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INTRODUCTION

The evolution of the computed tomography (CT) 
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Objective: To assess the feasibility of applying a deep learning-based denoising technique to coronary CT angiography (CCTA) 
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Materials and Methods: We retrospectively enrolled 82 consecutive patients (male:female = 60:22; mean age, 67.0 ± 10.8 
years) who had undergone both CCTA and invasive coronary artery angiography from March 2017 to June 2018. All included 
patients underwent CCTA with iterative reconstruction (ADMIRE level 3, Siemens Healthineers). We developed a deep learning 
based denoising technique (ClariCT.AI, ClariPI), which was based on a modified U-net type convolutional neural net model 
designed to predict the possible occurrence of low-dose noise in the originals. Denoised images were obtained by subtracting 
the predicted noise from the originals. Image noise, CT attenuation, signal-to-noise ratio (SNR), and contrast-to-noise ratio 
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0.62 vs. 3.65 ± 0.60, p < 0.001) improved significantly in the denoised images. The average ERDs of the denoised images were 
significantly smaller than those of originals (0.98 ± 0.08 vs. 0.09 ± 0.08, p < 0.001). With regard to diagnostic accuracy, no 
significant differences were observed among paired comparisons.
Conclusion: Application of the deep learning technique along with iterative reconstruction can enhance the noise reduction 
performance with a significant improvement in objective and subjective image qualities of CCTA images.
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technology has led to an increase in the accuracy of 
coronary CT angiography (CCTA). Thus, CCTA has been used 
widely as a non-invasive alternative to invasive coronary 
angiography to exclude coronary artery disease (1, 2). 
The increased use of CCTA has led to concerns regarding 
an increase in the use of ionizing radiation and potential 
carcinogenesis over a person’s lifetime. Therefore, the need 
for achieving a low radiation dose has increased.

In the past few decades, advances in CT technology, 
including new image acquisition and reconstruction 
algorithms such as iterative reconstruction, low tube 
voltage, and prospective electrocardiogram (ECG)-
triggered axial high-pitch scans, have been made; these 
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For patients with a heart rate of less than 70 beats per 
minute (bpm), we used a prospectively ECG-triggered data 
acquisition method with very high pitch values in one 
heartbeat (FLASH protocol). The acquisition window was 
applied at a 70% R-R interval. For patients with a heart rate 
of over 70 bpm, we applied either prospective ECG-triggered 
sequential mode with 40% R-R interval or retrospective 
ECG-gated spiral mode with ECG pulsing.

Patients with a heart rate of over 65 bpm were 
administered 50–100 mg of oral metoprolol (Betaloc, 
AstraZeneca) 45–60 minutes prior to the CT examination, 
except in the case of those with a contraindication for 
beta-blockers. Sublingual nitroglycerin (0.4 mg; Nitroquick, 
Ethex) was administered to 49 patients; however, this 
step was excluded for subjects who had a contraindication 
for nitroglycerin after the completion of calcium scoring 
scanning. In patients who underwent CT with the FLASH 
protocol, 70 mL of a nonionic contrast medium (iomeprol; 
Iomeron 400, Bracco Diagnostics) was injected into the 
antecubital vein at a rate of 4 mL/s, followed by 30 mL of 
a contrast-saline mixture in 20:80 ratio. The patients who 
underwent CT with a sequential protocol were injected 80 
mL of a contrast medium and 30 mL of a contrast-saline 
mixture in 20:80 ratio by using a dual power injector 
(Stellant, MEDRAD).

The acquisition scan range was from the mid ascending 
aorta to below the cardiac apex in a cranio-caudal direction. 
Initiation of scanning was based on the bolus tracking 
method (CARE Bolus, Siemens Healthineers). The region of 
interest (ROI) was placed within the ascending aorta and 
the triggering threshold was set to 100 HU. Attenuation 
based automatic tube voltage selection (CARE KV, Siemens 
Healthineers), with the available tube setting from 70–
150 kVp in 10 kV increments (reference, 100 kVp), and 
automated tube current modulation (CARE Dose4D, Siemens 
Healthineers), with the reference tube current setting of 
300 mAs, were applied. The additional scanning parameters 
used were as follows: gantry rotation time, 250 ms; detector 
collimation, 192 x 0.6 mm; and matrix size, 512 x 512 
pixels.

