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Abstract

Data on the prevalence of antibiotic resistance in Enterobacteriaceae in African wildlife are

still relatively limited. The aim of this study was to estimate the prevalence of phenotypic

intrinsic and acquired antimicrobial resistance of enterobacteria from several species of ter-

restrial wild mammals in national parks of Gabon. Colony culture and isolation were done

using MacConkey agar. Isolates were identified using the VITEK 2 and MALDI-TOF meth-

ods. Antibiotic susceptibility was analysed and interpreted according to the European Com-

mittee on Antimicrobial Susceptibility Testing guidelines. The preliminary test for ESBL-

producing Enterobacteriaceae was performed by replicating enterobacterial colonies on

MacConkey agar supplemented with 2 mg/L cefotaxime (MCA+CTX). Extended-spectrum

beta-lactamase (ESBL) production was confirmed with the double-disc synergy test

(DDST). The inhibition zone diameters were read with SirScan. Among the 130 bacterial col-

onies isolated from 125 fecal samples, 90 enterobacterial isolates were identified. Escheri-

chia coli (61%) was the most prevalent, followed by Enterobacter cloacae (8%), Proteus

mirabilis (8%), Klebsiella variicola (7%), Klebsiella aerogenes (7%), Klebsiella oxytoca

(4%), Citrobacter freundii (3%), Klebsiella pneumoniae (1%) and Serratia marcescens (1%).

Acquired resistance was carried by E. coli (11% of all E. coli isolates) and E. cloacae (3% of

all E. cloacae) isolates, while intrinsic resistance was detected in all the other resistant iso-

lates (n = 31); K. variicola, K. oxytoca, K. pneumoniae, E. cloacae, K. aerogenes, S. marces-

cens and P. mirabilis). Our data show that most strains isolated in protected areas in Gabon

are wild type isolates and carry intrinsic resistance rather than acquired resistance.
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Introduction

The emergence of antibiotic resistant bacteria (ARB) in the Enterobacteriaceae family is a

major issue worldwide that affects the dynamics of microbial populations and leads to human

public health problems [1]. Antibiotic resistance is genetically encoded, but can be intrinsic or

acquired. Intrinsic resistance describes the innate capacity of a bacterial species to resist to a

specific drug. Conversely, acquired resistance is found only in some isolates of a bacterial spe-

cies and results from horizontal gene transfer, or more rarely, from selection of a mutation.

For more than 50 years, ARB studies have focused on pathogenic bacteria isolated from hospi-

tals and more recently from rural environments. Indeed, the massive use of antibiotics in farm-

ing has strongly increased ARB prevalence in agricultural zones [2, 3]. Moreover, many

studies have documented the prevalence of resistance in wild animals. This phenomenon has

been largely interpreted as the result of contacts with contaminated anthropogenic sources [4].

However, the discovery of resistant Enterobacteriaceae strains carried by wild animals or in the

environment, outside areas frequented by humans and for which human contamination seems

unlikely, suggests that resistance might be present in environmental reservoirs and has an

adaptive significance that predates the antibiotic era [5–7]. The existence of environmental res-

ervoirs of resistance, with the possibility of transferring resistance from the wildlife compart-

ment to humans and domestic animals, raises the problem of the wildlife role in the dynamics

of antibiotic resistance emergence. Multi-resistant bacteria (i.e. the bacteria which are non-sus-

ceptible to at least one antimicrobial agent in three or more antimicrobial classes [8]) in wild-

life are good markers for assessing the transfer dynamics between humans and wildlife

because it is thought that these isolates are selected in anthropogenic environments and then

transferred to wildlife [9, 10]. However, studies on the prevalence of antibiotic resistance in

Enterobacteriaceae in African wildlife are still relatively limited. Most have focused on anthro-

pized (urban or agricultural) areas or on emblematic species (e.g. apes). Recent studies have

examined resistance in Enterobacteriaceae from apes with conflicting results. For example,

transfer of antibiotic-resistant Enterobacteriaceae has been demonstrated between humans

and chimpanzees in Uganda [11]. Conversely, in the Taï forest of Ivory Coast, very few resis-

tant Enterobacteriaceae strains have been detected in fecal samples of chimpanzees, probably

due to the low level of contact with humans and the important health precautions taken by

researchers working on chimpanzee groups [12]. In Gabon, antibiotic resistance in wildlife in

protected areas is low (e.g. ampicillin: 3.4% of Escherichia coli isolates from gorillas, 8.3% from

other wildlife; streptomycin: 2.5% of E. coli isolates from gorillas, 2.1% from other wildlife; tet-

racycline: 2.5% of E. coli isolates from gorilla, 4.2% from other wildlife) [13], but high in fruit

bats in unprotected areas (e.g. ampicillin: 100%; streptomycin: 100%; tetracycline: 83.33% of E.

coli isolates) [14]. Therefore, the aim of this study was to estimate the prevalence of phenotypic

intrinsic and acquired enterobacterial antimicrobial resistance in different wild terrestrial

mammals in several national parks of Gabon.

