein
synthesis rate is reduced, and therefore cells would be
prone to degradation of their intracellular proteins [50].
The addition of BRP to PTX would promote proteasome-
mediated degradation of cIAP [18], contributing to the
anti-apoptotic signal, and providing a molecular mechan-
ism by which BRP potentiates the overall apoptotic effect.
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Prolonged mitosis also leads to DNA damage and p53 in-
duction [51], which potentially induces apoptosis after mi-
totic slippage. ASPP2 is an activator of the pro-apoptotic
function of P53 [52], and therefore it is associated in the
cell cycle and apoptosis model with apoptosis stimulation.
PANC-1 cells harbor homozygous mutant P53 (R273H),
which has a dominant negative activity compared to wild-
type p53, and does not bind to ASPP2 [23]. However, the
observed induction of ASPP2 suggests a possible p53-
independent apoptotic signal, possibly mediated by ASPP2
binding to other members of the p53 family, such as p63
and p73 [52]. Because experimental data (Fig. 4) showed
that expression of ASPP2 was driven primarily by PTX,
and that BAX and cIAP1 were driven primarily by BRP,
the model was simplified to assume those pathways were
regulated only by those agents. Reducing model complexity
in this way also contained the expansion of the number of
protein responses necessitating experimental validation by
orthogonal means, such as western blot analysis. Because
the data show that activity of the pJNK-VDACI1-Bcl2 axis
responded differently to combined BRP/PTX than to either
of single agents, it is reasonable to hypothesize that BRP/
PTX synergy likely originates from that axis. Modeling and
simulations show that the contribution of Bcl2 was most
prominent, especially after 48 h of exposure, and this is
reflected in the data that shows combined BRP/PTX medi-
ated a delayed but strong decline in Bcl2 (Fig. 3j).
Extension of this modeling by simulation permits the
creation of testable hypotheses. For example, Bcl2, as a
member of the BCL-2 protein family, regulates outer
mitochondrial membrane permeability and intrinsic
apoptosis [53, 54]. It prevents the oligomerization of
BAX and BAK, preventing the release of cytochrome C
and SMAC from the mitochondria to the cytosol. Vene-
toclax, the first-in-class Bcl2 inhibitor, was approved by
the US FDA to treat chronic lymphocytic leukemia in
2016. Bcl2 expression is correlated with the metastatic
potential of PDAC cell lines [55], and although the prog-
nostic significance of Bcl2 up-regulation in PDAC pa-
tients is still controversial [56], the Bcl2/Bcl-xL inhibitor
ABT-737 was reported to enhance PTX-induced cell
death in PDAC cell lines [57, 58]. The final birinapant-
paclitaxel computational model suggests a novel and
possibly key role of Bcl2 in mediating the synergistic
BRP/PTX interaction in PANC-1 cells, and it is reason-
able to propose further investigation into whether Bcl2
inhibitors might enhance therapeutic responses of PTX.
Quantitative system pharmacological models are emer-
ging as important tools in cancer reseach [59], and most
models are fit-for-purpose [60]. Here we present a small
system model that was developed using a pancreatic cancer
cell line in order to explore and quantify the pharmacody-
namic interactions between PTX and BRP on multiple
scales, over a comparatively short period of time, in terms
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of effect upon proteome expression, cell cycle distribtuion,
apoptosis, and overall cell proliferation. A large-scale prote-
omic analysis informed selection of the proteins included in
this model, which were chosen as representatives of the key,
differentially-expressed pathways. The model developed is a
highly simplified version of a complex biological system, yet
it is relavent to the interactions between PTX and BRP,
based also upon prior knowledge from protein interaction
literature reports. Such simplification makes more tractable
the problem of integrating very large proteomic data sets
into models that maintain a high degree of identifiability;
these large data sets tend to be sparse in the level of experi-
mental detail necessary to capture time- and concentration-
dependent processes affecting key nodes in the model,
which must therefore be obtained by alternative, orthogonal,
and time-consuming experimental techniques. Because
combined BRP/PTX exerted greater-than-additive inhib-
ition of cell proliferation, represented by the cell kinetic
model as unaccounted synergy in the form of parameter v,
we explored additional mechanisms of action on cell cycle
and proteomics. However, the proteomic data provided
many more additional leads as to drug interaction mecha-
nisms than could be explored reasonably. In our model,
proteins responding only to the combined drugs were in-
cluded as potential key mediators of the observed synergy.
For example, the elevation of VDAC1 by the BRP/PTX
combination could not be explained as the result of expos-
ure to BRP or PTX alone; neither individually altered
VDAC]1 expression. We reported previously that BRP/PTX
exposure of PANC-1 cells results in a metabolic transition
from glycolysis to oxidative phosphorylation [22]. Because
VDACI is essential in maintaining mitochondrial perme-
ability and transporting ATP during mitochondrial respir-
ation [35], the increase in VDACI might serve as an
indicator of a transition to mitochondrial oxidative phos-
phorylation. Other drug interaction mechanism(s) might
exist, but were not required in the model to explain the
current data. For the proteins included in the model, the
drug-mediated protein turnover process was modeled as a
first-order degradation process. The estimated values for
the half-times of the proteins quantified by the proteomic
workflow, such as ASPP2, BAX, ELYS, IRAK4, and VDACI,
ranged from 48 min to 24.8 h, in good agreement with their
half-life ranges of 45 min to 22.5 h as quantified using YFP-
tagged proteins and fluorescence recovery after photo-
bleaching [61]. This consistency with prior data increases
confidence in the final structural model, estimated drug-
and system-specific parameters, and the newly-generated
hypotheses for the mechanisms underlying the synergistic
effects of combined BRP/PTX exposure in PANC-1 cells.
The modeling approaches described here can be applied
readily to other drug combinations, and extended to mod-
eling in higher detail more complex protein interaction
networks. The cell growth kinetic model is applicable to
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other combinations of cytotoxic drugs. Most obvious is its
application to drugs that target alternative nodes in the
apoptotic pathways, such as cFLIP inhibitors, and other
taxanes such as docetaxel and cabazitaxel. However, any
drug combinations with quantifiable pharmacodynamic
endpoints are amenable. The simplicity afforded by this
modeling approach is that the minimum data required is
drug time- and concentration-dependence on efficacy tar-
gets such as cell viability or proliferation. The more com-
plex multi-scale mathematical network model for cell
cycle and apoptosis involved a simplified protein interac-
tions model, which is highly amenable to the integration
of large-scale ‘omics’ data, that was linked into a some-
what more conventional pharmacodynamic cell cycle/
apoptosis model, that was selected to represent key details
of the ultimate cellular targets of interest, based on the
mechanisms of action of the two drugs. Thus, the model
is ‘fit for purpose’, balancing complexity against the pri-
mary objectives of the study. The use of clustering of the
proteomics data based upon temporal response patterns
enabled us to distill from this rich data set the responses
of key functional networks of interest for closer bioinfor-
matic analysis and attention and, in future studies, holds
the potential to reveal cascading response networks within
drug-perturbed cellular systems.

Conclusions

A multi-scale pharmacodynamic modeling framework was
developed to investigate the potential sources of synergy
between an apoptosis-promoting drug, birinapant, and an
apoptosis-inducing drug, paclitaxel. This framework lever-
ages advances in the science of comprehensive, quantita-
tive proteomic data acquisition to provide new approaches
to investigate the pharmacodynamic mechanisms of drug-
drug interactions.
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