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Abstract

Background: Lung cancer is the leading cause of cancer deaths worldwide. New diagnostics are needed to detect early
stage lung cancer because it may be cured with surgery. However, most cases are diagnosed too late for curative surgery.
Here we present a comprehensive clinical biomarker study of lung cancer and the first large-scale clinical application of a
new aptamer-based proteomic technology to discover blood protein biomarkers in disease.

Methodology/Principal Findings: We conducted a multi-center case-control study in archived serum samples from 1,326
subjects from four independent studies of non-small cell lung cancer (NSCLC) in long-term tobacco-exposed populations.
Sera were collected and processed under uniform protocols. Case sera were collected from 291 patients within 8 weeks of
the first biopsy-proven lung cancer and prior to tumor removal by surgery. Control sera were collected from 1,035
asymptomatic study participants with $10 pack-years of cigarette smoking. We measured 813 proteins in each sample with
a new aptamer-based proteomic technology, identified 44 candidate biomarkers, and developed a 12-protein panel
(cadherin-1, CD30 ligand, endostatin, HSP90a, LRIG3, MIP-4, pleiotrophin, PRKCI, RGM-C, SCF-sR, sL-selectin, and YES) that
discriminates NSCLC from controls with 91% sensitivity and 84% specificity in cross-validated training and 89% sensitivity
and 83% specificity in a separate verification set, with similar performance for early and late stage NSCLC.

Conclusions/Significance: This study is a significant advance in clinical proteomics in an area of high unmet clinical need.
Our analysis exceeds the breadth and dynamic range of proteome interrogated of previously published clinical studies of
broad serum proteome profiling platforms including mass spectrometry, antibody arrays, and autoantibody arrays. The
sensitivity and specificity of our 12-biomarker panel improves upon published protein and gene expression panels. Separate
verification of classifier performance provides evidence against over-fitting and is encouraging for the next development
phase, independent validation. This careful study provides a solid foundation to develop tests sorely needed to identify
early stage lung cancer.
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Introduction

Lung cancer is the leading cause of cancer deaths, because

,84% of cases are diagnosed at an advanced stage [1–3].

Worldwide in 2008, ,1.5 million people were diagnosed and

,1.3 million died [4] – a survival rate unchanged since 1960.

However, patients diagnosed at an early stage and have surgery

experience an 86% overall 5-year survival [2,3]. New diagnostics

are therefore needed to identify early stage lung cancer.

Over the past decade the clinical utility of low-dose CT has

been evaluated [5–8] with the hope that high-resolution imaging

can help detect lung cancer earlier and improve patient outcomes,

much as screening has done for breast and colorectal cancers [9].

Definitive conclusions about CT screening and lung cancer

mortality await results from randomized trials in the US [8] and

Europe [10–13]. CT can detect small, early-stage lung tumors, but

distinguishing rare cancers from common benign conditions is

difficult and has led to unnecessary procedures, radiation

exposure, anxiety, and cost [6,14–16]. We (J.M.S., J.L.W., and

colleagues) recently reported such conclusions for the Pittsburgh

Lung Screening Study (PLuSS), the largest single-institution CT

screening study reported to date [5].

Other types of biomarkers have also been sought [17]. Proteins

are attractive because they are an immediate measure of

phenotype, in contrast to DNA which provides genotype, largely

a measure of disease risk [18]. Single protein biomarkers are the

foundation of molecular diagnostics in the clinic today. It is widely

thought that multiple biomarkers could improve the sensitivity and

specificity of diagnostic tests, and that complex diseases like cancer

change the concentrations of multiple proteins [19]. However,

discovering multiple protein biomarkers by measuring many

proteins simultaneously (proteomics) in complex samples like

blood has proven difficult for reasons of coverage, precision,

throughput, preanalytical variability, and cost [20].

To enable biomarker discovery, we developed a new proteomic

technology that is based on a new generation of aptamer protein

binding reagents and has potentially broad application [18]. The

current assay measures 813 diverse human proteins in just 15 mL

of blood with low limits of detection (1 pM average and as low as

100 fM), 7 logs of overall dynamic range, and high reproducibility

(5% median coefficient of variation) [18]. Here we present the first

large scale clinical application of our proteomics technology to

discover blood protein biomarkers in a large multi-center case-

control study conducted in archived samples from 1,326 subjects

from four independent studies of non-small cell lung cancer

(NSCLC) in long-term tobacco-exposed populations.

Materials and Methods

Ethics Statement
All samples were collected from study participants after

obtaining written informed consent under clinical research

protocols approved by the following institutional review boards:

The University of Pittsburgh Institutional Review Board (Pitt);

The New York University School of Medicine Institutional

Review Board (NYU); The Roswell Park Cancer Institute

Institutional Review Board (RP); and The Cape Cod Healthcare

Institutional Review Board (BS).