Materials and methods

The research license for this study was obtained from the Scientific Commission for Research

Authorization of the National Center for Scientific and Technological Research (CENAREST)

(permit no. AR0019/15/MESRS/CENAREST/CG/CST/CSAR, dated July 9, 2015). Authoriza-

tion to access national parks was granted by the National Parks Agency (ANPN) (permit No.

AE15014/PR/ANPN/SE/CS/AEPN, 9 July 2015).

Fecal samples were collected in Moukalaba Doudou National Park (MDNP), Loango

National Park (LONP), Lope National Park (LPNP) and Lékédi Private Park (LPP) in August

2015 (LPNP), May 2016 (LPP), July 2016 (MDNP), and July 2016 (LONP). Wildlife feces were

PLOS ONE Antimicrobial resistance in enterobacteria from terrestrial wildlife in Gabonese parks

PLOS ONE | https://doi.org/10.1371/journal.pone.0257994 October 12, 2021 2 / 7

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0257994


collected non-invasively by following wild mammals in the forest and collecting the excre-

ments they left behind. Feces were collected either after immediate defecation or three hours

after defecation, determined by observation of their color, temperature and consistency. To

avoid environmental contamination, in the forest, only feces that were not covered by dust

and were preferably deposited on leaves on the ground were collected. Feces from the follow-

ing animals were collected: Gorilla gorilla gorilla, Mandrillus sphynx, Cercocebus torcatus, Cer-
copithecus nictitans, Colobus satanus, Cephalophus sp., Genetta genetta, Kobus ellipsiprymnus,
Loxodonta cyclotis, Syncerus caffer, and Potamocherus porcus (Table 1). Each fecal sample was

placed in a small sterile plastic bag using gloves and wooden tweezers (a new pair of tweezers

for each sample), and then stored in a large bag in a dark place. In the laboratory of the camp

site, each sample was cut with sterile tweezers and a small amount of feces was collected from

the middle and streaked on a 60 mm MacConkey agar (MCA; bioMérieux, France) plate and

incubated at 37˚C for 24h, according to a previously established protocol [15, 16]. After incu-

bation, each colony morphology was recorded (structure and color), and then the colony was

picked, transferred to phosphate buffered saline (PBS) supplemented with 30% glycerol for

storage in ambient conditions during the feces collection period (7 days).

In the bacteriology laboratory of the Interdisciplinary Medical Research Center of France-

ville (CIRMF) (Franceville, Gabon), colonies were streaked on the same medium. The prelimi-

nary test for ESBL-producing Enterobacteriaceae was performed by replicating enterobacterial

Table 1. The different antimicrobial resistance phenotypes in enterobacterial isolates from fecal samples collected in national parks of Gabon.

Mammal (n) Bacterium Phenotype Type of resistance

Colobus satanus (1) E. coli LEV acquired

Gorilla gorilla gorilla (1) E. coli AMX TIC acquired

Gorilla gorilla gorilla (1) E. coli NAL CHL TET acquired

Mandrillus sphynx (1) E. coli AMX TIC CHL SXT acquired

Mandrillus sphynx (1) E. cloacae AMX AMC ATM TIC TIM PRL TZP CFL FOX CTX CAZ acquired

