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Abstract 16 

Every viral infection entails an evolving population of viral genomes. High-throughput 17 

sequencing technologies can be used to characterize such populations, but to date there are 18 

few published examples of such work. In addition, mixed sequencing data are sometimes used 19 

to infer properties of infecting genomes without discriminating between genome-derived reads 20 

and reads from the much more abundant, in the case of a typical active viral infection, transcripts. 21 

Here we apply capture probe-based short read high-throughput sequencing to nasal wash 22 

samples taken from a previously described group of adult hematopoietic cell transplant (HCT) 23 

recipients naturally infected with respiratory syncytial virus (RSV). We separately analyzed reads 24 

from genomes and transcripts for the levels and distribution of genetic variation by calculating 25 

per position Shannon entropies. Our analysis reveals a low level of genetic variation within the 26 

RSV infections analyzed here, but with interesting differences between genomes and transcripts 27 

in 1) average per sample Shannon entropies; 2) the genomic distribution of variation ‘hotspots’; 28 

and 3) the genomic distribution of hotspots encoding alternative amino acids. In all, our results 29 

suggest the importance of separately analyzing reads from genomes and transcripts when 30 

interpreting high-throughput sequencing data for insight into intra-host viral genome replication, 31 

expression, and evolution. 32 

 33 

 34 

 35 
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Introduction 37 

A viral infection involves a replicating and therefore evolving population of viruses. The level and 38 

distribution of diversity at a given time after infection will depend on the size and composition of 39 

the inoculum, the duration of viral replication, how rapidly viral genetic variation is produced de 40 

novo, and the nature of host selective pressures (initial screening via secreted antibodies, the 41 

innate immune response, and clearing of infected cells by the cellular immune response). 42 

Several studies suggest that respiratory viruses like respiratory syncytial virus (RSV) and 43 

influenza undergo mostly neutral evolution within a single host during natural infection (1-3), but 44 

few report on the expected levels and distribution of genetic variation and it is unknown to what 45 

extent different immune functions might constrain viral evolution. 46 

Here we determined the genetic variation contained within intra-host populations of RSV 47 

infecting members of a group of previously described adult hematopoietic cell transplant (HCT) 48 

recipients (4-7). Cancer patients undergoing myeloablative conditioning require HCT to restore 49 

a healthy supply of resident bone marrow cells, including leukocytes such as T and B 50 

lymphocytes, neutrophils and macrophages that play essential roles in the host immune 51 

response to viral infections. The majority of HCT recipients considered here were fully engrafted 52 

at the time of infection and experienced mostly mild disease (4-7).  53 

We sequenced capture probe-derived (Twist Biosciences, Inc.) RSV cDNAs in nasal 54 

wash samples from HCT recipients naturally infected with RSV and separately analyzed reads 55 

derived from genomes and transcripts, and assessed both data sets for levels and distribution 56 

of variation using calculations of per position Shannon entropy. Shannon entropy provides an 57 

elegant metric of variation well suited to analyses of high-throughput sequencing data. We found 58 

low levels of total genetic variation within the RSV infections studied here, and interesting 59 

differences in the levels and distribution of genetic variation contained within genome- and 60 

transcript-derived read sets.  61 

 62 

Results  63 

i. Patient sample data  64 

Nasal wash samples were obtained from a previously described cohort of hematopoietic cell 65 

transplant (HCT) recipients naturally infected with respiratory syncytial virus (RSV) (Table 1) and 66 

were subjected to short read high-throughput sequencing (NovaSeq Illumina). Patients were 67 
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infected with either of two widely circulating RSV genotypes (A/Ontario or B/Buenos Aires) and 68 

shed virus for either less than 14 days or more (Table 1). Shedding time correlated with 69 

transplant type (autologous vs. allogeneic), with patients receiving an autologous HSC transplant 70 

tending to show shorter viral shedding times and a more robust neutralizing antibody response 71 

(Table 1). A nasal wash sample was collected from each patient at the time of study enrollment 72 

and approximately weekly for up to 4 weeks (Table 2). A subset of all samples were successfully 73 

sequenced ( 90% coverage of whole RSV genome at  1x sequencing depth) and a further 74 

subset were sequenced at a depth permitting downstream analyses to be described (Table 2). 75 