Study Design
The objectives of this study were to discover biomarkers that

discriminate NSCLC from smokers with $10 years of cigarette

smoking history, to train and cross-validate a multi-biomarker

classifier of NSCLC to meet pre-specified performance criteria,

and to verify the performance of this classifier with a separate set of

blinded samples. The overall design of the study is shown in

Figure 1. We designed and executed this study to current rigorous

standards for biomarker clinical studies [21–23] with the goals of

maximize biomarker robustness, validity, and reliability at the

discovery phase, and minimizing potential effects of preanalytical

variability. The study was a discovery-phase, case-control design.

Critical study design features include the following. The clinical

question and study design were pre-specified prior to identifying

and acquiring samples. Samples were acquired from four

independent study sites in order to control for potential

preanalytical variability. Strict standard operating procedures

were followed to ensure sample and data anonymity and blinding

at all times (see below). A verification sample set consisting of 25%

of all samples in the study was randomly selected and the

identification of this set was blinded. The statistical analysis plan

was pre-specified and included minimally acceptable performance

criteria for sensitivity and specificity.

Sample Cohort
The sample cohort comprised 1,326 serum samples obtained from

four independent biorepositories: New York University (NYU) [24];

Roswell Park Cancer Institute (RPCI) [25]; The University of

Pittsburgh (PITT) [5]; and a commercial biorepository (BioServe (BS))

(Table 1). All samples were collected from study participants after

obtaining informed consent under institutionally approved clinical

research protocols as described [5,24,25]. Both case and control serum

samples were collected from four study centers. The clinical

characteristics of the study cohort for the training and verification

Figure 1. Study Flow for Algorithm Training and Verification.
doi:10.1371/journal.pone.0015003.g001

Table 1. Sample cohort by independent study site.

Site
Cases
(n = 291)

Nodule
Controls
(n = 565)

Smoker
Controls
(n = 470) Total/Site

BS 43 0 63 106

RPCI 72 66 110 248

NYU 88 238 172 498

PITT 88 261 125 474

doi:10.1371/journal.pone.0015003.t001
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sets are shown in Table 2. The staging and histology of NSCLC cases

is shown in Table 3. The sample cohort included patients diagnosed

with pathologic or clinical stage I-III NSCLC and a high-risk control

population with a history of long-term tobacco use, including active

and ex-smokers with $10 pack-years of cigarette smoking. The

control populations were selected randomly within each study to

represent the patient population at risk for lung cancer that would be

candidates for CT screening, with a ratio of case:control of 1:3.5.

Blood samples for cases were collected from patients within eight

weeks of the first biopsy-proven lung cancer diagnosis and prior to

removal of the tumor by a surgical procedure. All cases used in this

study were confirmed as primary lung cancer by pathology review.

NSCLC staging was assigned by pathological staging for 240 subjects

and clinical staging for 51 subjects. Benign nodule controls have at

least one year of follow-up data and non-malignant diagnosis. Smoker

controls were asymptomatic study participants with $10 pack-years of

cigarette smoking. Smoker controls from NYU and Pitt were nodule

free by CT; nodule status is unknown for the smoker controls from RP

and BS. Demographic data was collected by self-report questionnaires.

Additional data for cases was acquired through clinical chart review.

Pulmonary function testing was assessed by spirometry for a subset of

the study participants.

Serum Collection, Processing, Storage, and Shipment
All serum specimens were collected following uniform protocols

recommended by the National Cancer Institute’s Early Detection

Research Network [22]. Three of the centers (NYU, PITT and

RPMC) collected serum in red top Vacutainer tubes (Becton

Dickinson, Raritan, NJ) and one center (BS) collected serum in

tiger top SST Vacutainer tubes (Becton Dickinson). All samples

were allowed to clot and serum was recovered by centrifugation

within 2–8 hours of collection and stored at 280uC. HIPAA

compliant, de-identified samples were shipped frozen on dry ice to

SomaLogic from the study centers and stored at -80uC. Samples

were thawed once for aliquoting prior to proteomic analysis.

Sample Blinding
In order to prevent potential bias, this study followed a strict

standard operating procedure for sample de-identification and

blinding, such that all physical samples and data records were

identified exclusively by a unique, unidentifiable barcode number

and the key was stored in a secure database accessible only to

designated responsible administrators. All sample aliquots run in

this study were stored in identical tubes identified only by assigned

barcode. The sample blinding code was broken only according to

the pre-specified analysis plan for the purposes of classifier training

with the training set and classifier verification with the verification

set. For the verification sample set, a unique blinding key was

generated and provided exclusively to a third party reader (K.C.),

unaffiliated with the study centers or SomaLogic, to score and

report the final verification results.

Proteomic Analysis
Serum samples were analyzed on our proteomic discovery

platform as described in Gold et al [5]. Briefly, this technology uses

Table 2. Clinical characteristics of NSCLC case and control sets for training and verification.