All the CCTA images were reconstructed with a slice 
thickness of 0.75 mm and an increment of 0.5 mm. 
Image data were rendered using a medium smooth (Bv40) 
reconstruction kernel with an iterative reconstruction 
technique (ADMIRE level 3, Siemens Healthineers).

advances resulted in a reduction in the radiation dose by 
approximately 78% (from 885 to 195 mGy*cm) from 2007 
to 2017 (3-7). However, further reductions in radiation dose 
results in the degradation of image quality, mainly because 
of an increase in image noise. Increased image noise can 
compromise the diagnostic information of CT images. 
Therefore, much effort has been made to design better image 
processing techniques that can further reduce image noise.

Recently, the application of deep learning techniques to 
medical imaging has rapidly increased and is considered a 
promising solution to this problem. Especially with regard 
to CT denoising application, deep learning techniques have 
shown impressive performance in improving the imaging 
quality by image noise suppression, structural preservation, 
and lesion detection over the conventional filtered back 
projection (FBP) (8, 9).

In this study, we hypothesized that the application of 
deep learning technique could allow for an additional 
reduction in image noise on the CCTA images reconstructed 
with an iterative reconstruction technique. We aimed 
to assess the feasibility of applying a deep learning-
based denoising technique to CCTA along with iterative 
reconstruction for additional noise reduction.

MATERIALS AND METHODS

This retrospective study was approved by the Institutional 
Review Board (IRB), and the requirement for informed 
consent was waived (IRB Number H1808-113-968).

Study Population
This study retrospectively evaluated the medical records 

of 82 consecutive adult patients (male:female, 60:22; mean 
age, 67.0 ± 10.8 years; age range, 25.0–85.0 years) who 
had undergone both CCTA and invasive coronary artery 
angiography with a time interval of less than 2 months 
(mean time interval, 11 ± 10 days; range, 0–36 days) from 
March 2017 to June 2018 at a single tertiary institution. 
Those patients who previously underwent coronary artery 
bypass surgery or percutaneous coronary artery intervention 
were excluded. Patients were enrolled regardless of CCTA 
image quality.

CT Scanning Protocol
CCTA images of all patients were acquired using a third 

generation 192-section dual-source CT scanner (SOMATOM 
Force, Siemens Healthineers).
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Deep Learning-Based Denoising Technique
We developed a deep learning-based denoising technique 

(ClariCT.AI, ClariPI), which was based on a modified U-net 
type convolutional neural net (CNN) model (Fig. 1) (10). 
The conventional U-net architecture was modified to 
fit to the denoising purpose by reducing the number of 
convolution filters and applying batch-normalization (BN), 
which prevent overfitting while improving training stability 
(11, 12).

The model consisted of a contracting path and an 
expansive path, which were connected by a concatenated 
skip-connection. The contracting path applied a 
convolution layer with a 4 x 4 kernel size followed by a BN 
layer, a rectified linear unit activation (13), and 2 x 2 max-
pooling layers. The expansive path was almost similar to 
the contracting path with the exception of the max-pooling 
layers that were replaced by 2 x 2 up-convolution layers 
to restore the spatial resolution. The weights and biases 
of the deep learning model were optimized using an Adam 
optimizer (14) in a TensorFlow framework (15).

For the training of the model, 55418 standard-dose 
prospective ECG-gated thoracic CT angiography (CTA) images 
of 100 patients were used. The scan parameters were as 
follows: tube voltage of 70–120 kVp, reference tube current 
setting of 300 mA, mean volume CT dose index (CTDIvol) of 
12.1 ± 6.7 mGy, slice thickness of 0.75 mm with iterative 
image reconstruction using ADMIRE level 3 and Bv40 kernel. 
A digital imaging and communication in medicine (DICOM)-

based low-dose simulation tool was applied to generate a 
paired dataset of realistic low-dose CTA images (16) and 
synthetic noise component images. Varying degrees of low-
dose simulations ranging from 50%-dose to 5%-dose levels 
of the original dose were applied to the CTA image set.

To match the reconstruction field of view (FOV) of the 
thorax CTA images to that of the CCTA images, the heart 
regions from the paired dataset were cropped and resized 
to a 512 x 512 matrix. Training of the CCTA denoising 
model was performed iteratively to minimize the difference 
between the ground-truth synthetic noise component 
images and the predicted noise images from the input noisy 
low-dose images.

In the final step of the denoising process, the trained 
deep learning model produced a predicted noise component 
image of the given noisy CCTA image, and then the noise 
component was scaled and subtracted from the noisy input 
CCTA image.

