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Abstract

Motivation: Planarians are emerging as a model organism to study regeneration in animals.

However, the little available data of protein–protein interactions hinders the advances in under-

standing the mechanisms underlying its regenerating capabilities.

Results: We have developed a protocol to predict protein–protein interactions using sequence

homology data and a reference Human interactome. This methodology was applied on 11

Schmidtea mediterranea transcriptomic sequence datasets. Then, using Neo4j as our database

manager, we developed PlanNET, a web application to explore the multiplicity of networks and the

associated sequence annotations. By mapping RNA-seq expression experiments onto the pre-

dicted networks, and allowing a transcript-centric exploration of the planarian interactome, we pro-

vide researchers with a useful tool to analyse possible pathways and to design new experiments,

as well as a reproducible methodology to predict, store, and explore protein interaction networks

for non-model organisms.

Availability and implementation: The web application PlanNET is available at https://compgen.bio.

ub.edu/PlanNET. The source code used is available at https://compgen.bio.ub.edu/PlanNET/

downloads.

Contact: jabril@ub.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The freshwater planarian Schmidtea mediterranea, a platyhelminth

of the class Turbellaria, has become a model for studying regenera-

tion in animals due to its ability to regenerate its whole body even

from small parts of it. Planarians only have one cell type able to

divide by mitosis, named neoblasts, which are responsible for the

extraordinary regeneration capabilities of these organisms (Wagner

et al., 2011).

In recent years, several studies have been performed in order to

unravel the molecular mechanisms of planarian regeneration, as well

as its regulation (for instance: Cebrià 2007; Fernandez-Taboada et al.

2010; Scimone et al. 2010). Additionally, different high-throughput

RNA-seq experiments have been carried out; up to nine of those tran-

scriptomes are publicly available for S.mediterranea alone (Abril

et al., 2010; Adamidi et al., 2011; Blythe et al., 2010; Galloni, 2012;

Kao et al., 2013; Labbé et al., 2012; Resch et al., 2012; Rouhana

et al., 2012; Sandmann et al., 2011; Solana et al., 2012), and more

datasets are coming for this and related species (Brandl et al., 2016).

Gene or protein expression analyses take into account significant

statistical differences between two or more experimental conditions;

however, the large amount of collected data and the fact that this

data usually refers to specific proteins or transcripts can lead to key

functional elements to remain hidden. Approaches based in systems

biology can help to unravel the importance of the different proteins
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in particular functional processes, as to help to identify similarities

between different protein interactions networks. Those techniques

will pinpoint missing components of the network (relative to net-

works from different species like humans) that may reveal driver

components of planarian-specific processes such as regeneration.

Furthermore, it is possible that those approaches will also suggest

homologous functional candidates to test in planarians as an in vivo

model. Cross-referencing pathways information with genome and

transcriptome data may also be useful for researchers, facilitating

the link to the functional annotation over the sequences and cis-

regulatory elements around the genic loci.

Instead of studying and analyzing individual genes or proteins,

focusing on the environment of such elements where those compo-

nents play their roles may reveal interesting insights. Molecular

medicine based on gene and protein networks has been expanding

rapidly, and has shown that most disease-causing genes often work

together, either forming protein complexes or participating in the

same signalling pathways.

Several approaches have been developed in order to infer protein

interactions networks from different sources. Sequence homology

can be used to predict interactions that have been conserved between

species, and the information about these protein interactions can be

transferred from one species to another using different approaches

(Garcia-Garcia et al., 2012; Murakami and Mizuguchi, 2014;

Schuette et al., 2015). In the context of planarians, Lobo and Levin

(2015) developed a method to infer regulatory networks from mor-

phological phenotypes distilled from genetic, surgical, and pharma-

cological experiments. They built a multi-species protein–protein

information retrieval tool (Lobo et al., 2016b), which predicted a

gene by using regulatory homologs that has been found to play a

role in planarian regeneration (Lobo et al., 2016a).

However, these approaches are limited by the currently available

phenotypic data on planarians described in the literature; and,

although the amount of data collected for this organism is increas-

ing, other approaches based on high-throughput experiment results

and large-scale sequence analyses to predict planarian protein–

protein interactions will be very useful to the developmental and

regeneration research community.

Linking a predicted planarian interactome with a human net-

work may not only provide a useful tool for researchers in order to

associate planarian genes with certain cellular functions, but it may

also provide a link between planarian regeneration and human

molecular pathways.