Training Set (n = 985) Verification Set (n = 341)

Cases Controls p-value1 Cases Controls p-value1

Individuals, no. (%) 213 (21.6) 772 (78.4) 78 (22.9) 263 (77.1)

Sex (%) Male 51.2 47.4 43.6 47.9

Female 48.8 52.6 0.3305 56.4 52.1 0.5015

Age, mean (SD) 67.6 (9.8) 59.0 (10.2) ,0.0001 68.3 (10.2) 58.8 (9.6) ,0.0001

Control Nodule Status, no. (%) Benign nodule n/a 420 (54.4) n/a 145 (55.1)

No nodule n/a 222 (28.8) n/a 75 (28.5)

Unknown n/a 130 (16.8) n/a 43 (16.4)

Smoking Status, no. Current 54 421 ,0.0001 25 150 ,0.0001

Ex 85 310 ,0.0001 31 108 ,0.0001

Never 11 6 ,0.0001 7 3 ,0.0001

Unknown 63 35 ,0.0001 15 2 ,0.0001

Smoking (PKY), mean (SD){ 47.1 (33.7) 42.3 (24.2) 0.0258 40.9 (30.8) 42.3 (24.6) 0.7003

1For continuous data the differences were tested using t-tests. For categorical data significant differences were tested using the Pearson Chi-Squared Test for
independence.

{Pack-years: product of the self reported number of packs of cigarettes smoked per day and the number of years of smoking.
doi:10.1371/journal.pone.0015003.t002

Table 3. Clinical characteristics of NSCLC cases in the training
and verification sets.

Training
Cases,
n = 213,
no. (%)

Verification
Cases,
n = 78, no. (%)

Stage NSCLC1 I 99 (46.5) 38 (49)

II 32 (15.0) 11 (14)

III 82 (38.5) 27 (35)

Not reported - 2 (2)

Histology Adenocarcinoma 120 (56.3) 49 (62.8)

Squamous 71 (33.3) 18 (23.1)

Large cell 2 (1.0) 2 (2.6)

NSCLC NOS 20 (9.4) 9 (11.5)

1Clinical staging for 17 Stage I, 5 Stage II and 29 Stage III cases, NOS not
otherwise specified.

doi:10.1371/journal.pone.0015003.t003

Aptamer Proteomics for Early Lung Cancer Detection

PLoS ONE | www.plosone.org 3 December 2010 | Volume 5 | Issue 12 | e15003



novel DNA aptamers that contain chemically modified nucleotides

as highly specific protein binding reagents in a unique multiplexed

assay that transforms the quantity of each targeted protein into a

corresponding quantity of aptamer, which is quantified with a

custom hybridization array. Protein quantities are recorded as

relative fluorescent units (RFU), which can be converted to

concentrations with standard curves. The platform is highly

automated [26] and scalable to accommodate a broad range of

sample throughput. In this study, 813 protein targets were

measured in 15 mL of serum for each subject, and all 1,326 sera

were analyzed in a continuous process over a period of eight days.

Overall, the results are analogous to a little more than 1,000,000

high quality ELISA measurements. Samples were processed in

multiple 96-well microtiter plates, and all 1,326 samples were

distributed randomly and their identities were completely blinded

throughout the proteomic analysis process.

Biomarker Selection
Biomarkers were selected with a strategy designed to identify

analytes with the highest performance in classifying NSCLC cases

from controls across all study sites and that were least affected by

preanalytical variables. In the first step of this analysis, we

eliminated analytes that exhibited unexpected variation compared

to internal controls, due to, for example, sample instability. In this

process, we chose a set of analytes that performed well in a total of

six naı̈ve Bayes (NB) classifier training analyses. First we divided

the training set into two distinct populations to control for possible

biological variability between them: (1) all cases and controls with

benign nodules identified by CT; and (2) all cases and all other

smoker controls (nodule status unknown). For each population, we

compared cases to controls in three NB training analyses designed

to control for potential preanalytical variability between study

sites. The three NB analyses started with a unique set of potential

biomarkers based on the following criteria: (1) cases versus controls

KS$0.3 for all comparisons within each of the four study sites; (2)

cases versus controls KS$0.3 for comparing all sites combined; (3)

both criteria one and two were met. For each analysis, we used a

greedy forward search algorithm to select subsets of potential

biomarkers, build NB classifiers (see below), and scored their

performance for classifying lung cancer and controls using the

training set. In this process, this meta-heuristic approach efficiently

searches classifier space to identify potential biomarkers that

perform best in classification. We used a simple measure of

diagnostic performance of classifiers, the numerical sum of

sensitivity + specificity, and measured the frequency with which

potential biomarkers were selected by the greedy algorithm for

inclusion in classifier panels with sensitivity + specificity $1.7. This

step produced a set of potential biomarkers for each of the six

parallel analyses. We selected the final set of biomarkers as the

union of these six sets.