CT Image Analysis

Objective Image Assessment
To compare the objective image quality between the 

denoised and original CT images, four parameters, namely, 
image noise, CT attenuation, signal-to-noise ratio (SNR), 
and contrast-to-noise ratio (CNR) were analyzed for 
each dataset by a single reader, following the previously 
described methods (17, 18).

Data generation CNN training Denoising processing

Low-dose cardiac CTA image

Noise image extracted
by CNN model

Denoised cardiac CTA image
(low-dose CCTA image - predicted noise image)

CNN architecture design

CNN training

Input: simulated low-dose CTA image
Output: noise image

Standard-dose thorax CTA image

Low-dose simulation tool

Simulated low-dose CTA image
& noise image generation

Cardiac region cropping
& image resizing

Fig. 1. Flow diagram of deep learning-based denoising algorithm. Figure shows overall procedure of deep learning-based cardiac CTA 
denoising algorithm. Low-dose simulation tool was applied to standard-dose thorax CTA images to generate set of simulated low-dose images, 
from which cardiac region was selected and rescaled to 512 x 512 matrix. Simulated low-dose CTA image set was fed into CNN model to train 
it such that model could extract noise component images from noisy input CTA images. Trained model extracted noise component image from 
real low-dose CCTA image, which was then subtracted from input image to produce denoised CCTA image. CCTA = coronary CT angiography, CNN = 
convolutional neural net, CTA = CT angiography
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data on indications for imaging, patient characteristics, and 
imaging reports. Each radiologist was allowed to change the 
window level and width as desired. Overall subjective image 
quality was evaluated in terms of the vessel wall definition 
with quantum noise on a 5-point scale as follows: 0 (non-
diagnostic) = significant impairment in image quality 
because of excessive image noise; 1 (poor) = evident 
limitations in the vessel wall definition owing to poor 
contrast enhancement of the vessel lumen, blurring of the 
vessel wall, or severe image noise—acceptable only under 
limited conditions for the evaluation of a few proximal 
coronary arteries; 2 (good) = minimal limitations in the 
vessel wall definition owing to low contrast enhancement of 
vessel lumen, blurring of the vessel wall, or moderate image 
noise; 3 (very good) = well-preserved vessel wall definition 
with a good attenuation of the vessel lumen and minimal 
image noise; 4 (excellent) = clear vessel wall definition 
with excellent attenuation of the vessel lumen from the 
proximal to distal end and barely perceived image noise—
fully acceptable for diagnostic interpretation (21, 22).

Coronary Artery Analysis Using CCTA
 Diagnostic performance of the CCTA was determined by 

the same readers, who reviewed the coronary arteries while 
being blinded to details of CT dataset, independently. Using 
a 15-segment classification system of the coronary arteries 
(23), all evaluable coronary artery segments, including 
their side branches with a minimum diameter of at least 2.0 
mm (total 1039 segments), were evaluated to determine 
the presence or absence of significant stenosis (≥ 50% 
reduction in lumen diameter). In case of inter-observer 
disagreement, each segment was re-evaluated consensually. 
Considering invasive coronary angiography as the reference 
standard, axial images were mainly used for comparing 
the diagnostic performance of the original and denoised 
CCTA for the evaluation of the coronary artery stenosis. 
Multiplanar reconstructions were obtained and evaluated to 
ascertain indeterminate lesions.

 
Subgroup Analysis according to the Acquisition Methods, 
Calcified Burden, and Coronary Vessel Size

To exclude the influence of the acquisition methods 
(FLASH, prospective or retrospective ECG gaiting) and 
the calcification burden of the coronary arteries on noise 
reduction, we performed subgroup analysis based on the 
acquisition method and the total Agaston score (0; 1–10; 
11–100; 101–400; > 400) of the coronary arteries to 

CT attenuation of the proximal and distal segments of 
the major coronary arteries (left main [LM], left anterior 
descending [LAD], circumflex [LCx], and right coronary 
arteries [RCAs]) was derived from the largest possible 
scaled ROIs within the first 5 mm of the segment (minimum 
size, more than 2 mm2) while carefully avoiding the 
inclusion of the vessel wall and calcification. The image 
noise was defined as the standard deviation (SD) of the CT 
attenuation measured at the aortic root, cranial to the left 
coronary ostium (size, 300 mm2). For the vessel contrast, 
the CT attenuation of the anterior chest wall adipose tissue 
was measured (size, 100 mm2) (19). The ROIs were precisely 
placed at the same location for corresponding original and 
denoised images.