2 Materials and methods

2.1 Summary of the protocol
A protocol based on sequence homology was developed to infer pos-

sible interolog relationships between proteins of one arbitrary spe-

cies and human. In this work, we predicted interactions for 11

S.mediterranea transcriptomes (Supplementary Fig. S1). The method

searched for human homologs to a set of transcripts of the desired

species through BLAST searches (Altschul et al., 1990), PFAM

domain meta-alignments (Punta et al., 2012), and EggNOG align-

ments (Huerta-Cepas et al., 2016). Then, a set of features was com-

puted for each possible pair of transcripts, using information from

3did (Mosca et al., 2014), gene ontology (GO; Carbon et al. 2009),

and a human interactome graph. The protocol was first applied to

Drosophila melanogaster’s transcript sequences; then a random for-

est classifier was built using this data.

The program TransPipe was implemented in order to automate

the whole procedure, taking as input a FASTA file with the

S.mediterranea transcripts, a hidden Markov model domain data-

base, a FASTA with human sequences and an EggNOG hidden

Markov model database. The program also allows to adjust the

E-value cutoff for each of the alignment methods independently, as

well as providing several plots generated using the R module ggplot

(Wickham, 2009) to visualize the results. The source code is avail-

able from https://compgen.bio.ub.edu/PlanNET/downloads, along-

side the install information and the required dependencies. The

program is distributed under the free software GNU 2 license.

2.2 Datasets
2.2.1 Sequences and hidden markov models

With the aim to have a sequence assigned to each of the HUGO

Gene Nomenclature Comittee (HGNC) symbols (Gray et al., 2015),

a list of identifiers and synonyms was downloaded from that project

website. One set of human sequences was built using three data-

bases: SwissProt (version 2014/09 Wasmuth and Lima, 2016),

TrEMBL (version 2014/09), and ENSEMBL (gene build 79,

GRCh38.p2, Yates et al., 2016).

The mapping of HGNC identifiers against human sequences was

done sequentially. First, priority was given to SwissProt sequences,

followed by ENSEMBL and finally TrEMBL sequences. Each

sequence was assigned to a specific HGNC symbol using the afore-

mentioned synonyms table, looking for sequences in the next data-

base only if a symbol remained unassigned. This constitued the H-

Prot dataset.

The PFAM domains were downloaded from the PFAM site, ver-

sion 27.0; and the EggNOGs hidden Markov models, animals

meNOG version 4.0, from the database website. The D.melanogaster

transcript sequences to train the random forest classifier were down-

loaded from FlyBase release r5.56 (Gramates et al., 2017).

We predicted interactions over 11 planarian transcripts datasets:

Adamidi (Adamidi et al., 2011), Blythe (Blythe et al., 2010),

Consolidated (Kao et al., 2013), GBRNA (S.mediterranea mRNA

sequences retrieved from GenBank), Dresden (Brandl et al., 2016),

Graveley (Resch et al., 2012), Illuminaplus (Sandmann et al., 2011),

Newmark (Rouhana et al., 2012), Pearson (Labbé et al., 2012),

Smed454 (Abril et al., 2010) and SmedGD (Robb et al., 2015).

2.2.2 Protein–protein interactions

The human protein–protein interactions dataset was retrieved from

BioGRID (version 3.4.133, Stark et al., 2006) and STRING (version

10, Von Mering et al., 2003). All the nodes were renamed to HGNC

symbols when possible, using the HGNC synonyms table, and when

no synonym was found; the node remained as an ENSEMBL protein

identifier. This whole human gene/protein network included 26 934

nodes and 794 052 edges.

D.melanogaster’s protein–protein interactions were downloaded

from DroiD FlyBase curated PPI dataset (version 2015_12, Yu et al.,

2008).

2.3 Homology prediction
The transcript sequences were aligned to the H-Prot dataset using

BLASTX and TBLASTN, with an E-value cutoff of 10�10 in both

cases. From the resulting alignments the best reciprocal hits were

selected. In order to simplify the whole protocol, we selected the

translated longest open reading frame (ORF) for each of all the tran-

script sequences. These ORF were used for the two following

procedures.
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The alignment to the EggNOG hidden markov models were per-

formed using hmmsearch (Eddy, 1998), with an E-value cutoff of

10�10. We have chosen the subset meNOG (version 4.1), restricting

the dataset to only those domains that contained a human protein

with an HGNC identifier. The program hmmsearch was used in

order to annotate the PFAM domains on the transcript sequences,

using an E-value cutoff of 10�10 and the hidden markov model data-

base of PFAM-A, release 27.0.

