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Abstract: Neuroblastoma is the most common and deadly solid tumor in children, and there 
is currently no effective treatment available for neuroblastoma patients. The repressor 
element-1 silencing transcription (REST) factor has been found to play important roles in 
the regulation of neural differentiation and tumorigenesis. Recently, a REST signature 
consisting of downstream targets of REST has been reported to have clinical relevance in 
both breast cancer and glioblastoma. However it remains unclear how the REST signature 
works in neuroblastoma. Publicly available datasets were mined and bioinformatic 
approaches were used to investigate the utility of the REST signature in neuroblastoma with 
both preclinical and real patient data. The REST signature was found to be associated with drug 
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sensitivity in neuroblastoma cell lines. Further, neuroblastoma patients with enhanced  
REST activity are significantly associated with higher clinical stages. Loss of heterozygosity on 
chromosome 11q23, which occurs in a large subset of high-risk neuroblastomas, tends to be 
correlated with high REST activity, with marginal significance. In conclusion, the REST 
signature has important implications for targeted therapy, and it is a prognostic factor in 
neuroblastoma patients. 

Keywords: REST; neuron-restrictive silencer factor; neuroblastoma; tumor stage; drug 
sensitivity; chemotherapeutic target 

 

1. Introduction 

Neuroblastoma is the most common pediatric malignancy in children, accounting for approximately 
15% of all cancer-related pediatric deaths [1–3]. The mainstay of treatment approaches includes 
chemotherapy, surgical resection, and radiotherapy [1,4–7]. However, neuroblastoma is remarkably 
heterogeneous. Many neuroblastoma patients are resistant to chemotherapeutic drugs and develop 
progressive disease [8–10]. For this reason, it is crucial to study the mechanisms of drug resistance and 
to develop effective treatment regimens for patients with neuroblastoma. 

Repressor element-1 silencing transcription (REST) factor is a zinc finger transcription factor that 
modulates a number of genes in neural and non-neural cells [11–13]. It plays critical roles in neural 
differentiation [14,15], and its expression decreases quickly in neural stem cells and is maintained at low 
levels in neurons after differentiation [16]. In neural tumors, REST is expressed at high levels and acts as 
an oncogene [15,16]. Previous studies showed higher REST expression in both human medulloblastoma 
and neuroblastoma tissues than in the adjacent normal brain tissues [17–21]. The high levels of REST in 
patients with medulloblastoma are related to worse overall and event-free survival [18]. To the best of 
our current knowledge, no study has reported any relationship between REST expression and clinical 
outcome in neuroblastoma. 

Recently, a REST signature consisting of downstream targets of REST has been reported to have 
clinical relevance in both breast cancer and glioblastoma [17,22]. However, the use of a REST signature 
for neuroblastoma has not been investigated. In the present study, the utility of REST signature was 
assessed in cell lines and human patient data. This paper demonstrates that the REST signature  
applied well in both cell lines and neuroblastoma patients. The REST signature was associated with 
chemo-sensitivity for ABT.263 and Sunitinib, and chemo-resistance for 17-AAG (also named 
Tanespimycin, potent heat shock protein 90 inhibitor) and Temsirolimus. Patients exhibiting more REST 
activity were significantly associated with higher tumor stage (p = 0.028). Patients with more REST 
activity were also marginally associated with loss of heterozygosity (LOH) in 11q23 (p = 0.051), which 
is related to malignant evolution of a large subset of neuroblastomas [23–25]. 
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2. Results and Discussion 