Consequently, the SNR and CNR used were calculated as 
follows:

SNR = (CT attenuationmajor coronary arteries / noise)
CNR = ([CT attenuationmajor coronary arteries - CT attenuationadipose 

tissue of chest wall] / noise)
To evaluate the effect of a deep learning-based denoising 

technique on image sharpness in a quantitative manner, 
we additionally analyzed the edge rise distance (ERD) as 
an indicator of this parameter in original and denoised 
images. The ERD is defined as the distance required for the 
edge response to rise from 10% to 90% of the final pixel 
intensity. A smaller ERD indicates a higher sharpness of the 
images. To measure the ERD, we used proximal LAD as a 
main ROI. We drew short line segments perpendicular to the 
border of the artery. The edge-line profiles were extracted 
along the short-line segments, averaged, and plotted. We 
measured the maximum value of the plotted average edge-
line profile. Finally, the ERD was calculated as the distance 
of pixel locations between the shoulder pixel, which 
corresponds to 90% of the maximum pixel intensity, and the 
tail pixel, which corresponds to 10% of the maximum pixel 
intensity (20). The ERD measurements were carried out by 
a single observer using a software programmed with MATrix 
LABoratory (MathWorks).

Subjective Image Assessment
Two independent and experienced readers (with 5 and 

14 years of clinical experience in cardiac CT interpretation, 
respectively) who were blinded to the two groups of images 
(original vs. denoised images) independently reviewed 
the 164 data sets (82 original images and 82 denoised 
images); the obtained results were averaged for analysis. 
In addition, the investigators were not allowed to access 
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determine the diagnostic accuracy and objective (image 
noise, SNR and CNR) and subjective image qualities. 
Additionally, to investigate the diagnostic accuracy and 
image quality according to the coronary vessel size (proximal 
[pLAD, pRCA, pLCx, LM], middle [mLAD, mRCA], distal 
[dLAD, dRCA, dLCx], branch arteries [diagonal, posterior 
descending artery, ramus intermedius, obtuse marginal and 
posterolateral branch]), we performed subgroup analysis 
accordingly to determine the diagnostic accuracy. There 
were only two patients in the groups of Agaston score 
“0” and “1–10,” thus, statistical analysis could not be 
performed in these two groups. 

Invasive Coronary Angiography
Experienced cardiologists performed invasive coronary 

angiograms according to the standard protocol of our 
hospital. As for the reference, the severity of the stenosis 
was documented after an interpretation of at least two 
projections for each coronary artery using quantitative 
coronary analysis (QCA, version 3.3, Philips Healthcare).

Statistical Analysis
Paired, two-tailed Student’s t test was used to assess 

whether there were significant differences in objective 
image quality between the original and denoised images. 
The Wilcoxon signed rank test was used to identify if a 
significant difference existed in the subjective image quality 
between the two groups. Cohen’s kappa and intraclass 
correlation (ICC) statistics were used to assess the inter-
observer agreement in subjective image analysis (0.81–1.00, 
excellent; 0.61–0.81, good; 0.41–0.60, moderate; 0.21–
0.40, fair; and < 0.20, poor agreement). Average ERD was 
compared using paired, two-tailed Student’s t test.

The diagnostic performance of CCTA was calculated based 
on accuracy, sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), true positive, 
true negative, false positive, and false negative. We used 
the McNemar’s test for identifying significant differences 
in the sensitivity and specificity between the two groups. 
Weighted generalized score statistics were used for the 
comparison of the PPV and NPV between the two groups.

A p value of < 0.05 was considered statistically 
significant. The two-tailed Student’s t test, the Wilcoxon 
signed rank test, McNemar’s test, and determination of 
Cohen’s kappa were performed using SPSS software (SPSS 
for Windows, version 22.0, IBM Corp.). ICC and weighted 
generalized score statistics were determined using R 

statistical software (R version 3.5.1, http://www.R-project.
org/.), “DTComPair” R package (version 1.0.3, published 
by Christian Stock), and “ICC” R package (version 2.3.0, 
published by Matthew Wolak) (24).

RESULTS

Patient demographics, CCTA, and radiation dose 
parameters are presented in Table 1. Median calcium score 
(Agaston score) was 263.9 (interquartile range, 57.9–
1149.8). The CARE KV lead utility was of low tube potential, 
between 70 kVp and 90 kVp. The mean values of the CTDIvol, 
dose length product, and effective dose were 8.79 ± 7.62 
mGy, 144.54 ± 129.47 mGy*cm, and 2.03 ± 1.81 mSv, 
respectively.