The redundancy of the annotation of the domains over the tran-

scripts was reduced by joining several consecutive domains. The

conditions used for that merge were the following:

i. Both domains should be equal and consecutive.

ii. Both domains annotated over the ORF should represent differ-

ent regions of the domain. In order to decide if this condition

was met, the overlap between both annotations had to be

<25% of the real length of the PFAM domain.

iii. The distance between the domains over the ORF had to be

equal or less than the real length of the domain that is not anno-

tated over the transcript, plus a 25% of the total length of the

domain.

Once the PFAM domains were annotated, each transcript

sequence and each protein of the H-Prot dataset was transformed

into a meta-sequence where the annotated domains were concaten-

ated, producing a string of domain symbols suitable for a meta-

alignment. Those constructs were then aligned using the

Needleman-Wunsch algorithm, with a match value of þ30, a mis-

smatch value of �30, and a gap value of �5. The match score was

also adjusted to the percentage of the domain annotated on the tran-

script sequence. Best reciprocal hits were also selected.

The best homologous human protein was selected for each tran-

script using the following criteria:

i. If a protein is a unique best reciprocal hit in the EggNOG align-

ment, set it as the best homolog for that particular transcript.

ii. Contrarily, if a unique protein has the largest number of sup-

porting evidences from all the different methods, select it.

iii. Otherwise, if a unique sequence is the best hit in the EggNOG

alignment (lower E-value), set it as an homolog.

iv. Or then, if only a sequence is the best BLAST hit (lower

E-value), select it.

v. Else, select the best scoring hit in the PFAM domain meta-

alignment.

vi. If no condition is met, the contig is discarded.

These decision rules were established because of the EggNOG

aligment was set to be more reliable than the others, given that it

uses hidden Markov profiles instead of similarity searches, and also

given that we had assesed the performance of each method

separately.

2.4 Prediction of interactions
A set of 19 features was computed for each possible pair of tran-

scripts with at least one human homolog:

i. Path length. The shortest path between the homologous pro-

teins in the human interactome was computed. If no path was

found, a value of �1 was assigned. Self-interactions (those pairs

with a shortest path of 0) were removed. In order to speed up

the prediction, all the shortest paths between all the human pro-

teins were pre-computed using the python module graph_tool

(Peixoto, 2014).

ii. Domain interaction score. This score is the number of all the

PFAM domain pairs found in the transcripts using hmmsearch

(E-value � 10�10) that are annotated as interacting in the 3did

database.

iii. GO normalized term overlap (NTO) between the homologous

proteins (Mistry and Pavlidis, 2008). This GO similarity meas-

ure was chosen because of its simplicity and the speed to com-

pute it compared with other similarity scores. For each pair of

transcripts and each of the GO domains (‘molecular function’,

‘cellular component’ and ‘biological process’) all the parents in

the GO graph for the annotated terms of the two homologous

proteins were retrieved. Then, the overlap of these two sets

(normalized over the minimum set) was computed. This feature

takes values between 0 (no GO term overlap) and 1 (all the

annotated GO terms are the same).

iv. Alignment measures. Several of the alignment measures

reported by BLAST, hmmsearch, and the meta-alignment, were

used to train the classifier: BLAST and EggNOG E-values,

BLAST query coverage and PFAM meta-alignment score.

Finally, a boolean variable for each of the alignments and each

of the three methods was defined. This variable was set to

‘True’ if the transcript-human sequence pairs were best recipro-

cal hits and ‘False’ otherwise.

To build the random forest classifier, a training set of 11 595

D.melanogaster interacting pairs was retrieved from DroiD (Flybase

curated dataset), and 853, 023 random pairs filtered against the

DroiD pairs constituted the non-interacting protein pairs. All the

features were manually discretized into fixed ranges specific to each

variable. We used the R module randomForest (version 4.6-10,

Liaw and Wiener, 2002), setting the number of trees to 1000 and

downsampling the non-interacting pairs so that for building each

tree the ratio between non-interacting and interacting pairs was 5:1.

For all the performance validation measures the out-of-bag

(OOB) votes reported by the module were used. A cutoff of 0.6

votes was set to decide if a pair is interacting. This cutoff was

selected by looking for the value that maximized the F-measure (see

Supplementary Fig. S2). In order to reduce the search space of inter-

ologs, the program TransPipe only considers those pairs with a path

length � 2, and removes all the pairs that are not connected on the

human interactome (path length¼�1).