Statistical Methods
The KS statistic is a non-parametric measure of the difference

between two distributions. The two-sample KS Statistic is:

K~supx Fa xð Þ{Fb xð Þj j, where Fa xð Þand Fb xð Þare empirical

cumulative distributions for two populations of values.

The naı̈ve Bayes classifier assumes independence between the

samples, and models the distributions of the training classes to

make predictions [27]. We used normal distributions to model our

data. However, the features in our data often contain distributions

with heavy tails so maximum likelihood estimation of the

distribution parameters performs poorly. Therefore, we modeled

our distributions as log-normal distributions and used the Gauss-

Newton algorithm to fit the data.

We constructed Bayesian classifiers using sets of potential

biomarkers identified as described above. We used a parametric

model to capture the underlying protein distribution for a given

state. The simplest parametric model for the probability density

function (pdf) for a single protein is a normal distribution,

completely described by a mean u and variance s2 (Eq. 1).

pdf xð Þ~ 1ffiffiffiffiffiffi
2p
p

s
exp {

1

2

x{m

s

� �2
� �

ð1Þ

Many protein distributions were observed as normal with respect

to the logarithm of the concentration. The numeric cdfs can be fit

to a normal distribution in log concentrations x (Eq. 2).

cdf xð Þ~
ðx

{?

pdf yð Þdy ð2Þ

The models fit the data well. More complex models of the

probability distribution functions may be used when warranted but

the simple model provided a good description of our data.

To combine multiple markers, we used a multivariate normal

distribution to model the probability density function (pdf) for each

class. For n markers, the multivariate pdf is given by the following

equation (Eq. 3).

pdf xð Þ~ 1

2pð Þ
n
2 Sj j

1
2

exp {
1

2
x{mð ÞtS{1 x{mð Þ

� �
ð3Þ

where x is an n-component vector of protein levels, m is an n-

component vector of mean protein levels, S is the n x n covariance

matrix and |S| and S21 are its determinant and inverse. In its

simplest form, we can assume a diagonal representation for S.

Such an approximation leads to a naı̈ve Bayes model, which

assumes independence between the markers. In this work, we

exclusively use the naı̈ve Bayes model for constructing classifiers.

The parameter values for m and S used in the naı̈ve Bayes

classification were obtained from nonlinear regression analysis as

described above.

The addition of subsequent markers with good KS distances

will, in general, improve the classification performance if the

subsequently added markers are independent of the first marker.

We searched for optimal marker panels with a ‘‘greedy’’

algorithm, which is any algorithm that follows the problem solving

meta-heuristic of making the locally optimal choice at each stage

with the hope of finding the global optimum. We used the

sensitivity (fraction of true positives) plus specificity (fraction of true

negatives) as a classifier score. The algorithm approach used here

is described as follows. All single analyte classifiers were generated

from a table of potential biomarkers and added to a list. Next, all

possible additions of a second analyte to each of the stored single

analyte classifiers were performed, saving a predetermined

number (10,000 in this case) of the best scoring pairs on a new

list. All possible three marker classifiers are explored using this new

list of the best two-marker classifiers, again saving the best

thousand of these. This process continues until the score either

plateaus or begins to deteriorate as additional markers are added.

Aptamer Proteomics for Early Lung Cancer Detection

PLoS ONE | www.plosone.org 4 December 2010 | Volume 5 | Issue 12 | e15003



Results

We analyzed 1,326 serum samples from four independent

biorepositories: New York University (NYU) [24]; Roswell Park

Cancer Institute (RPCI) [25]; The University of Pittsburgh (PITT)

[5]; and a commercial biorepository (BioServe (BS)) (Table 1). The

study included patients diagnosed with pathologic or clinical stage I-

III NSCLC and a high-risk control population with a history of long-

term tobacco use, including active and ex-smokers with $10 pack-

years of cigarette smoking (Table 2 and 3). The control populations

were selected randomly within each study to represent the patient

population at risk for lung cancer that would be candidates for CT

screening, with a ratio of case to control of 1 to 3.5.

Samples were randomly distributed into segregated sets for

classifier training and verification (Figure 1) with no significant

differences in demographics between these sets (Table 2). More

than 45% of NSCLC cases were pathologically confirmed stage IA

or IB or clinical stage I with adenocarcinoma representing the

major histological diagnosis (Table 3). All lung cancer patients had

a biopsy-proven cancer diagnosis.

We measured the quantity of 813 proteins in each of the 1,326

samples with our proteomic discovery platform [18]. We followed

a pre-specified two-phase analysis plan to identify biomarkers and

develop a classifier to distinguish lung cancer subjects from

controls within the training set (training phase) and to verify the

classifier performance with the blinded independent verification

set (verification phase). The training phase entailed two steps –

biomarker selection and algorithm training with cross-validation.