Additionally, because of the sequencing methodology employed, it was possible to separately 76 

analyze reads from genomes and transcripts.  77 

ii. Varying read depth and variation in sequenced RSV genomes and transcripts 78 

We began our analysis by plotting sequencing or read depth across ON and BA reference 79 

genomes for data derived from 1) genomes and 2) transcripts (Fig 1). The latter should also 80 

reflect the contribution of low-abundance anti-genomes. All 4 data sets show fairly uniform 81 

coverage across the RSV genome (Fig 1), with the average read depth from transcripts 82 

exceeding that from genomes by approximately 100-fold.   83 

In order to begin characterizing the genetic variation supported by the intra-host 84 

populations of infecting RSV sequenced here, we adopted an approach based on measuring the 85 

Shannon entropy (H) of every nucleotide position in our sequencing data set (Fig 2). Plots of per 86 

position Shannon entropy across the two reference RSV genomes reveal varying levels of 87 

variation across the RSV genome and across samples, with entropy values from genome 88 

derived-reads generally exceeding those from transcripts (Fig 2). Calculations of average or bulk 89 

Shannon entropy per sample make clear that sequenced RSV genomes show greater variation 90 

than sequenced RSV transcripts (Fig 3). Restricting our attention to mean values from day 0 91 

samples, genomes show 4-5x more variation than transcripts (Fig 3), although the bulk Shannon 92 

entropy is low across samples. For instance, the maximum per sample average Shannon 93 

entropy found (=0.11) would in the simplest case of two possible ‘alleles’ (A or G, say) correspond 94 

with a minority ‘allele’ abundance of just over 2%. Thus, whether analyzing reads from RSV 95 

genomes or transcripts, the level of genetic variation supported by an infecting population of 96 

RSV within a single host is low in the samples tested.  97 
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We also observed that the more variable genomes showed a general drop in bulk entropy 98 

over time, while transcript entropies appeared more stable (Fig 3). There are exceptions to the 99 

decline in genome entropies over time: one patient showed a bulk entropy maximum at day 14, 100 

and a few showed sharp increases (H  0.02) over 2 to 5 days (Fig 3). The former patient shed 101 

RSV for longer than 14 days, and most cases showing an increase in bulk genome entropy over 102 

any window of time came from longer shedders (Fig 3).  103 

iii. Distribution of hotspots and estimates of functional variation 104 

Our initial analysis of per position and bulk Shannon entropies from genome- and transcript-105 

derived reads showed low levels of genetic variation within intra-host populations of infecting 106 

RSV. However, bulk or average per sample Shannon entropies mask the existence of positions 107 

showing exceptionally high variation. Thus, we decided to analyze our data for such ‘hotspots’ 108 

(H  0.3) and to determine their distribution across the RSV genome. For this analysis, we 109 

restricted our attention to genome- and transcript-derived data sets showing at least 10x 110 

coverage across 90% of the reference genome. In both data sets, a minority of positions show 111 

a Shannon entropy high enough to be considered hotspots (Fig 4). However, consistent with the 112 

differences observed between sequenced RSV genomes and transcripts, RSV genomes are 113 

~20-fold more enriched for such hotspots (∼3.7% vs. 0.2% of all positions analyzed per sample). 114 

In addition, the genomic distribution of hotspots is much more uniform across non-coding and 115 

coding sequences in genome- than transcript-derived reads and variation in the latter has a 116 

strong tendency to cluster in non-coding sequences (Fig 4).  117 

We further analyzed these hotspots for obvious functional variation by determining 118 

whether hotspots within coding sequences encoded alternative amino acids. Interestingly, 119 

whether from genomes or transcripts, approximately 50% of all hotspots identified encoded 120 

alternative amino acids (Fig 5). The number and distribution of these sites varied from sample 121 

to sample, and more highly in transcript- than genome-derived reads (Fig 5).  122 

Per position Shannon entropies were recalculated for the amino acid (AA) sequences 123 

derived from nucleotide hotspots within coding sequences (Fig 6). For both genome- and 124 

transcript-derived read sets, the level of variation for any given AA hotspot varies greatly from 125 

sample to sample, but genome-derived reads show a much greater number of and more highly 126 

distributed AA hotspots than transcript-derived reads (Fig 6).  127 
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 128 

Discussion 129 

Our study revealed generally low levels of genetic variation with interesting differences between 130 

genome- and transcript-derived read sets from intra-host populations of RSV infecting a cohort 131 

of adult HCT recipients.  132 

The 100-fold difference observed in average read levels between genomes and 133 

transcripts is consistent with the expectation established from in vitro measurements. These 134 

results suggested our sequencing data were minimally biased to different regions of the RSV 135 

genome and to either of the two major species of viral nucleic acid present during RSV infection 136 

(transcripts and genomes). However, reads mapping to the G gene are slightly more abundant 137 

in both genomes and transcripts, especially those derived from RSV/A/ON infections. This 138 

appears consistent with multiple studies showing higher than expected levels of the G gene (8-139 