2.5 Neo4j database
All the predicted interactomes, as well as the annotations of the dif-

ferent planarian transcripts were stored in a Neo4j database, version

3.1.1 (Robinson et al., 2013). The choice of a graph database

instead of a relational database such as MySQL was driven by the

nature of the data itself: an interactome can be easily stored as a ser-

ies of nodes and connections. Traversing the graph can then be done

in a very time-efficient way, and operations such as obtaining the

transcripts/proteins connected to a given node through an arbitrary

number of intermediate connections is trivial.

In addition, having the interactomes stored as a series of nodes

and connection not only allows us to perform queries faster, but

gives us the ability to use different types of connections that are

associated to different meanings. All the homology relationships

between planarian contigs and human sequences were also stored as

connections between nodes. This allows us to map the predicted

interactomes over the human protein–protein interactions. Thanks

to this, we are able to search planarian interactions using human

protein symbols, as well as comparing subgraphs and pathways

across all the different predicted interactomes. The PFAM
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alignments were also stored in this graph, as well as the GO annota-

tions, giving us the ability to, e.g. look for pathways were the genes

involved have a particular GO code or a PFAM domain.

Finally, gene expression information from a Digital Gene

Expression (DGE) experiment (Rodrı́guez-esteban et al., 2015) was

also stored in the Neo4j database. As can be seen in Figure 1, we

used up to five different types of connections, each one with a set of

attributes storing the relevant features of that relationship: e.g.

HOMOLOG_OF relationships have attributes such as the BLAST

E-value and the sequence alignment coverage.

3 Results

3.1 Performance of the predictor
The performance of the classification of contig pairs as interacting

or non-interacting was evaluated using the following measures com-

puted over the out of bag predictions of the classifier: precision, sen-

sitivity, specificity, OOB error rate, and area under the curve of the

receiver operating characteristic (ROC); see Figure 2A. The area

under the curve calculated using different votes cutoffs was 0.82. In

order to improve all the performance measures, but at the same

time, to give the user the freedom to choose or focus on more or less

confident predictions, we decided to use a votes cut-off of 0.6. By

using this cut-off, we obtained a precision of 0.35, a sensitivity of

0.34, a specificity of 0.99 and an OOB error of 2.67%.

We analyzed the relative importance of the 19 features used for

the classification of each contig pair using the ‘Gini importance’

index provided by the R randomForest package, as it has been

shown to be useful for feature selection in classification problems

(Menze et al., 2009). The most useful feature to predict protein–

protein interactions resulted to be the distance between the homolo-

gous proteins in the human interactome graph, defined as

‘PATH_LENGTH’ in Figure 2B. This is also apparent by the drop in

performance seen when removing the feature from the classifier

(Fig. 2A). However, when ignoring all three ‘GO NTO’ features, the

performance drop is even more pronounced.

3.2 Prediction of planarian interactions
The contigs of the 11 planarian transcriptomes were aligned to the

H-Prot dataset using BLAST searches, HMMER alignments to

EggNOG models, and PFAM meta-alignments. We selected the best

hit for each contig and we computed the 19 features for each

possible pair of contigs required for the random forest classifier.

Although each planarian contig had only one selected homolog, sev-

eral human proteins had more than one homologous planarian con-

tig in the selected pairs used for the prediction. However, among the

selected contig pairs, most human proteins had between one and

two homologous contigs for all the datasets (Supplementary Fig.

S3). Two human proteins (ACTB and ACTG1) had 6117 and 4222

homologous contigs in the Smed454 dataset, possibly due to the fact

that the corresponding RNA sequencing libraries were not normal-

ized. Because of limitations of computing power when predicting

the interactions, all except one contig for each of these two human

proteins were removed. We selected the contig with the lowest

E-value in the EggNOG alignment for each of these cases.

The classifier was used to predict interactions in 11 planarian

transcriptomes. As it can be seen in Table 1, the number of contigs

with a homolog varies from 2314 to 20 665, while the number of

human homologs for each dataset shows a way lower variation.