To select biomarkers we performed a systematic analysis that

narrowed the potential biomarker field for algorithm training to

increase the probability of true discovery, yet still cast a relatively

broad net. We used a naı̈ve Bayes (NB) method to systematically

assess potential biomarker performance with pre-specified criteria.

We applied the NB method to subsets of the training data to

broaden our cast for potential biomarkers (see Methods). The

results identified a set of 44 potential biomarkers (Table 4) that

distinguish lung cancer from controls across a range of

comparisons in the training set while minimizing potential

preanalytical variability – artifacts introduced by variations in

sample collection and storage (see below) [28,29].

To develop a potential diagnostic to distinguish NSCLC from

controls, we trained NB classifiers starting with the 44 potential

biomarkers we identified using a ‘‘greedy’’ forward search

algorithm and ten-fold stratified cross validation, starting with

three biomarkers and adding one more at each step. We assessed

classifier performance with pre-specified performance criteria

(Table 5). We constructed 45 seven to twelve-biomarker classifiers

from this set of 44 potential biomarkers that met our performance

criteria, which suggests that there is significant redundancy in the

information contained within the set of potential biomarkers.

Cross-validated classifier performance reached a performance

plateau with twelve biomarkers. Following our analysis plan, we

selected from the 45 resulting classifiers one with the highest

overall performance of pre-specified criteria (Table 5), including

discrimination of NSCLC from controls, detection of Stage I

disease, and detection of cancer in chronic obstructive pulmonary

disease (COPD). In the training set, the classifier achieved 91%

sensitivity, 84% specificity, and an area under the curve (AUC) of

0.91 (Figure 2). The results (Table 6) show that sensitivity is

maintained for Stage I NSCLC (90% for training set). The

classifier performed well on samples from all four study sites

(Figure 3).

The twelve biomarkers are shown in Table 7. The estimated

serum concentrations for these markers span 4 logs (10 pM-

Table 4. Potential NSCLC biomarkers1.

# Protein Name UniProt ID KS q-value NB Freq

1 BCA-1 O43927 0.34 2.51E-17 1

2 BMP-1 P13497 0.35 3.49E-18 10

3 C1s P09871 0.29 3.92E-13 1

4 C9 P02748 0.41 1.33E-24 6

5 Cadherin-1 P12830 0.32 1.47E-15 206

6 Calpain I P07384
P04632

0.4 8.46E-24 72

7 Catalase P04040 0.32 1.21E-15 2

8 CD30 Ligand P32971 0.28 1.22E-12 51

9 CDK5/p35 Q00535
Q15078

0.27 1.34E-11 31

10 CK-MB P12277
P06732

0.33 2.51E-16 19

11 Contactin-5 O94779 0.29 1.67E-13 3

12 Endostatin P39060 0.28 8.48E-13 33

13 ERBB1 P00533 0.46 6.32E-31 136

14 FGF-17 O60258 0.31 6.12E-15 6

15 FYN P06241 0.13 5.19E-04 14

16 HSP 90a P07900 0.51 7.86E-37 85

17 HSP 90b P08238 0.39 1.50E-22 7

18 IGFBP-2 P18065 0.36 1.87E-19 54

19 IL-15 Ra Q13261 0.29 2.62E-13 4

20 IL-17B Q9UHF5 0.28 1.07E-12 1

21 Importin b1 Q14974 0.4 1.31E-23 30

22 Kallikrein 7 P49862 0.31 1.79E-14 43

23 LDH-H 1 P07195 0.3 8.64E-14 3

24 Legumain Q99538 0.28 2.52E-12 1

25 LRIG3 Q6UXM1 0.34 1.13E-17 25

26 Macrophage man-
nose receptor

P22897 0.37 6.21E-21 21

27 MAPK13 O15264 0.34 4.66E-18 1

28 MEK1 Q02750 0.29 2.62E-13 5

29 MetAP2 P50579 0.44 3.40E-28 7

30 Midkine P21741 0.11 1.67E-03 7

31 MIP-4 P55774 0.29 2.69E-13 43

32 MIP-5 Q16663 0.31 1.53E-14 27

33 MMP-7 P09237 0.38 1.67E-21 36

34 NACa Q13765 0.33 7.57E-17 5

35 NAGK Q9UJ70 0.37 1.25E-20 5

36 Pleiotrophin P21246 0.29 5.02E-13 107

37 PRKCI P41743 0.41 3.81E-25 97

38 Renin P00797 0.25 1.69E-10 2

39 RGM-C Q6ZVN8 0.27 5.43E-12 84

40 SCF sR P10721 0.35 6.97E-19 107

41 sL-Selectin P14151 0.29 7.88E-13 57

42 Ubiquitin+1 P62988 0.33 4.09E-17 1

43 VEGF P15692 0.29 5.47E-13 1

44 YES P07947 0.28 1.73E-12 47

1Measure of the relative importance of potential biomarkers selected with KS
distance (KS), KS FDR-corrected q-value (q-value), frequency for naı̈ve Bayes
(NB Freq),

doi:10.1371/journal.pone.0015003.t004
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100 nM). About half the control group had benign pulmonary

nodules detected by CT (Table 2), and the performance of the

classifier in that subgroup was similar to that of the whole (Table 6).