11), especially G gene mRNA. However it may also reflect a subtle sequencing bias of unknown 140 

origin, as it is present in both genome- and transcript-derived reads. There is also a noticeable 141 

bump in reads mapping to the NS2 gene from RSV/B/BA genomes. This fluctuation appears 142 

specific to RSV/B/BA genomes and may reflect a larger proportion of variant genomes (perhaps 143 

partly or fully defective viral genomes) containing the NS2 gene along with a subset of the 144 

remaining RSV genes. This might also reflect a subtle sequencing bias.  145 

Although both genome- and transcript-derived read sets showed a number of high 146 

entropy positions across reference genomes in different samples, the vast majority of positions 147 

showed little variation. For example, and as mentioned previously, the largest average or bulk 148 

Shannon entropy calculated for a single sample was 0.11, which equals a minority ‘allele’ 149 

abundance of just over 2% assuming the simplest case of only two possibilities (A or G, say). 150 

The average bulk Shannon entropy for a given sample is closer to 0.03 for genomes and 0.01 151 

for transcripts. The former value corresponds to a minority ‘allele’ abundance of around 0.5% 152 

(again assuming only two possible ‘alleles’). Nevertheless, genome sequences clearly contained 153 

greater variation than transcripts (approximately 4-5x more) and bulk genome entropies from 154 

different patients showed more interesting dynamics, generally dropping over time, while bulk 155 

transcript entropies were more stable. This might reflect a purifying selection of viral genomes 156 

within the host while the greater stability of the lower transcript entropies may be a consequence 157 
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of a time-independent error rate for transcribing RSV polymerases. There were exceptions to 158 

the decline in genome entropies over time, with most samples showing an increase over any 159 

time interval coming from patients who shed RSV for  14 days (vs. < 14 days). This might 160 

reflect, albeit very subtly, the somewhat greater permissiveness of these hosts.  161 

  Genome- and transcript-derived reads showed interesting differences in the number and 162 

distribution of variation ‘hotspots’ (H  0.3). We chose a Shannon entropy of  0.3 to identify 163 

variation hotspots because H = 0.3 corresponds with a rather large minority ‘allele’ abundance 164 

of 10% assuming two possibilities (A and G, say). Genomes showed approximately 20-fold more 165 

hotspots than transcripts, and the distribution of hotspots was much more uniform across non-166 

coding and coding sequences in genome- than transcript-derived reads. Indeed, variation in the 167 

latter had a strong tendency to cluster in non-coding sequences, especially when considering 168 

the density of hotspots (i.e., the number of hotspots within a given region divided by the number 169 

of positions within that region). Indeed, transcript hotspots appear to be a non-random subset of 170 

genome hotspots, potentially indicating the contribution of transcriptionally mute defective viral 171 

genomes to our sequencing data (12, 13).  172 

We further analyzed variation hotspots for clear functional variation by determining 173 

whether hotspots within coding sequences encoded alternative amino acids. Approximately 50% 174 

of all hotspots identified encoded alternative amino acids whether from genomes or transcripts. 175 

We thus estimated that the percentage of all coding sequence positions in the RSV genome 176 

encoding alternative amino acids was ∼2% from sequenced genomes and ∼0.1% from 177 

transcripts within our data. As observed throughout this study, and consistent with the presence 178 

of defective viral genomes (12, 13), the variation contained within transcripts is a subset of that 179 

contained within genomes.   180 

Here we made use of the ability to separately analyze genome- and transcript-derived 181 

reads from high-throughput sequencing data to characterize the levels and distribution of genetic 182 

variation contained within natural infections of RSV. Future studies might involve patient 183 

populations containing greater differences in host immune status to better search for an immune-184 

mediated effect on the magnitude, distribution, and evolution of viral genetic variation within 185 

single infections. It would also be ideal to collect data from a larger number of patients and more 186 

densely through time – Grad et al. sequenced 26 samples over more than 2 months from a 187 
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single infant infected with RSV (14) – while optimizing sample collection for the generation of 188 

high-quality sequencing data. Finally, subjecting samples to long read sequencing in order to 189 

resolve variant viral genomes including defective viral genomes would be highly informative.   190 

 191 

Methods 192 

i. Study population 193 

A group of previously described hematopoietic cell transplant (HCT) recipients with laboratory-194 

confirmed RSV infection and negative chest radiography findings were identified from 2012 to 195 