This fact leads to some datasets having more unique relationships

between planarian contigs and human proteins, and others contain-

ing more contigs that align to the same proteins. This is illustrated in

Supplementary Figure S3 where the distributions of number of

homologs by sequence among transcriptomes can be easily com-

pared. The final number of predicted interactions is also highly vari-

able. However, the number of interactions strongly correlates with

the initial number of contigs with an homolog in each dataset

(Spearman’s rho ¼ 0.945, P-value < 10�10). The number of contigs

in each predicted interactome is also dependant on the initial contig

count (Spearman’s rho ¼ 0.873, P-value ¼ 9.5 � 10�4). The overlap

between the 11 predicted networks and the human reference interac-

tome is shown in Supplementary Figures S4 and S5. The figures

were made using the R package UpSetR (Conway et al., 2017).

In order to compare the confidence of each prediction, we plot-

ted the distribution of votes of the classifier for each dataset (includ-

ing the OOB votes for the testing dataset). As can be seen in

Supplementary Figure S6, all the planarian interactomes have a very

similar distribution of votes, with the votes for the testing dataset

being slightly higher. Most predictions fall between 60% of votes

and 70% of votes, but there is a big number of predicted interacting

pairs with a high percentage of votes in all the datasets. For all the

datasets, the proportion of contig pairs with interacting homologs in

human (pathlength ¼ 1) was <1%, while this proportion increased

significantly when considering only the available predicted interac-

tions (Table 1). Additional information about both the predictions

and the sequence alignments for each dataset is available at

the protocol summary page (https://compgen.bio.ub.edu/PlanNET/

datasets).

3.3 PlanNET web application
To explore the predicted interactomes and the sequence annotations

of the planarian sequences, we implemented a web application

called PlanNET using the python web development framework

Django and the javascript plugin cytoscape.js (Franz et al., 2016).

The starting form is divided in four sections that serve as different

entry points to the Neo4j database.

GeneSearch provides a text-based search by keywords, thanks to

it; the user can look for all the annotated features of the planarian

contigs using either planarian contig identifiers or human protein

symbols. The latter will retrieve all the S.mediterranea contigs of a

particular dataset that are homologous to the specified human

protein.

A B

Fig. 1. Neo4j database core schema used to store the predicted interactomes,

along with the reference human interactome and the sequence annotations

for the planarian datasets. (A) Diagram summarizing types of relationships

and labels used in the database. (B) Example of two planarian interactomes

(Smed nos. 1 and 2) connected through HOMOLOG_OF relationships (dotted

lines in the figure) to the Human interactome. This database schema allows

us to incorporate any number of predicted interactomes in the database, con-

nect them through the Human protein–protein interactions network, and

relate similar nodes
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We also provide a way to explore the predicted interaction net-

works utilizing cytoscape.js in NetExplorer, where the user can

search for nodes across the different planarian protein–protein inter-

action networks, either using contig identifiers, human protein sym-

bols (wildcards allowed), PFAM identifiers, KEGG pathway

identifiers, or GO codes. In Supplementary Figure S7, we can find

an example of a human protein network (MAPK signalling path-

way, with KEGG: hsa04010) projected over the Smed454

transcriptome.

Thanks to the graph-based database manager Neo4j, traversing

the networks to retrieve any subset of them does not have a huge

performance impact; we took advantage of this capability to imple-

ment PathwayFinder. This application looks for all the possible

paths between two protein/contigs in the specified interactome, rat-

ing all these paths depending on their overall confidence. This score

was defined as the mean of the random forest votes for each of its

predicted interactions. Just like in NetExplorer, users can search by

human protein symbols, PFAM identifiers, contig identifiers, KEGG

accessions and GO codes.

For the sake of completeness, we also implemented a BLAST

web form to look for contigs on the graphs using sequence homol-

ogy searches.

4 Discussion

In this work, we introduce a tool to predict protein–protein interac-

tions from transcript sequences using sequence alignments and a

reference Human interactome. This tool was then used to predict 11

different protein interactions networks from 11 S.mediterranea tran-

script datasets. As a result, we provide PlanNET, a web application

Fig. 2. Variable importance and performance of the random forest classifiers used to predict protein–protein interactions. (A) ROC curve of the random forest clas-

sifiers. The ROC curves were built using the OOB votes of the random forests for the Drosophila interacting and non-interacting transcript pairs. We trained three

random forest classifiers, one with 19 features (full model), another one without the feature ‘PATH_LENGTH’ (without path length), and finally, one without the

three ‘GO NTO’ features (without GO). All of them were compared against a random classifier (solid grey line on the figure). (B) Variable importance of the fea-

tures used by the full model random forest classifier to predict interacting protein pairs. A description of the features can be found in Supplementary Table S1

Table 1. Results of the prediction of protein–protein interactions for 11 S.mediterranea transcriptome datasets