We also tested the effect of other attributes that could affect

classifier performance such as age, smoking history, and COPD,

but found little effect (Tables 8 and 9). Age has a moderate effect

on the shape of the ROC curve because the probability of cancer

increases with age, but this effect can be controlled by adjusting

the prior probability of cancer in the Bayes classifier model. The

classification performance of the fixed algorithm was tested on the

blinded independent verification set and verified by a third party

reader to achieve 89% sensitivity and 83% specificity, nearly

matching the training set performance.

To determine whether our classification results were affected

either by age, smoking status, or smoking history, which are the

demographics with significant differences between the case and

control populations (Table 2), we compared the classifier

performance on subsets of the training set population divided

into groups based on the median value of these attributes. The

results show similar classifier performance for all subsets (Table 8).

To further assess whether our classification results were affected

either by age, smoking status, or smoking history, we tested for

potential correlation of the twelve biomarkers with these variables.

The results showed no correlations except for endostatin, which

showed a moderate correlation, increasing with age. This effect

can be compensated for by adjusting the prior probability of

cancer in the Bayes classifier model. We also assessed the

specificity of the classifier for the discrimination of controls known

to have airflow obstruction (measured by GOLD score). The

results are shown in Table 9. Spirometry data was incomplete for

NSCLC cases, so we could not calculate sensitivity.

Preanalytical variability underlies common failures to translate

candidate biomarkers into clinically useful tests [20,29]. We

assessed preanalytical variability in this study by measuring

differences in protein levels within the same disease class (NSCLC

or control) between different sites and comparing them to

differences observed between NSCLC and control populations.

The results (Figure 4) show significant preanalytical variability

between sites. However, proteins most affected are distinct from

potential NSCLC biomarkers. Many proteins that exhibit

preanalytical variability (Table 10) are known to be susceptible

to variations in sample collection and handling [28,29]. This result

confirms that pre-analytical variability exists in our study and

provides evidence that, as designed, our study largely overcomes

this variability to maximize the chances of discovering true, robust

biomarkers of NSCLC.

Discussion

The primary findings of this study are 44 potential lung cancer

biomarkers that discriminate stages I-III NSCLC cases from at-

risk heavy smoker controls that can be combined into classifier

panels that meet and exceed pre-specified performance criteria.

The results of this study are novel in the following: (1) most of the

proteins identified in this study have not been identified previously

as serum lung cancer biomarkers; (2) we have identified novel

protein biomarker panels that distinguish lung cancer cases from

appropriate controls with high sensitivity and specificity in an

independent, blinded verification set; and (3) this study achieves a

new level of evidentiary standard in clinical proteomic biomarker

studies as a result of a large sample size, a study design to control

preanalytical variability, and the unique capability of this

proteomic technology to interrogate the circulating proteome
Figure 2. ROC curve for 12-biomarker naı̈ve Bayes classifier.
doi:10.1371/journal.pone.0015003.g002

Table 5. Criteria for algorithm performance on training and
cross-validation.

Criteria
Minimum
Performance

#
Classifiers

Biomarker frequency in greedy
algorithm classifiers

10 250

Sensitivity (Stage I-III) + Specificity 1.7 94

Stage I Sensitivity 0.85 80

Cross-validation Sensitivity
(Stage I-III)+ Specificity

1.7 50

Cross-validation Stage I Sensitivity 0.85 50

Severe COPD Specificity 0.65 45

doi:10.1371/journal.pone.0015003.t005

Table 6. Performance of Bayesian Classifier to distinguish
NSCLC cases from controls.

Sensitivity
(%), (95% CI)

Specificity
(%), (95% CI)

NSCLC Cases Training Stage I-III 91 (87-95)

Training Stage I 90 (84-96)

10-fold Cross Validation 91 (87-95)

Verification Stage I-III 89 (81-96)

Verification Stage I 87 (78-96)

Controls Training All Controls 84 (81-86)

Training Benign Nodules 82 (78-85)

10-fold Cross Validation 83 (80-86)

Verification All Controls 83 (79-88)

Verification Benign Nodules 85 (79-91)

doi:10.1371/journal.pone.0015003.t006
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quantitatively with a breadth, sensitivity, and dynamic range

unmatched by other broad serum profiling platforms [18],

including mass spectrometry [18], antibody arrays [18], and

autoantibody arrays [18,30–32]. This study is the first large-scale

application of this technology and the largest clinical proteomic

biomarker study to date. As such, this study aims to overcome

critical confounders and limitations of clinical proteomic biomark-

er studies that contribute largely to the lack of translation to the

clinic due to false discovery [20]. These confounders and

limitations include clinical sample integrity, preanalytical variabil-

ity, and inadequate study design and power.