Objective and Subjective Image Quality
Image noise significantly decreased from a mean of 

67.22 ± 25.74 in the original images to 52.64 ± 27.40 in 
the denoised images (p < 0.001). Both segment-based SNR 
and CNR of denoised images were significantly higher than 
those of the original images. Proximal and distal SNR and 
CNR of the denoised images were also significantly higher 
(Table 2, Fig. 2).

The mean scores of the total subjective image quality 
were significantly better in the denoised images than in 
the original images (Table 2, Figs. 2-4). There were 34 
cases (34/82, 41.5%) where the image quality scores 
improved by more than one point. Forty-four cases (44/82, 

Table 1. Patient Demographics, CCTA, and Radiation Dose 
Parameters

Demographics and Radiation Dose Data*
Age (years) 67.0 ± 10.8
Male/female 60/22
BMI (kg/m2) 24.7 ± 3.4
Heart rate (bpm) 68.2 ± 14.8
Tube potential (70/80/90 kVp) 35/35/12
FLASH/prospective sequential mode/ 
  retrospective spiral mode

28/20/34

Calcium score (Agaston score)† 263.9 (57.9–1149.8)
CTDIvol (mGy) 8.79 ± 7.62
DLP (mGy*cm) 144.5 ± 129.5
Effective dose (mSv)‡ 2.03 ± 1.81

*Data are presented as mean ± SDs, †Median and quartiles, 
‡Effective dose was calculated by multiplying DLP with conversion 
factor of 0.014 mSv/mGy*cm (44). BMI = body mass index, CCTA = 
coronary CT angiography, CTDIvol = volume CT dose index, DLP = 
dose length product, SD = standard deviation
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were sharper than the originals (original vs denoised images: 
0.98 ± 0.08 vs. 0.90 ± 0.08, p < 0.001) (Figs. 3, 4).

Diagnostic Performance of the CCTA
Table 3 exhibits the diagnostic performance of the two 

groups. No significant difference was observed among 
paired comparisons (Figs. 3, 4). There was no significant 
difference in the diagnostic performance between the 
original and denoised images in the subgroup analysis 
(Supplementary Tables 7-16).

DISCUSSION

We have described a novel deep learning-based denoising 
technique, which was based on a modified U-net type CNN 
model designed to predict the low-dose noise occurring in 

53.7%) showed an improvement in image quality by one 
point, and only 4 cases (4/82, 4.9%) showed no image 
quality improvement. The inter-observer agreement for the 
subjective image quality in 164 data sets showed good 
agreement (Cohen’s Kappa, 0.619; ICC, 0.751).

In the subgroup analysis based on the acquisition method 
and calcification burden, image noise was significantly 
reduced in all groups. Indeed, SNR, CNR, and subjective 
image quality were significantly higher in the denoised 
images than in the original images in all comparisons. 
However, the CT attenuation of the major coronary vessels 
showed inconsistent results between each comparison 
(Supplementary Tables 1-6). 

In terms of the results of objective sharpness, the average 
ERDs of denoised images were significantly smaller than 
those of the originals, which means that the denoised images 

Table 2. Result of Segment-Based SNR and CNR Measurement and Subjective Image Quality in Original and Denoised Images

Image Quality Locations
Original Denoised ODD

P*
Mean ± SD Mean ± SD Mean ± SEM

Objective quality Aortic root noise 67.22 ± 25.74 52.64 ± 27.40 14.58 ± 0.20 < 0.001
Lumen density (HU) Left main 697 ± 155 694 ± 155 3 ± 1 < 0.001

Proximal LAD 623 ± 157 625 ± 160 -2 ± 1 0.056
Proximal LCx 624 ± 148 630 ± 151 -7 ± 1 < 0.001
Proximal RCA 646 ± 162 655 ± 167 -9 ± 1 < 0.001
Distal LAD 449 ± 133 456 ± 138 -7 ± 1 < 0.001
Distal LCx 480 ± 143 479 ± 152 -0 ± 2 0.874
Distal RCA 601 ± 190 612 ± 195 -10 ± 1 < 0.001