Transcriptome Total

contigs

Contigs with

homolog

Human

homologs

Contigs in

interactome

Number of

interactions

Average

degree

Percentage

of Plen1

Adamidi 18 547 9478 5187 4903 32 626 6.657 36.8%

Blythe 24 008 10 930 5564 5929 32 892 5.548 34.7%

Consolidated 23 545 12 775 5809 7098 53 609 7.553 30.8%

Dresden 40 480 14 626 5889 7713 68 805 8.921 30.4%

GBRNA 4675 2314 1547 983 3158 3.213 55.5%

Graveley 19 503 8475 4329 3796 14 254 3.755 30.6%

Illuminaplus 28 926 10 090 5182 5263 29 574 5.619 36.8%

Newmark 53 898 20 665 6359 11 188 100 138 8.950 39.0%

Pearson 25 889 10 465 5656 5176 30 538 5.810 31.0%

Smed454 46 602 14 720 4711 8734 112 512 4.061 57.4%

SmedGD 32 615 12 904 5947 6715 55 939 8.330 28.4%

Mean 11 510 5107 6136 48 550 6.220

SD 4587 1317 2670 34 151 2.048

Note: The ‘Average degree’ describes the connectivity of each graph as interactions/nodes. The ‘Percentage of Plen1’ corresponds to the fraction of interactions

in each network that are also found in the reference human interactome.
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that allows researchers to explore these networks in different ways,

as well as to access to all sequence annotations performed in order

to predict the interactions.

Given the OOB performance evaluation of the predictor, we con-

clude that this random forest classifier is useful for inferring interolo-

gies between two species, for instance planarian and human. The area

under the ROC curve of 0.82 strongly indicates the significant

improvement from a random predictor of our tool. The performance

of the random forest classifier is similar to a previously described

interaction predictor developed by (Garcia-Garcia et al., 2012) (see

Supplementary Table S2). The low precision and sensitivity (0.35 and

0.34, respectively) can be attributed to the fact that from all the possi-

ble pairs of proteins of a given organism, only a tiny subset of them

really interacts. It has been described that the protein interaction net-

work of any given species is always very sparse, as the degree distribu-

tion of most of them follow the power-law (Barabási and Oltvai,

2004). This fact alone makes it harsh for any predictor to retrieve a

large amount of interactions out of those pairs, without retrieving

many false positives. However, the developed predictor can be further

improved in different ways; e.g. introducing new features such as the

confidence of the annotated interactions in the reference human net-

work, or adding new reference interactomes from other species.

From all the features used by the classifier, the most important one

is the distance of the homologous human genes in the Human pro-

tein–protein network (‘PATH_LENGTH’). It is worth to note that,

even without the most useful feature, the resulting classifier still shows

good performance, with an AUC of 0.781, highlighting the robustness

of the other features when trying to predict protein–protein interac-

tions. The GO similarities considered together contribute to the per-

formance of the predictor more than the feature ‘PATH_LENGTH’

alone; and the EggNOG alignment E-values are next in importance.

The GO similarities and the EggNOG E-values paired together,

ensure that both proteins have a high sequence similarity to their

respective human homologs, that those homologs are known to be in

a similar cellular location (cellular component) and that they share

GO biological process and molecular function annotations. Thus, our

tool not only predicts interactions between putative proteins trans-

lated from transcripts, but it essentially clusters these contigs accord-

ing to their functional similarities (instead of, e.g. their location in the

genome). The relative importance of the EggNOG E-values may be

due to two reasons: first, the performed protocol favors EggNOG

alignments when selecting best hits for each contig, and secondly, hid-

den markov models are known to detect more distant homologies

than sequence searches such as BLAST (Park et al., 1998).

Fig. 3. Screenshot of the PlanNET NetExplorer browser. Each node in the graph represents a protein/contig, the shape of the nodes determines the dataset to

which they belong. The size of the nodes depends on the node degree (total number of interactions). The edges color varies depending on the type of relationship

(see ‘Legend’ on the lower left corner of this figure). DGE data comparing two samples from the experiment described in (Rodrı́guez-esteban et al., 2015) was pro-

jected over this visualization; the color of nodes is based on the expression fold change (scale shown on the upper left corner of this figure). The controls on the

right panel allow users to explore the graph further by clicking on nodes, as well as getting information for each contig/protein. Numbers on the edges corre-

spond to the proportion of votes of the random forest classifier, as a measure of the confidence of any given interaction. Users can filter these interactions by

confidence value with the slider on the right (under ‘Filter interactions’). Finally, the interface allows researchers to save and load graphs in JSON format