The best overall performing classifier used 12 of the 44

biomarkers and achieved 91% sensitivity and 84% specificity in

cross-validated training and similar performance of 89% sensitivity

and 83% specificity in blinded validation. These results provide

evidence that these biomarkers are valid and that the classifier was

not over-fit to the training data. This performance and the

biological plausibility (following) of the 12 biomarkers are

encouraging for the next phase of development – validation in

an independent clinical study.

The 12 biomarkers identified in this study (Table 4) encompass

functions of cell movement, inflammation, and immune monitor-

ing that may contribute to cancer development. Most of the 12

proteins have been associated generally with cancer biology, some

have been identified as candidate lung cancer biomarkers, none

have been validated as lung cancer biomarkers, and none are used

clinically [33,34]. Four of the 12 proteins have been identified in

serum and lung cancer tissue or cell culture as candidate lung

cancer biomarkers – cadherin-1 [35], endostatin [36], HSP90

[37], and pleiotrophin [38]. Eight of the 12 proteins, CD30 ligand,

LRIG3, MIP-4, PRKCI, RGM-C, SCF-sR, sL-Selectin, and YES,

have not been identified previously in serum as lung cancer

biomarkers and represent novel findings.

Six of the 12 proteins, CD30 ligand, endostatin, HSP90, MIP-4,

pleiotrophin, PRKCI, and YES were observed up-regulated in

Figure 3. ROC curve performance of the 12-biomarker naı̈ve Bayes NSCLC classifier by study site.
doi:10.1371/journal.pone.0015003.g003

Table 7. Twelve biomarker classifier proteins1.

Biomarker UniProt ID Direction* Description

Cadherin-1 P12830 down cell adhesion, transcription
regulation

CD30 Ligand P32971 up cytokine

Endostatin P39060 up inhibition of angiogenesis

HSP 90a P07900 up chaperone

LRIG3 Q6UXM1 down protein binding, tumor
suppressor

MIP-4 P55774 up monokine

Pleiotrophin P21246 up growth factor

PRKCI P41743 up serine/threonine protein
kinase, oncogene

RGM-C Q6ZVN8 down iron metabolism

SCF sR P10721 down decoy receptor

sL-Selectin P14151 down cell adhesion

YES P07947 up tyrosine kinase, oncogene

1Up or down regulation in NSCLC cases relative to controls.
doi:10.1371/journal.pone.0015003.t007
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lung cancer in this study, consistent with their proposed biological

roles in proliferation, invasion, or host inflammatory and immune

response to the tumor. CD30 ligand is a member of the TNF

ligand superfamily, which stimulates T-cell growth. Up-regulation

of this protein correlates with proliferation in hematological

malignancies [36]. Endostatin, best known as an inhibitor of

angiogenesis, has elevated serum levels in several cancers [39].

Overexpression of endostatin and its parent extracellular matrix

protein, collagen XVIII have been associated with poor prognosis

in NSCLC [36].

The chaperone HSP90a is important for the stability of and

function of a wide range of oncoproteins, including BCR-ABL,

ERBB2, EGFR, BRAF, and AKT, among others, and inhibitors

of this protein are now in oncology clinical trials, including

NSCLC [40]. HSP90 may also play a role in tumor cell resistance

to complement mediated cytotoxicity [41]. MIP-4 is over-

expressed in ovarian and gastric cancers, and may have a role in

immunosuppression of the host tumor response [42]. Pleiotrophin

is a growth factor with both mitogenic and angiogenic properties

and levels in the serum of NSCLC patients have been reported to

correlate with disease stage and prognosis [38]. PRKCI is an

oncogene that is often amplified in NSCLC and over-expressed in

lung tumors correlates with poor prognosis [43]. YES, another

protein kinase and member of the src-family of tyrosine kinases,

has a role in malignant transformation and increased protein levels

have been reported in early stages of hepatocarcinoma [44].