Gorilla gorilla gorilla (2) P. mirabilis TET intrinsic

Mandrillus sphynx (1) P. mirabilis TET intrinsic

Syncerus caffer (1) P. mirabilis TET intrinsic

Gorilla gorilla gorilla (2) K. oxytoca AMX TIC PRL intrinsic

Syncerus caffer (1) K. oxytoca AMX TIC PRL intrinsic

Potamochoerus porcus (1) K. oxytoca AMX TIC PRL intrinsic

Gorilla gorilla gorilla (1) K. pneumoniae AMX TIC PRL intrinsic

Gorilla gorilla gorilla (2) K. variicola AMX TIC PRL intrinsic

Mandrillus sphynx (2) K. variicola AMX TIC PRL intrinsic

Potamochoerus porcus (1) K. variicola AMX TIC PRL intrinsic

Loxodonta cyclotis (1) K. variicola AMX TIC PRL intrinsic

Syncerus caffer (2) K. aerogenes AMX AMC CFL FOX intrinsic

Gorilla gorilla gorilla (4) K. aerogenes AMX AMC CFL FOX intrinsic

Gorilla gorilla gorilla (4) E. cloacae AMX AMC CFL FOX intrinsic

Cercopithecus nictitans (1) E. cloacae AMX AMC CFL FOX intrinsic

Mandrillus sphynx (1) E. cloacae AMX AMC CFL FOX intrinsic

Mandrillus sphynx (3) C. freundii AMX AMC CFL FOX intrinsic

Mandrillus sphynx (1) S. marcescens AMX AMC TIC CFL intrinsic

AMX, amoxicillin; AMC, amoxicillin+clavulanic acid; ATM, aztreonam; CAZ, ceftazidime; CFL, cephalexin; CHL, chloramphenicol; CTX, cefotaxime; FOX, cefoxitin;

LEV, levofloxacin; NAL, nalidixic acid; PIR, piperacillin; SXT, trimethoprim/sulfamethoxazole; TEM, temocillin; TIC, ticarcillin; TIM, ticarcillin+clavulanic acid; TZP,

piperacillin+tazobactam; MDNP, Moukalaba Doudou National Park; LONP, Loango National Park; LPNP, Lopé National Park; LPP, Lékédi Private Park.

https://doi.org/10.1371/journal.pone.0257994.t001
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colonies on MCA supplemented with 2 mg/L cefotaxime (CTX) (MCA/CTX). Compared with

not supplemented MCA, the MCA/CTX combination significantly increases the detection of

resistance to beta-lactam antibiotics [17], and the selection of intrinsic and acquired beta-lac-

tam resistant bacteria, such as those producing extended-spectrum beta-lactamases (ESBL).

The bacterial colonies were identified with the VITEK 2 system (bioMérieux) and MALDI-

TOF (Bruker Daltonics, Bremen, Germany). Antibiotic susceptibility testing was performed

with the agar disc diffusion method. The following antibiotics, often used to treat human bac-

terial infections in local clinics, were tested: amoxicillin (25 μg), amoxicillin–clavulanic acid

(20 and 10 μg, respectively), aztreonam (30 μg), cefepime (30 μg), cefotaxime (30 μg), cefoxitin

(30μg), ceftazidime (30 μg), cephalexin (30 μg), chloramphenicol (30 μg), ertapenem (10 μg),

fosfomycin (200 μg), gentamicin (10 μg), imipenem (10 μg), levofloxacin (5 μg), nalidixic acid

(30 IU), netilmicin (10 μg), ofloxacin (5 μg), piperacillin–tazobactam (30 and 6 μg, respec-

tively), piperacillin (30 μg), temocillin (30 μg), tetracycline (30 μg), ticarcillin–clavulanic acid

(75 and 10 μg, respectively), ticarcillin (75μg), tobramycin (10μg), and trimethoprim–sulfon-

amide (1.25 and 23.75 μg, respectively). ESBL production was tested with the double-disc syn-

ergy test (DDST). The set of beta-lactam antibiotics was tested simultaneously on the same

antibiogram to determine the acquired or intrinsic phenotype [18–21]. The inhibition zone

diameters were read and interpreted with SIRscan (i2a, France) following the recommenda-

tions of the European Committee on Guidelines for Antimicrobial Susceptibility Testing

(EUCAST) (version 7.1).

Results

In total 90 enterobacterial isolates were identified among the 130 colonies from the 125 fecal

samples collected in national parks of Gabon. E. coli (61%, 55/90) was the most prevalent, fol-

lowed by Enterobacter cloacae (8%, 7/90), Proteus mirabilis (8%, 7/90), Klebsiella variicola (7%,

6/90), Klebsiella aerogenes (7%, 6/90), Klebsiella oxytoca (4%, 4/90), Citrobacter freundii (3%,

3/90), Klebsiella pneumoniae (1%, 1/90) and Serratia marcescens (1%, 1/90).