2015 (4-7).  Patients were enrolled as part of a ribavirin efficacy trial within 72 hours of RSV 196 

diagnosis.  Longitudinal nasal wash (NW) samples were collected at enrollment (i.e., day 0), day 197 

2-7, and weekly up to 29 days post-enrollment.  The study protocol was approved by the 198 

institutional review boards of Baylor College of Medicine and the University of Texas MD 199 

Anderson Cancer Center. Written informed consent was obtained from all participants.  200 

ii. Sample preparation and sequencing 201 

Viral RNA was extracted from NW samples using the Mini Viral RNA Kit (QIAGEN Sciences, 202 

Maryland, USA) on the automated platform QIAcube (QIAGEN, Hilden, Germany) according to 203 

the manufacturer’s instructions.  Pooled cDNA libraries were hybridized with biotin-labeled 204 

probes from the RSV Panel (Twist Biosciences, Inc.) at 70°C for 16 hours according to (15). The 205 

RSV probe set size was 23.77 Mb and was designed based on 1,570 publicly available genomic 206 

sequences of RSV isolates.  In this probe set there are 87,025 unique probes of 80 bp length 207 

which cover 99.79% of the targeted isolates. Captured virus targets were incubated with 208 

streptavidin beads for 30 minutes at room temperature. Streptavidin beads bound with virus 209 

targets were washed and amplified with KAPA HiFi HotStart enzyme. The amount of each cDNA 210 

library pooled for hybridization and post-capture amplification PCR cycles (12–20) were 211 

determined empirically according to the virus Ct values. In general, between 1.8 to 4.0 μg of pre-212 

capture library were used for hybridization with the probes; post-capture libraries were 213 

sequenced on an Illumina NovaSeq S4 flow cell to generate 2x150 bp paired-end reads.  214 

iii. Sequencing data preparation 215 
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Cleaned RNA sequence was called using the VirMap pipeline (16).  Sample sequences were 216 

aligned to custom RSV reference genomes using Bowtie2 (17).  Samtool’s mpileup (18) 217 

command was used for read pileup creation for each sample.  A custom Python (Python 218 

Software Foundation, www.python.org) script was utilized to transform the pileup output into a 219 

tabular form. 220 

iv. Analysis of sequencing data 221 

The sequencing data from each sample was separated into two subsets, genomic and 222 

transcriptomic.  Unless otherwise noted, a minimum sequencing depth of 10 reads was required 223 

at each position across 90% of the reference genome (RSV/A/ON or RSV/B/BA) for each sample 224 

to be used in downstream analyses.  225 

v. Viral sequence Shannon entropy calculations  226 

Shannon entropy (H) was defined within each sample and at every genomic position as: 227 

Hi = ∑(K=A,C,G,T)  − p(I,K) ∙ ln(p(I,K)) 228 

 229 

i = sample identified; has a dimension of rows = # genomic positions with coverage ≥ 10 reads 230 

and columns = 1 231 

p = proportion of base = the number of counts for a given base divided by the total counts at a 232 

given genomic position 233 

I = genomic position 234 

A, C, G, and T= nucleotide base type 235 

Analyses were conducted in R 3.4.4 (R Foundation for Statistical Computing, Vienna, 236 

Austria) unless otherwise stated. 237 

vi. Detecting non-synonymous changes and calculating amino acid Shannon entropies 238 

To predict the amino acid (AA) representation across coding sequences from genome- and 239 

transcript-derived reads, we assumed a uniform sequencing error rate of nt substitution and only 240 

analyzed nt composition (i.e., did not consider insertions/deletions or associated frameshift 241 
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mutations). Nucleotide counts, binned as the four  possible nt bases (A, C, G, T), were 242 

determined at each coding position within each sample. The AA abundance was calculated at 243 

each position within a codon; if neighboring positions within a codon showed more than one nt 244 

base, the majority base(s) was used to determine the AA assignment.  245 

  246 
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Figures and tables 247 

 248 

 249 

Table 1. Demographics of RSV-infected HCT recipients. A group of previously described 250 
hematopoietic cell transplant (HCT) recipients with laboratory-confirmed RSV infection and negative 251 
chest radiography findings were identified and enrolled as part of a larger efficacy study within 72 hours 252 
of RSV diagnosis (4-7). Patients shed RSV for either less than 14 days or more. Shedding time 253 
correlated with transplant type (autologous vs. allogeneic), with patients receiving an autologous HSC 254 
transplant tending to show shorter viral shedding times and a greater neutralizing antibody response at 255 
convalescence (i.e., 14-60 days after hospitalization).    256 
  257 
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 258 