(Color version of this figure is available at Bioinformatics online.)
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The different number of interactions predicted for each dataset

can be attributed to the different number of homologs found for

each one, as the strong correlation between the ‘Contigs with an

homolog’ and ‘Number of interactions’ suggests. Therefore, the dif-

ferent level of fragmentation of the contigs, apparent from the dis-

similarities between homologous proteins found for each dataset

(Supplementary Fig. S3), could greatly affect the final result of the

prediction. This reinforces the importance of building a proper full-

length mRNA reference set, especially for S.mediterranea, as it has

been shown for model organisms like human (Cho et al., 2014).

Using Neo4j as our database backend, we developed a web

application, called PlanNET, to explore not only the predicted net-

works, but the sequence annotations as well. Apart from BLAST

searches and simple text searches (provided by the applications

BLAST and GeneSearch at PlanNET, respectively), we have also

implemented two additional ways to explore the protein networks.

NetExplorer (Fig. 3), will allow researchers to look for predicted

interaction networks using contig IDs, KEGG pathway identifiers,

GO codes or PFAM domains as baits. The asynchronous javascript

searches will facilitate users to dinamically compare the networks

annotated for the different transcriptomes with respect to the refer-

ence interactome, human in this case. The application

PathwayFinder provides a simple way to look for protein interaction

pathways in the predicted networks; specifying a starting protein, an

ending protein, as well as the length of the desired pathways.

We can also integrate gene expression data from different sour-

ces, which has been tested by showing results from a DGE experi-

ment performed by Rodriguez-Esteban et al. (2015). This data can

be projected over the graphs, coloring the nodes according to the

expression levels; right know, the application allows to color the

nodes using expression data from one sample (binning colors by per-

centils of absolute expression levels) or to compare two samples at

the same time from the same experiment [assigning colors as a func-

tion of log2(FoldChange)]. We are planning to add further RNA-seq

expression data to this tool, which will allow more complex queries

to be performed, such as retrieving subnetworks having correlated

expression levels across different experiments and samples. Neo4j

manager and the Cypher query language make those complex

queries simple and fast (Yoon et al., 2017), and they allow to per-

form them in real time as opposed to pre-computing them.

When designing experiments with the aim to unravel the under-

lying mechanisms of planarian regeneration, the biological context

of any given candidate gene is just as important as its annotations.

Thus, a predicted protein–protein interaction network for many pla-

narian transcriptomes will be useful in determining that context

from a transcript-centric point of view. Our applications allow

researchers to compare the human homologs found in all the tran-

scriptomes, to look for possible interacting proteins, to retrieve sub-

networks using GO codes and PFAM domains, and to compare

expression levels across the transcriptomes. Our approach focuses

on the planarian contigs instead of the annotated genes on a refer-

ence genome; giving researchers the flexibility to work with any con-

tig as a proper separate entity with its own annotations. When new

refined transcriptomes will be available in the future they will be

easily incorporated to PlanNET using our current pipeline, without

interfering with all the previous datasets and maintaining the rele-

vance of the application.

At last, in this work we provide one of the first practical applica-

tions of the database manager Neo4j to store and analyze multiple

protein–protein interaction networks. Sequence homologies pre-

dicted for the planarian contigs allow us to link the S.mediterranea

and the human interactome in the database, making quick queries to

compare and traverse the networks easy. Our current database

design will facilitate the inclusion of genetic interactions, as well as

the extension with new interfaces to explore them in the future. In

conclusion, this database engine provides a very adaptable frame-

work for storing, modelling and visualizing many networks pro-

jected over a reference interactome. This has been crucial to

implement a responsive interactive interface, PlanNET, over the

extensible interologs network that projects planarian transcriptomes

towards human sequences and vice versa. The analysis pipeline can

be applied to any species transcriptomic datasets to map it over any

model organism reference interactome, which makes our protocol

extensible to a broader range of similar research problems.
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Labbé,R.M. et al. (2012) A comparative transcriptomic analysis reveals con-

served features of stem cell pluripotency in planarians and mammals. Stem

Cells, 30, 1734–1745.

Liaw,A. and Wiener,M. (2002) Classification and regression by randomforest.

R News, 2, 18–22.

Lobo,D. and Levin,M. (2015) Inferring regulatory networks from experimen-

tal morphological phenotypes: a computational method reverse-engineers

planarian regeneration. PLOS Comput. Biol., 11, e1004295.