SNR Left main 21.91 ± 6.38 30.35 ± 10.46 -8.55 ± 0.51 < 0.001
Proximal LAD 19.66 ± 6.53 27.53 ± 10.71 -7.95 ± 0.52 < 0.001
Proximal LCx 14.21 ± 5.35 20.12 ± 8.53 -5.96 ± 0.40 < 0.001
Proximal RCA 20.29 ± 6.44 28.63 ± 10.54 -8.43 ± 0.52 < 0.001
Distal LAD 19.62 ± 6.05 27.68 ± 10.06 -8.24 ± 0.50 < 0.001
Distal LCx 15.20 ± 5.81 21.29 ± 9.30 -6.14 ± 0.43 < 0.001
Distal RCA 18.69 ± 6.70 26.49 ± 10.82 -7.88 ± 0.52 < 0.001
Proximal segment 20.38 ± 6.39 28.56 ± 10.46 -8.18 ± 0.26 < 0.001
Distal segment 18.60 ± 6.70 22.63 ± 9.95 -6.59 ± 0.26 < 0.001

CNR Left main 23.24 ± 6.52 31.93 ± 10.72 -8.79 ± 0.53 < 0.001
Proximal LAD 21.28 ± 6.67 29.63 ± 10.96 -8.42 ± 0.54 < 0.001
Proximal LCx 17.04 ± 5.76 23.98 ± 9.22 -7.01 ± 0.45 < 0.001
Proximal RCA 22.03 ± 6.57 30.95 ± 10.87 -9.01 ± 0.55 < 0.001
Distal LAD 21.16 ± 6.11 29.69 ± 10.18 -8.71 ± 0.53 < 0.001
Distal LCx 17.47 ± 6.22 24.20 ± 10.03 -6.81 ± 0.47 < 0.001
Distal RCA 21.31 ± 7.27 30.47 ± 11.93 -9.25 ± 0.59 < 0.001
Proximal segment 21.93 ± 6.49 30.56 ± 10.68 -8.62 ± 0.27 < 0.001
Distal segment 18.61 ± 6.70 26.22 ± 10.84 -7.61 ± 0.30 < 0.001

Subjective quality 2.45 ± 0.62 3.65 ± 0.60 -1.10 ± 0.05 < 0.001

Data are presented as mean ± SDs. *p < 0.001 indicates significant finding. CNR = contrast-to-noise ratio, HU = Hounsfield units, LAD = 
left anterior descending, LCx = left circumflex, ODD = original-denoised difference, RCA = right coronary artery, SEM = standard error of 
mean, SNR = signal-to-noise ratio
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the originals. Our deep learning-based denoising technique 
used along with iterative reconstruction demonstrated a 
significant improvement in CCTA image quality, reduction 
in image noise by more than 20%, and increase in 
objective and subjective image qualities by approximately 
40% without over-smoothing. Even after adjusting the 
acquisition method and calcification burden of coronary 
arteries, the denoised images still showed a significant 
image quality improvement over the originals.

This new deep learning-based approach has already been 
shown to reduce image noise even in ultra-low dose CCTA 
datasets, which were obtained using a tube current of 
4% of the maximum ECG pulsing window (MinDose) in an 

experimental setting (10). In our study, we evaluated the 
image quality and diagnostic accuracy of CCTA performed 
with a low-dose CT using iterative reconstruction along with 
this deep learning-based denoising technique. Although 
there was no significant improvement in the diagnostic 
accuracy of the coronary artery stenosis, the proposed 
technique has achieved significant noise reduction with 
quantitative and qualitative improvement in image quality 
and good intra-observer agreement. Our paper verifies that 
the deep learning-based denoising technique could lead to 
an additional enhancement of image quality in a routine 
clinical setting of CCTA.

Unlike other studies investigating the performance of 

Fig. 2. Boxplots of objective measurements of both original and denoised images, according to four different protocols.
A. CT attenuation (lumen density, HU) of major coronary vessels (left main, LAD, LCx, RCA). B. Image noise of aortic root. C. Segment-based SNR. 
D. Segment-based CNR. Small circles indicate outliers. CNR = contrast-to-noise ratio, HU = Hounsfield units, LAD = left anterior descending, LCx = 
left circumflex, RCA = right coronary artery, SNR = signal-to-noise ratio
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Original image