 259 

Table 2. Basic sample sequencing information for subgroups of HCT recipients and different 260 
read types. HCT recipients were naturally infected with either of two widely circulating RSV genotypes 261 
(A/Ontario [A/ON] or B/Buenos Aires [B/BA]) and shed virus for either less than 14 days or more. A 262 
nasal wash sample was collected from each patient at the time of study enrollment (i.e., day 0) and 263 
approximately weekly for four weeks. A subset of all samples were successfully sequenced at  90% 264 
coverage of whole RSV genome and  1x sequencing depth; a further subset were sequenced at a 265 
depth permitting downstream analyses to be described ( 90% coverage of whole RSV genome at  266 
10x sequencing depth). Additionally, because of the sequencing methodology employed, it was 267 
possible to separately analyze reads from genomes and transcripts (Gen and Trx, respectively). (a) 268 
Basic summary information for samples sequenced at 1x read depth across ≥ 90% of the reference 269 
RSV genome (RSV/A/ON or RSV/B/BA). (b) Basic summary information for samples sequenced at 10x 270 
read depth across ≥ 90% of the reference RSV genome (RSV/A/ON or RSV/B/BA).  271 

  272 

  273 
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 274 

Fig 1. Transcripts exceed genomes by ~100x and reads derived from both show fairly uniform 275 
coverage of reference RSV genomes. The interquartile range of per position sequencing depth from 276 
genome- (in red) and transcript-derived read sets (in blue) is plotted along the RSV genome for both 277 
RSV/A/ON (top plot) and RSV/B/BA references (bottom plot). Darker lines represent the upper bounds 278 
of Q3 and Q1.  279 

 280 

  281 
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 282 

 283 

Fig 2. Genomes are more variable than transcripts but both contain highly variable positions 284 
located across the RSV genome in different samples. The interquartile range of per position 285 
Shannon entropy (H) from genome- (in red) and transcript-derived read sets (in blue) is plotted along 286 
the RSV genome for both RSV/A/ON (top plot) and RSV/B/BA references (bottom plot).  287 

 288 

  289 
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 290 

Fig 3. Per sample average or bulk Shannon entropies of genomes and transcripts differ in 291 
magnitude and dynamics. Plots of per sample average Shannon entropy (H) vs. day of sample 292 
acquisition. All per position Shannon entropies for single samples were averaged for genome- (left plot) 293 
and transcript-derived read sets (right plot). RSV/A/ON data in blue; RSV/B/BA data in red; data from 294 
subjects who shed RSV for < 14 days in closed circular points; data from subjects who shed RSV for ≥ 295 
14 days in closed triangular points.    296 

  297 
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 298 

Fig 4. ‘Hotspots’ of variation are more numerous and densely distributed across the RSV 299 
genome in genome-derived reads than transcripts. Hotspots or single positions showing 300 
exceptionally high variation (Shannon entropy (H) ≥ 0.3) are plotted across the genome for both 301 
genome- (left plots) and transcript-derived read sets (right plots) from RSV/A/ON (top plots) and 302 
RSV/B/BA (bottom plots) infections. Each plot contains data for the number of samples indicated in 303 
parentheses. Each line in each plot shows the genomic distribution of hotspots for a single sample. 304 
Hotspots are colored according to their position within either 1) different noncoding sequences or 2) the 305 
10 coding sequences of RSV.        306 
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 307 

Fig 5. ‘Hotspots’ of functional variation are more numerous and densely distributed across the 308 
RSV genome in genome-derived reads than transcripts. Hotspots or single positions showing 309 
exceptionally high variation (Shannon entropy (H) ≥ 0.3) and encoding alternative amino acids are 310 
plotted across the genome for both genome- (left plots) and transcript-derived read sets (right plots) 311 
from RSV/A/ON (top plots) and RSV/B/BA (bottom plots) infections. Each plot contains data for the 312 
number of samples indicated in parentheses. Each line in each plot shows the genomic distribution of 313 
hotspots encoding one or more alternative amino acids for a single sample. Hotspots are colored 314 
according to their position within the 10 coding sequences of RSV.       315 
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 317 

Fig 6. Amino acid (AA) Shannon entropies are higher across the RSV genome in genome-318 
derived reads than transcripts. The interquartile range (IQR) of per position amino acid Shannon 319 
entropy (H) from genome- (left plots) and transcript-derived read sets (right plots) is plotted along the 320 
RSV genome for both RSV/A/ON (top plots) and RSV/B/BA references (bottom plots). Bars showing the 321 
IQR of AA H are colored according to their position within the 10 coding sequences of RSV.       322 
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