2.1. Results 

2.1.1. Repressor Element-1 Silencing Transcription (REST) Score in Neuroblastoma 

Neuroblastoma samples showed dynamic REST activity in both cell lines and neuroblastoma 
patients. Based on the published REST signature, the expression of the targets was extracted using 
public datasets. The 24 REST gene signatures were reported previously [17]. However, not every gene’s 
measurements were included in the microarray data used in this study. Of the 24 genes, only 17 were 
available in cell line data and only 14 in patient data (Tables 1 and 2). There were two probes for gene 
SCAMP5 shown in Table 2. Usually expression values from different probes for the same gene were 
not averaged due to the difference of probe affinity. Thus, we kept both probes in the calculation of 
REST score. The Pearson correlations between REST and individual signature genes were compared. 
Most of the genes had negative correlations (Tables 1 and 2). Because REST is a gene silencing factor 
and down-regulates target genes in general, genes positively correlated with REST did not confer 
repression regulation by REST [11,16]. For this reason, they were excluded from further analysis. In 
order to derive a summary of the signature genes, a summary statistic was calculated for each sample as 
the standardized average of the target expression. The REST score was here defined as the summary 
statistic multiplied by −1 so that a higher score corresponded to a stronger REST activity for 
interpretation purposes. This REST score was used to establish REST activity by leveraging the 
expression of REST targets. As shown in Figure 1A, there was a subset of neuroblastoma cell lines with 
low REST activity and another subset of samples with high REST activity. The same pattern was also 
observed in tumor samples (Figure 1B). The target genes were found to differ slightly between cell line 
and tumor samples. Some genes were only present in one data set or the other. The regulation by REST 
varied between cell line and tumor samples. For example, CPLX2 was negatively correlated with REST 
expression (Pearson correlation −0.59) in tumor samples but it had a positive correlation to REST in cell 
lines (Pearson correlation 0.05). In general, more REST targets were negatively correlated to REST 
expression in cell lines than tumor samples because the REST signature was developed from cell  
line data [17]. 

Table 1. Correlation of repressor element-1 silencing transcription (REST) and REST 
signature genes in neuroblastoma cell lines. 

Symbol Correlation p Value 
AP3B2 −0.40135 0.030935 

BSN −0.3463 0.065728 
CHGB −0.39356 0.034663 
CPLX2 0.051692 0.790004 
HBA1 0.359446 0.055481 
HBA2 0.090065 0.642199 

KCNB1 −0.40135 0.030936 
MAPK8IP2 −0.19656 0.306799 

MMP24 0.240233 0.209381 
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Table 1. Cont. 

Symbol Correlation p Value 
PGBD5 −0.41019 0.027101 
RTN2 −0.30055 0.113145 

SCAMP5 −0.23286 0.224127 
SCGB1D2 −0.42984 0.019953 
SNAP25 −0.39209 0.03541 
STMN3 −0.21973 0.252092 

SYP −0.2474 0.195705 
VGF 0.018048 0.925965 

Table 2. Correlation of REST and REST signature genes in neuroblastoma tissue. 

Symbol Probe ID Correlation p Value 
AP3B2 38937_at 0.121623 0.22567 

BSN 33728_at −0.19752 0.047712 
CHGB 33426_at 0.001979 0.984333 
CPLX2 33084_at −0.59139 7.43 × 10−11 
KCNB1 40693_at 0.112516 0.262606 

MAPK8IP2 37588_s_at 0.227915 0.02189 
MMP24 32924_at 0.364921 0.000175 
RTN2 34408_at 0.120774 0.228953 

RUNDC3A 36823_at 0.12448 0.214878 
SCAMP5 37545_at −0.03147 0.754758 
SCAMP5 37546_r_at −0.55512 1.70 × 10−9 