Original image

Denoised image

Denoised image

Subtracted noise image

Subtracted noise image

A

B

C D
Fig. 3. CT images of 72-year-old male patient. 
(A, B) Original axial CT scan, denoised CT images, and subtracted noise images, (C) example of analysis of ERD, and (D) graph showing results 
of ERD of original and denoised images. A, B. Denoised images are less noisy images that maintain sharp contour for visual evaluation of vessel 
structures; original images show moderate image noise. Noncalcified plaque (arrows) with high grade coronary artery stenosis of proximal LAD 
artery is well depicted on both images. C. Multiple short line segments were drawn perpendicular to border of artery with color overlay to 
calculate ERD. This example is shown on denoised image. D. Graph showing comparison of average CT number profiles along line segments of 
original and denoised images. Average ERD values are 0.9589 and 0.9141 for original and denoised images, respectively. ERD of denoised image is 
smaller than that of original image, indicating that denoised image is sharper than original image in objective criteria. ERD = edge rise distance
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deep learning-based denoise algorithms by applying FBP (8, 
9, 25-28), the strength of our study is the application of 
iterative reconstruction-based low-dose CT rather than FBP. 
We proved that an additional image quality improvement 
could be achieved by applying the deep learning-based 
denoising technique to the low-dose CT obtained with 
iterative reconstruction.

Iterative reconstruction, one of the most widely used 
noise reduction techniques, has achieved a higher image 
quality than the FBP by modeling of the image noise with 
sophisticated mathematical techniques (29-33). However, 
iterative reconstruction captures the image features 
from a data-driven formula; it cannot fully achieve the 
image properties in a personal manner. The strength of a 

Table 3. Segment-Based Diagnostic Accuracy of CCTA according 
to Original and Denoised Images*

Diagnostic 
Accuracy

Original Denoised P

Accuracy 95.1 (988/1039) 95.2 (989/1039)
Sensitivity 84.3 (145/172) 86.6 (149/172) 0.289
Specificity 97.2 (843/867) 96.9 (840/867) 0.375
PPV 85.8 (145/169) 84.7 (149/176) 0.310
NPV 96.9 (843/870) 97.3 (840/863) 0.170
True positive 145 149
True negative 843 840
False positive 24 27
False negative 27 23

*Data are presented as percentage (%, number/total number) or 
number. NPV = negative predictive value, PPV = positive predictive 
value

Original image Denoised image Subtracted noise image

A

B C
Fig. 4. CT images of 50-year-old male patient. 
(A) Original axial CT scan, denoised CT image, and subtracted noise image, (B) example of analysis of ERD, and (C) graph showing ERDs of 
original and denoised images. A. Denoised image provides sharp contours of vessels because of higher attenuation of vessel lumens and barely 
perceived image noise. However, stenosis of proximal LAD artery (arrows) is rated to be significant both in original and denoised images.  
B. Multiple short line segments are drawn perpendicular to border of artery with color overlay to calculate ERD. This example is shown on 
denoised image. C. Graph showing comparison of average CT number profiles along line segments of original and denoised images. Average ERD 
values were 1.0219 and 0.9111 for original and denoised images, respectively. ERD of denoised image is smaller than that of original image, 
indicating that denoised image is sharper than original image in objective criteria.
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process took less than 1 minute for a data set of 200 
images.

In this study, ECG-gated thoracic CTA images were 
used instead of CCTA images to train deep-learning 
based denoising software. Our low-dose simulation model 
consisted of several key steps including the creation of 
synthetic sinogram, addition of Poisson noise depending 
on the attenuation of each ray path, application of FBP 
with the reconstruction kernel function to the noise 
component sinogram, creation of noise component CT 
image by intensity scaling after FBP, and addition of the 
noise component CT image to the input CT image. Because 
the CCTA images show truncated reconstruction FOVs, the 
use of a CCTA image as an input leads to the generation of 
an incorrect synthetic sinogram, which subsequently results 
in the generation of an inappropriate noise component, 
which is unable to reflect the correct attenuation of patient 
body. Therefore, we used CTA images instead of using CCTA 
images.

Our paper has several limitations. First, the number of 
subjects in the study population was relatively small, and 
data were retrospectively collected in a single institution. 
Second, the patients included in this study belonged to 
an intermediate or high pre-test probability population. 
Therefore, the diagnostic accuracy of stenosis, which can 
be strongly affected by pre-test probability, may have 
resulted in an overestimation. Third, the significance of the 
coronary artery stenosis was visually dichotomized without 
quantitative analysis according to the presence or absence 
of significant stenosis. Fourth, the CT quantification was 
performed with only one CT scanner type and limited 
CT protocols. Further external validation provided by its 
application to other CT scanners and protocols will be 
required before the wider applicability of the proposed 
denoising method can be known. Fifth, the mean body mass 
index (BMI) of patients examined in this study was 24.65 ± 
3.37 kg/m2, which is smaller than those of average American 
and European subjects. Further studies are required to 
determine whether their results also apply to heavier 
patients. Sixth, despite the occurrence of improvements 
in objective and subjective image qualities, there were 
no significant differences in the diagnostic performance 
regarding stenosis detection between original and denoised 
images. The original images of our study were acquired 
on a third generation 192-section dual source CT scanner, 
which had already been proved to show a good CCTA-related 
diagnostic accuracy. A limited number of study subjects (82 