Only one colony of enterobacteria was observed on MCA/CTX. The DDST did not detect

any ESBL-producing isolate among the 90 isolates. Moreover, 60% (52/90) of these entero-

bacterial isolates were susceptible to all the antibiotics tested, particularly E. coli (56%, 51/90)

and P. mirabilis (3%, 3/90). Four E. coli isolates (11%, 4/36) from different monkey and ape

species showed acquired resistance to amoxicillin, ticarcillin, chloramphenicol, nalidixic acid,

tetracycline, trimethoprim–sulfamethoxazole and levofloxacin (Table 1). One E. cloacae isolate

(the colony that grew up on MCA/CTX) (3%,1/36) from mandrills was resistant to amoxicil-

lin-clavulanic acid, aztreonam, piperacillin, piperacillin-tazobactam, cefalexin, cefoxitin, cefo-

taxime, ceftazidime and cefepime. But DDST on this isolate (E. cloacae) did not reveal a

synergy image that suggested ESBL production. All the other resistant isolates carried intrinsic

resistance. Specifically, K. variicola (17%, 6/36), K. oxytoca (11%, 4/36), K. pneumoniae (3%, 1/

36) isolates were resistant to amoxicillin, ticarcillin and piperacillin. E. cloacae (17%, 6/36), K.

aerogenes (17%, 6/36), C. freundii (8%, 3/36) and S. marcescens (3%, 1/36) were resistant to

amoxicillin, amoxicillin–clavulanic acid, cefalexin and cefoxitin. P. mirabilis (11%, 4/36) were

resistant to tetracycline (Table 1). All isolates harboring intrinsic resistance were wild-type

(predominant bacterial strains in the natural environment).

Discussion

We screened antibiotic resistance in enterobacterial isolates from fecal samples of wild terres-

trial mammals in Gabon natural parks [17]. The use of a culture medium supplemented with a

third generation cephalosporin like MCA/CTX increases significantly the detection of beta-
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lactam antibiotic resistance, especially in samples from asymptomatic animals [17]. The exact

proportion of resistant isolates in wildlife is unknown [22], and may be very limited or non-

existent in the gastrointestinal tract of wildlife in protected areas [13]. The lack of detection of

ESBL-producing enterobacteria suggests their absence in the gastrointestinal tract of wildlife

in Gabon national parks. The prevalence of other resistant bacteria in this study was low.

Moreover, most of the resistant bacteria harbored intrinsic resistance that could be attributed

to the natural resistome circulating in the environment. The few studies carried out in pro-

tected forest areas in West and Central Africa described a similar pattern of low prevalence of

resistance, mostly due to intrinsic resistance, in the same enterobacterial species identified in

the present study (E. coli, Klebsiella spp, C. freundii, Enterobacter spp, P. mirabilis and S. mar-
cescens) [12, 15, 23, 24]. These bacteria are common in fecal samples of wildlife [24, 25]. P.

mirabilis has an intrinsic resistance to tetracycline and colistin [26, 27]. K. pneumoniae, K. oxy-
toca and K. variicola are intrinsically resistant to amoxicillin, ticarcillin, and piperacillin, Serra-
tia, Enterobacter and Citrobacter show intrinsic resistance to first-generation aminopenicillins

and cephalosporins [19, 28]. In our fecal samples, resistant or multi-resistant E. coli isolates

were found in different monkey species, although at a low rate. E. coli is naturally susceptible

to several antibiotics, particularly the beta-lactam family [19, 29], and this explains why all

resistance in this species is acquired [19, 29]. Several authors have suggested that the presence

of resistance and particularly of multi-resistance in wildlife is the result of transfer from

humans or domestic animals via contaminated sources [4, 12, 30]. However, in the study car-

ried out in the Lopé Park in Gabon, Benavides et al (2012) detected differences between the

genetic background of resistant E. coli isolates found in gorillas and in human populations liv-

ing around the park. This led to the hypothesis that the presence of multi-drug resistance in

wildlife may have a non-anthropic origin [31, 32]. In the present study, we did not determine

the genetic background of the collected isolates. The low rate of acquired antibiotic resistance,

such as E.coli multiresistant, in wildlife could be partly attributed to the fact that wild mammals

have never been treated with antibiotics [12, 13], and to the low human penetration in the

parks [11, 33] that makes the transfer of resistance determinants unlikely.

The large predominance of intrinsic antibiotic resistance in enterobacterial isolates from

wildlife of the national parks of Gabon suggests that in such protected areas, anthropogenic

contamination is still limited, possibly due to the current environmental protection policy in

Gabonese conservation zones [34].
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en 1995: distribution des phénotypes de résistance aux β-lactamines de 4 511 souches, urinaires et

non urinaires. Med Mal Infect. 1997; 27(11): 888–92.

19. Touati A, Benallaoua S, Kecha M, & Idres N. Etude des phenotypes de resistance aux β-lactamines

des souches d’enterobacteries isolees en milieu hospitalier: cas de l’hopital d’amizour (W. Bejaia). Sci

Technol. 2003; 92–97.
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