SCGB1D2 32880_at −0.42044 1.20 × 10−5 
SYP 37182_at 0.103264 0.304127 

SNAP25 38484_at −0.06155 0.540931 
VGF 32969_r_at −0.10574 0.292595 

2.1.2. REST Signature and Drug Sensitivity in Neuroblastoma 

Next, the association between the REST signature and drug sensitivity was assessed. The REST score 
was calculated for each cell line and the Spearman’s rank correlation and p value were computed with 
IC50 values. To account for multiple testing, the Beta-Uniform Mixture (BUM) model was used to 
estimate the false discovery rate (FDR) [26]. When there is no significant association after correcting 
for multiple testing, the BUM fit would be dominated by the uniform component and the histogram of 
p values would be flat. Figure 2 showed the fitted BUM model where the Beta component (i.e., the 
superimposed green line) indicated that there were more significant associations than one would 
expect by chance. Table 3 showed the number of significant associations under different FDR 
(estimated from the BUM model) and corresponding p value cutoffs. Under FDR = 0.05, 9 drugs that 
had significant association with REST score. The REST score effectively stratified the cell lines into 
chemo-sensitive and chemo-resistant groups with respect to several drugs. As shown in Figure 3A,B, 
17-AAG and Temsirolimus were more effective in cell lines with higher REST activity than in those 
with lower REST activity (ρ = −0.661, p = 0.0003; ρ = −0.624, p = 0.0015). In contrast, Figure 3C,D 
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showed that cell lines with higher REST activity tended to be more resistant to ABT.163 treatment that 
inhibited genes in the BCL-2 family (ρ = 0.447, p = 0.0252), and Sunitinib targeting PDGFRA was also 
more sensitive to the cell lines with low REST scores (ρ = 0.431, p = 0.0451). Many other drugs were 
found to have distinct effects on cell lines with various levels of REST activity (Supplementary Figure 
S1A–V). The differential drug sensitivity between REST active and REST inactive cell lines suggested 
that effective therapeutics might be developed based on the REST signature genes. 

Figure 1. Repressor element-1 silencing transcription (REST) signature in neuroblastoma 
cell lines and tumor samples. (A) Gene expression of the 12 REST targets negatively 
correlated with REST expression was observed for 29 autonomic ganglia cell lines.  
The average expression value of the 12 REST targets multiplied by −1 was used as the 
REST score in cell line data. The samples (columns) were ordered based on REST score; and 
(B) In 101 neuroblastoma patient samples, 7 REST targets were negatively correlated with 
REST expression, and the REST score was computed similarly as in the cell line data. 

A
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Figure 1. Cont. 

 

Table 3. False discovery rate (FDR) table for association between REST score and IC50 in 
cell line data. 

FDR Number of Significant Associations p Value Cutoff 
0.05 9 0.00389 
0.10 14 0.01904 
0.15 24 0.04820 

B 
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Figure 2. Beta-Uniform Mixture fit for the p values associating IC50 values of 138 drugs  
and the REST score that was used to estimate FDR for controlling multiple testing. The 
superimposed blue line indicated the distribution of p values one would expect when there 
were no associations. In contrast, the superimposed green line indicated distribution of  
p values from this analysis. There were more small p values than one would expect from 
random data indicating a strong association between IC50 and REST score. 
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Figure 3. REST signature was used to stratify neuroblastoma cell lines into chemo-sensitive 
and chemo-resistant groups. (A,B) Cell lines with higher REST scores were more sensitive 
to 17-AAG and Temsirolimus treatment; (C,D) Cell lines with lower REST scores were 
more sensitive to ABT.263 and Sunitinib treatment. 

p
A

 

p
B                          

 



Int. J. Mol. Sci. 2014, 15 11227 
 

Figure 3. Cont. 
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2.1.3. REST Signature and Tumor Stage in Neuroblastoma 

Besides the predictive value in chemotherapy among the cell lines, the REST signature was also 
found to be associated with patient clinical covariates. Figure 4 showed that neuroblastoma patients in 
late stage (stage IV) had higher REST activity (ANOVA test p value = 0.0275) than those in early stages 
(Stages I and III combined). This observation was consistent with previous findings in glioblastoma, 
where increased REST activity was associated with poor survival [22]. However, the trend was opposite 
in breast cancer where poor prognosis was found to be associated with decreased REST activity [17]. 
This opposing association between REST and patient outcome might originate from the different roles 
of REST in different tumors. In neural tumors, REST is an oncogene but in carcinomas of the breast, 
lung, and colon it acts as a tumor suppressor [15,16]. 