deep-learning based denoising technique over iterative 
reconstruction is personalization because it learns the 
image features in a completely data-driven way, and it 
can be easily customized for specific patients. Therefore, 
adding the denoising technique to iterative reconstruction 
can potentially improve the image quality further by 
better utilizing the learned knowledge of a variety of noise 
patterns caused by the complex interaction between a 
photon and patient body. In addition, the deep learning-
based denoising technique used in our study has vendor-
independency; therefore, it can be used by multiple vendors 
and will be suitable for older CT machines that do not have 
the modern denoising CT technology.

Our approach of training the deep learning model 
required only routinely acquired prospective ECG-gated 
thoracic CTA images and not true low-dose images. Instead, 
synthetic low-dose noise images were generated by a 
DICOM-based low-dose simulation tool. Consequently, our 
deep learning-based denoising technique has the benefit of 
learning identically matched low- and routine-dose images. 
In addition, because the proposed method generated a 
denoised image by subtracting the predicted noise from the 
original image, the overall image noise decreased without 
suffering from over-smoothing and loss of details. Our 
results confirmed a good noise reduction performance of the 
proposed technique in routine clinical practice.

The deep learning-based denoising technique has a 
potential application in various clinical settings, such as 
retrospectively gated cardiac CT scans with ECG-gated tube 
current modulation that can provide additional information 
on a reduced dose-phase: functional information such as 
ventricular volume measurement and multiphase information 
for coronary arteries. Considering its noise reduction and 
SNR improvement, this denoising technique may allow a 
lower radiation dose acquisition protocol. Further studies 
considering the possibility of reduction in the radiation 
dose and utilization of the reduced dose-phase in tube 
current modulation need to be conducted.

This software with deep learning-based denoising 
technique can be easily used by radiologists. The software 
runs on a standard personal computer equipped with 
a graphics processing unit (GPU) card and provides a 
convenient and user-friendly interface. A user can select 
and drag a DICOM folder with the mouse and drop it on the 
software screen; subsequently, the software conducts the 
denoising process. The software can also send the denoised 
images to workstation for further processing. The denoising 
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cases) from a single institution and high proportion of low-
BMI patients (mean ± SD, 24.65 ± 3.37), which makes it 
possible to underestimate noise reduction effects, may also 
the reasons associated with our results. As with our deep 
learning based denoising software, iterative reconstruction 
algorithms, which are an alternative to traditional FBP 
reconstructions, have been proven by various studies to 
improve objective and subjective image quality. However, 
few techniques have been shown to improve the diagnostic 
accuracy more than FBP, at the same radiation dose (34-38). 
Instead, most studies have demonstrated that low radiation 
dose techniques enabled by an iterative reconstruction 
algorithm while maintaining diagnostic accuracy (39-
41). Like iterative reconstruction algorithm, although our 
software did not achieve an improvement in diagnostic 
accuracy, this technique can be applied in various clinical 
setting. Our deep learning-based denoising technique has 
a potential to allow low-radiation-dose acquisition protocol 
like iterative reconstruction algorithm does (38, 42, 43). 
The low image noise associated with our technology can 
encourage reader’s confidence and preference towards it 
in clinical practice. In addition, our deep learning-based 
denoising technique has vendor-independency. Thus, it 
can be carried out in older multiple-vendor CT machines, 
which do not have the modern denoising CT technology. 
The deep learning-based denoising technique can be useful 
for imaging patients who are prone to yield noisy images, 
such as obese patients. Further studies focusing on the 
possibility of reduction in the radiation dose using a larger 
population are warranted.

In summary, our study has demonstrated that the 
proposed denoising technique applied to low-dose CCTA 
with iterative reconstruction enables image noise reduction 
and significantly improves the objective and subjective 
image qualities without over-smoothing. There is a 
potential for its utilization in routine clinical practice, 
further radiation dose reduction, and additional functional 
image achievement in the future.  
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