Lobo,D. et al. (2016a) Computational discovery and in vivo validation of hnf4 as

a regulatory gene in planarian regeneration. Bioinformatics, 32, 2681–2685.

Lobo,D. et al. (2016b) MoCha: molecular characterization of unknown path-

ways. J. Comput. Biol., 23, 291–297.

Menze,B.H. et al. (2009) A comparison of random forest and its Gini impor-

tance with standard chemometric methods for the feature selection and clas-

sification of spectral data. BMC Bioinformatics, 10, 213.

Mistry,M. and Pavlidis,P. (2008) Gene ontology term overlap as a measure of

gene functional similarity. BMC Bioinformatics, 9, 327.

Mosca,R. et al. (2014) 3did: a catalog of domain-based interactions of known

three-dimensional structure. Nucleic Acids Res., 42, 374–379.

Murakami,Y. and Mizuguchi,K. (2014) Homology-based prediction of inter-

actions between proteins using Averaged One-Dependence Estimators.

BMC Bioinformatics, 15, 213.

Park,J. et al. (1998) Sequence comparisons using multiple sequences detect

three times as many remote homologues as pairwise methods. J. Mol. Biol.,

284, 1201–1210.

Peixoto,T.P. (2014) The graph-tool python library. figshare. doi: 10.6084/m9.

figshare.1164194.

Punta,M. et al. (2012) The Pfam protein families database. Nucleic Acids Res.,

40, D290–D301.

Resch,A.M. et al. (2012) Transcriptome analysis reveals strain-specific and

conserved stemness genes in Schmidtea mediterranea. Plos One, 7, e34447.

Robb,S.M. et al. (2015) SmedGD 2.0: The Schmidtea mediterranea genome

database. Genesis, 53, 535–546.

Robinson,I. et al. (2013) Graph Databases. O’Reilly Media, Inc., Sebastopol,

CA, USA.

Rodrı́guez-Esteban,G. et al. (2015) Digital gene expression approach over

multiple RNA-Seq data sets to detect neoblast transcriptional changes in

Schmidtea mediterranea. BMC Genomics, 16, 361.

Rouhana,L. et al. (2012) PRMT5 and the role of symmetrical dimethylargi-

nine in chromatoid bodies of planarian stem cells. Development, 139,

1083–1094.

Sandmann,T. et al. (2011) The head-regeneration transcriptome of the planar-

ian Schmidtea mediterranea. Genome Biol., 12, R76.

Schuette,S. et al. (2015) Predicted protein-protein interactions in the moss

Physcomitrella patens: a new bioinformatic resource. BMC Bioinformatics,

16, 89.

Scimone,M.L. et al. (2010) The Mi-2-like Smed-CHD4 gene is required for

stem cell differentiation in the planarian Schmidtea mediterranea.

Development, 137, 1231–1241.

Solana,J. et al. (2012) Defining the molecular profile of planarian pluripotent

stem cells using a combinatorial RNA-seq, RNAi and irradiation approach.

Genome Biol., 13, R19.

Stark,C. et al. (2006) BioGRID: a general repository for interaction datasets.

Nucleic Acids Res., 34, D535–D539.

Von Mering,C. et al. (2003) STRING: A database of predicted functional asso-

ciations between proteins. Nucleic Acids Res., 31, 258–261.

Wagner,D.E. et al. (2011) Clonogenic neoblasts are pluripotents adult stem

cells that underlie planarian regeneration. Science, 332, 811–816.

Wasmuth,E.V. and Lima,C.D. (2016) UniProt: the universal protein knowl-

edgebase. Nucleic Acids Res., 45, 1–12.

Wickham,H. (2009) ggplot2: Elegant Graphics for Data Analysis.

Springer-Verlag, New York.

Yates,A. et al. (2016) Ensembl 2016. Nucleic Acids Res., 44, D710–D716.

Yoon,B.-H. et al. (2017) Use of Graph Database for the Integration of

Heterogeneous Biological Data. Genomics Inform., 15, 19.

Yu,J. et al. (2008) DroID: the Drosophila Interactions Database, a comprehen-

sive resource for annotated gene and protein interactions. BMC Genomics,

9, 461.

PlanNET: planarian interactome prediction 1023

http://dx.doi.org/10.6084/m9.figshare.1164194.
http://dx.doi.org/10.6084/m9.figshare.1164194.

	btx738-TF1