Previous studies have demonstrated that neuroblastoma patients with MYCN (N-myelocytomatosis 
oncogene) amplification were at more advanced disease stages [27–30]. MYCN is the first amplified 
oncogene that was found to be of clinical significance due to its association with aggressive 
neuroblastoma phenotypes. MYCN has been proven to be critical to stimulation of neuroblastoma 
growth. Targeted overexpression of MYCN in transgenic mice causes spontaneous development of 
neuroblastomas [29]. It is therefore important to determine whether MYCN amplification is associated 
with REST activity. Here, a positive trend was found between MYCN amplification and REST score, 
though the p value was not significant (data not shown). The relationship between REST and the LOH 
status of 11q23, commonly found in MYCN unamplified high-risk neuroblastomas, was also  
assessed [23–25]. Results suggested that REST activity was marginally associated with the LOH in 
11q23 (p value = 0.0514) (Supplementary Figure S2). 
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Figure 4. Clinical relevance of the REST signature in neuroblastoma patients. Patients in 
late stage (stage IV) had higher REST scores (ANOVA test p value = 0.0275) than those in 
early stages. Of note, there were no Stage II patients in this cohort. 
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2.2. Discussion 

REST, also called neuron-restrictive silencer factor (NRSF), plays opposing roles in neoplasia. In 
neural cells and neural tumors, REST is an oncogene, but in carcinomas of the breast, lung, and colon it 
shows anti-oncogenic activity [11–13]. The REST gene is bound to over 2000 genes in neural and 
non-neural cells, but not all of these genes are governed by REST in every cell type [16,31]. REST 
signature genes were detected in three different cell lines transfected with anti-REST shRNA, including 
human embryonic kidney-293, mammary epithelial MCF10, and T-47D cell line. The 24 common 
downstream target genes were up-regulated at least twofold upon REST knockdown in these three cell 
lines [17]. In the present study, 17 of the 24 REST signature genes were available in neuroblastoma  
cell line data and 15 of them were in data from 101 patients with neuroblastoma. Of these, 12 REST 
signature genes in cell lines and 7 REST signature genes in patients were negatively correlated  
with REST gene expression. Because the original REST signature genes were not derived from 
neuroblastomas, not all of them showed any negative correlation with the REST expression in the 
present study. The lack of concordance between Tables 1 and 2 might have been caused by the 
difference between cell line data and patient data. The cell lines are pure and uncontaminated by 
non-tumor tissue, and patient data from formalin-fixed and paraffin-embedded (FFPE) samples are 
heterogeneous, making it challenging to quantitate patient tissue using gene expression arrays. This 
might also be the reason for the high percentage of genes having negative correlation with REST (12 out 
17 genes in cell lines and 7 out 15 genes in patient data). The different study population and different 
microarray platforms might also alter the correlation between REST and the 24 REST signature genes 
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in neuroblastoma. For this reason, thorough studies are planned for further investigation of REST target 
genes in neuroblastoma. 

Previous studies have suggested that histone deacetylase inhibitors may have therapeutic properties 
in patients with REST-positive medulloblastoma [18]. In contrast, glioma patients expressing REST 
signature genes at near-normal and mid-range levels are sensitive to chemotherapy, and REST-enhanced 
glioma patients are refractory to multiple chemotherapeutic courses [22]. This REST-dependent 
chemo-sensitivity may be caused by the interplay between REST target genes and chemotherapeutic 
drugs. Here we discovered that the REST signature could effectively stratify neuroblastoma cell lines 
into chemo-sensitive and chemo-resistant groups. For example, 17-AAG and Temsirolimus were more 
effective in neuroblastoma cell lines with high REST scores. However, ABT.263 and Sunitinib were 
more effective in neuroblastoma cell lines with low REST scores. It might be worthwhile to conduct 
clinic trials for these drug candidates. 