We observed decreased levels of proteins in the serum of lung

cancer patients compared to controls, including cadherin-1,

LRIG3, sL-selectin, SCRsR, ERBB1 and RGM-C. Lower

circulating levels of many of these proteins are associated with

relief of inhibition of growth and invasion. For example, cadherin-

1 is critical for cell adhesion and indirectly affects transcriptional

regulation circuits through b-catenin [45]. Consistent with our

results, reduced expression has been reported in lung cancer, and

loss of cadherin-1 is a key event leading to loss of adherence,

tumorgenicity, and metastasis [46]. The LRIG family consists of

membrane proteins with soluble leucine rich repeat domains and

immunoglobulin-like domains. Down-regulation of expression of

this protein in glioblastoma cell lines resulted in increased

proliferation and invasion, decreased apoptosis, and increased

EGFR expression, leading to the hypothesis that LRIG is a tumor

suppressor [47]. L-selectin plays a role in activation of naı̈ve

lymphocytes that participate in immune surveillance and antitu-

mor immunity. It also mediates the adherence of lymphocytes to

endothelial cells. Lower expression of L-selectin may be a

component of the immune suppression observed in many cancer

patients [48].

Some of the proteins described in this study are the soluble

domains of membrane receptors, and the function of the

circulating form of these proteins may oppose their membrane-

bound counterparts. Turner et al. [49] proposed that soluble SCF-

receptors regulate kit activation. Our results suggest that a low

level of SCF-sR fails to titrate SCF, which makes more SCF

available for binding cancer cells. Unlike the membrane bound

form, soluble RGM-C inhibits hepcidin expression [50,51]. We

find that RGM-C is down regulated in NSCLC serum, consistent

with increased intracellular iron and proliferative cell growth [52].

The limitations of this study include the following. We did not

test cases prior to clinically apparent disease. We did not

demonstrate organ-specificity and many of the markers are known

to be elevated in other cancers. However, the markers will be used

in combination and in the proper diagnostic context, such as with

imaging, smoking history, and symptoms. We did not validate our

findings in an independent set of clinical samples. Our multi-

center study was designed to minimize the effects of potential

preanalytical variability, which is mitigated, but not eliminated by

this study. All of these limitations will be addressed in the next

phase of development, which is enabled by the positive results of

this study.

The biomarkers that we discovered have several potential

clinical applications. The first application is early detection of lung

cancer in long-term smokers when it may be cured by surgery.

Our results are a significant improvement on the performance of

other recently published lung cancer biomarker studies aimed at

early diagnosis [17] using mass spectrometry [24,53,54] or gene

expression [55]. This performance could allow for testing of

individuals with increased lung cancer risk, with subsequent CT

screening based on the blood test result.

A second potential application is a test for diagnosing lung

cancer in subjects with suspicious lung nodules identified by CT,

which could help mitigate the problem of morbidity and cost

associated with surgical interventions. CT screening reveals

suspicious nodules in ,40% of long-term smokers [5,56,57], but

,97% are likely benign [5,57,58]. Protocols for managing these

patients balance the risk of ‘‘watchful waiting’’ with definitive and

Table 8. Performance of classifier in demographic subsets.

Cases Controls
Sensitivity
(%) (95%CI)

Specificity (%)
(95%CI)

Accuracy (%)
(95%CI) AUC

Age #61 57 467 84 (75-94) 89 (86-92) 88 (85-91) 0.91

.61 156 304 93 (89-97) 76 (71-80) 82 (78-85) 0.89

Smoking Status Current 54 421 93 (86-100) 86 (83-90) 87 (84-90) 0.91

Ex 85 310 91 (84-97) 85 (80-89) 86 (82-89) 0.93

Pack Years #40 84 381 91 (84-97) 86 (83-90) 87 (84-90) 0.93

.40 76 347 97 (94-100) 84 (81-88) 87 (84-90) 0.94

doi:10.1371/journal.pone.0015003.t008

Table 9. Classifier specificity by level of airflow obstruction.

Airflow
Obstruction1

FEV1 %
Predicted

Number of
Patients

Specificity (%),
(95% CI)

GOLD 0/I .80% 411 89 (86-92)

GOLD II 50–80% 167 84 (78-89)

GOLD III/IV ,50% 32 72 (56-87)

1Spirometric classification of airflow obstruction based on GOLD staging [60].
doi:10.1371/journal.pone.0015003.t009
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costly invasive procedures. Watchful waiting monitors nodule

growth by periodic follow-up CTs, but may miss the opportunity

for early surgical cure. Invasive procedures incur the risk of

complications and death that arise from biopsy or futile

thoracotomy for benign lesions. This risk might be reduced by a

new strategy to assess nodule volume doubling time by CT [13].

However, CT radiation itself increases cancer risk [59].

Based on the discoveries reported here, we have initiated

clinical validation studies of populations at risk for lung cancer.

Our goal is to develop a clinical blood test to enable an earlier

diagnosis. This study is the first to be published in a sequence of

successful biomarker discovery studies that we have already

completed in different cancers and demonstrates the power of

our proteomic technology to discover robust biomarkers in

important diseases. This general approach can also be applied to

discover biomarkers for many more conditions including infec-

tious, inherited, neurological, and metabolic diseases.
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