The REST signature might have potential prognostic value for clinical outcome. A recent study 
revealed that medulloblastoma patients with high-REST expression had worse overall and disease-free 
survival than patients with REST-negative or REST-minimal tumors based on immuno-histochemical 
analysis [18]. Additionally, studies using siRNA knockdown and bioinformatic analysis demonstrated 
that the 24 REST signature genes were related to clinical outcomes in both breast cancer and 
glioblastoma [17,22]. In particular, a group of breast cancer patients overexpressing REST signature 
genes had worse prognosis and shorter disease-free survival than those with low REST signature 
expression. Patients in the REST active group were more than twice as likely to undergo recurrence 
within the first 3 years of diagnosis than those in the REST negative group [17]. In more than 30% of 
glioblastomas, tumor growth and invasive properties were associated with higher levels of REST 
expression, and miR-124a, a REST effector, was found to be associated with this REST action [32–34]. 
Previous studies also suggest that patients with REST enhanced glioblastoma had shorter disease free 
survival than non-REST enhanced glioblastoma patients [22]. In neuroblastoma patients, high REST 
scores were here found to be significantly associated with later tumor stage. In previous studies, 
although MYCN amplification in neuroblastoma led to poorer clinical outcome, only 40% of high-risk 
neuroblastomas were MYCN-amplified [27,28]. LOH on 11q23 has recently emerged as a critical 
genomic event in the evolution of high-risk neuroblastomas independent of MYCN amplification [23]. 
Similar results were found here: LOH on 11q23 was associated with high REST scores. Recent studies 
also reported that REST regulates CD59 expression in neuroblastoma, and REST peptides can  
reduce CD59 expression and so sensitize neuroblastoma to complement-mediated killing triggered by 
anti-GD2 used in neuroblastoma immunotherapy [35]. REST is also proposed to be an important 
molecular target in the response to retinoic acid treatment for neuroblastoma [19]. In conclusion, the 
current discovery highlighted the clinical importance of REST in brain tumors. The association between 
REST signature and drug response as well as clinical covariates including survival and tumor stage 
suggest that REST might be a good therapeutic target for individualized treatment in brain tumors. 
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3. Experimental Section 

3.1. Data Collection 

Cell line gene expression data were downloaded from the Genomics of Drug Sensitivity in Cancer 
website (http://www.cancerrxgene.org/). The expression was assayed using the HT HG U133A 
platform. Cell line information (i.e., issue type) was downloaded from the COSMIC database 
(ftp://ftp.sanger.ac.uk/pub/CGP/cell_lines_project/data_export/). There were 29 autonomic ganglia 
samples derived from neuroblastoma patients. Drug sensitivity data for 138 drugs was also downloaded 
from the Genomics of Drug Sensitivity in Cancer website consisting of IC50 estimates. The IC50 value 
was estimated based on a dose-response model that gave the drug concentration needed to kill 50% of 
tumor cells. For the neuroblastoma patient data, 101 tumor samples were downloaded from the Gene 
Expression Omnibus (GEO) under accession number GSE3960 [8]. The risk groups of the patient data 
included low-risk, intermediate-risk, high-risk and high-risk with MYCN amplification, and each group 
contained at least 20 cases. A detailed description of patient characteristics was reported by Wang et al. [8]. 
Clinical variables available through the GEO website included INSS tumor stage (I, III and IV),  
MYCN amplification status and LOH for specific regions which were assessed in this study. 

3.2. Data Analysis 

Pearson correlations between REST and individual signature gene were computed. To determine 
whether REST score was associated with chemo-sensitivity, the Spearman’s rank correlation and  
p value between the IC50 values and REST score were computed. Here the Spearman’s rank correlation 
(ρ) was used due to its robustness to the nonlinear feature of IC50 values. To control for multiple testing, 
the Beta-Uniform Mixture (BUM) model was used and the FDR was estimated [26]. To assess the 
relevance of REST score to clinical variables, a linear model was applied for continuous covariates and 
the ANOVA test for categorical covariates. All statistical analysis was performed using R software [36]. 

4. Conclusions 

The present study showed that a REST signature plays critical roles in neuroblastoma. It might 
predict drug sensitivity and could be a suitable therapeutic target for individualized treatment. Further, 
neuroblastoma patients with enhanced REST activity are significantly associated with higher clinical 
stage. LOH on chromosome 11q23, which occurs in a large subset of high-risk neuroblastomas, was 
found to correlate with high REST activity, with marginal significance. In this way, the REST signature 
has important implications for chemotherapeutic drug selection, and it is also a prognostic factor in 
neuroblastoma patients. 
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