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A B S T R A C T   

Background: Breast cancer (BC) remains the most common cancer among women, and novel post- 
surgical reconstruction techniques, including autologous fat transplantation, have emerged. 
While Adipose-derived stem cells (ADSCs) are known to impact the viability of fat grafts, their 
influence on breast cancer progression remains unclear. This study aims to elucidate the genetic 
interplay between ADSCs and breast cancer, focusing on potential therapeutic targets. 
Methods: Using the GEO and TCGA databases, we pinpointed differentially expressed (DE) 
mRNAs, miRNAs, lncRNAs, and pseudogenes of ADSCs and BC. We performed functional 
enrichment analysis and constructed protein-protein interaction (PPI), RNA binding protein 
(RBP)-pseudogene-mRNA, and lncRNA-miRNA-transcription factor (TF)-gene networks. Our 
study delved into the correlation of AK4 expression with 33 different malignancies and examined 
its impact on prognostic outcomes across a pan-cancer cohort. Additionally, we scrutinized im-
mune infiltration, microsatellite instability, and tumor mutational burden, and conducted single- 
cell analysis to further understand the implications of AK4 expression. We identified novel sample 
subtypes based on hub genes using the ConsensusClusterPlus package and examined their asso-
ciation with immune infiltration. The random forest algorithm was used to screen DE mRNAs 
between subtypes to validate the powerful prognostic prediction ability of the artificial neural 
network. 
Results: Our analysis identified 395 DE mRNAs, 3 DE miRNAs, 84 DE lncRNAs, and 26 DE 
pseudogenes associated with ADSCs and BC. Of these, 173 mRNAs were commonly regulated in 
both ADSCs and breast cancer, and 222 exhibited differential regulation. The PPI, RBP- 
pseudogene-mRNA, and lncRNA-miRNA-TF-gene networks suggested AK4 as a key regulator. 
Our findings support AK4 as a promising immune-related therapeutic target for a wide range of 
malignancies. We identified 14 characteristic genes based on the AK4-related cluster using the 
random forest algorithm. Our artificial neural network yielded excellent diagnostic performance 
in the testing cohort with AUC values of 0.994, 0.973, and 0.995, indicating its ability to 
distinguish between breast cancer and non-breast cancer cases. 
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Conclusions: Our research sheds light on the dual role of ADSCs in BC at the genetic level and 
identifies AK4 as a key protective mRNA in breast cancer. We found that AK4 significantly pre-
dicts cancer prognosis and immunotherapy, indicating its potential as a therapeutic target.   

1. Introduction 

Breast cancer is a leading cause of cancer-related morbidity and mortality in women worldwide [1], and treatment options include 
various surgical and non-surgical interventions. Among these, autologous fat transplantation, also known as fat grafting or lipofilling, 
has emerged as an innovative method to reconstruct breast shape following oncological surgery [2]. This procedure involves trans-
ferring a patient’s adipose tissue to the breast area, yielding aesthetically pleasing outcomes and reduced complications at donor sites. 
Despite its advantages, long-term fat graft survival remains uncertain due to inadequate vascularization, leading to fat apoptosis and 
necrosis [3]. 

To address this challenge, the deployment of adipose-derived stem cells (ADSCs) has been proposed. ADSCs, initially characterized 
as multipotent mesenchymal stem cells, have exhibited potential in various therapeutic contexts, including treating inflammatory and 
autoimmune diseases, as well as neurodegenerative conditions, by secreting cytokines and growth factors [4]. ADSCs have demon-
strated the potential to enhance fat graft retention [5–7], as well as to promote beneficial effects on scars [8] and facilitate the repair of 
damaged skin resulting from radiation therapy [9]. Surgeons have developed cell-assisted lipotransfer (CAL) by mixing in vitro 
cultured ADSCs into lipoaspirate, which has been shown to improve fat graft survival in breast augmentation [5]. However, their 
effects on breast cancer remain a subject of debate. Hence, this study primarily focuses on unveiling potential risks and the inherent 
mechanisms tied to the utilization of ADSCs in autologous fat transplantation for individuals with breast cancer. 

Research on ADSCs’ effects on breast cancer has yielded conflicting results, with some studies suggesting that they promote tumor 
growth [10] while others indicate that they suppress it [11]. ADSCs can stimulate vascularization through cytokine secretion [12], and 
under hypoxic conditions, they exhibit an increased expression of VEGF [13]. Research has indicated that ADSCs, when subjected to 
elements within the tumor microenvironment, can evolve into carcinoma-associated fibroblasts [14], thereby enhancing tumor 
growth. Additionally, it has been established that ADSCs play a role in fostering an inflammatory milieu within tumors [15], which 
further exacerbates the progression of cancerous activities. Furthermore, there is a theory suggesting that cancer stem cells, potentially 
originating from indigenous stem cells, can accelerate tumor proliferation and invasiveness by inducing epithelial-mesenchymal 
transition [16]. Contrarily, studies using xenograft models propose that the synergy between transplanted ADSCs and dormant can-
cer cells might not trigger cancer resurgence. This is because dormant cancer cells exhibit higher resistance to apoptosis and their 
survival is independent of stromal support or vascular architecture [17,18]. In fact, when transplanted into a mouse breast cancer 
model, ADSCs were found to inhibit tumor growth by inducing tumor cell apoptosis through Poly ADP ribose polymerase cleavage 
[19]. There is currently no evidence of breast malignant transformation in clinical studies examining the safety of fat grafting [6,12]. 

Considering these contradictory results and the possible hazard of breast cancer re-emergence, more comprehensive studies are 
essential to elucidate the dangers and underlying processes linked to employing ADSCs in autologous fat grafting. Our research 
entailed a thorough examination of gene expression data sourced from the GEO and TCGA databases, aiming to pinpoint mRNAs, 
miRNAs, lncRNAs, and pseudogenes that are co-expressed in ADSCs and breast cancer. To better understand the shared gene 
expression patterns and mechanisms, we further identified lncRNA-miRNA-TF-gene and mRNA-RBP-pseudogene networks. Immune 
Infiltration and pan-cancer analysis suggests potential targets for preventing breast cancer recurrence in fat grafting procedures, 
including AK4, the corresponding transcription factor (TF) ATF3, and RNA binding protein (RBP) MBNL2. Moreover, categorizing 
breast cancer specimens into clusters according to traits associated with ADSCs enhances our study, offering a solid structure for the 
corroboration of our results. 

2. Materials and methods 

2.1. Data acquisition and preprocessing 

We compared the RNA expression profiles of ADSCs and adipose tissue using microarray data obtained from ADSCs before and after 
adipogenic differentiation. Three datasets were sourced from the GEO database: GSE61302 [20] for mRNA profiling, GSE72429 for 
miRNA profiling, and GSE57593 [21] for ncRNA profiling. Gene expression values for GSE61302 were derived from Affymetrix CEL 
files by employing the gcrma package in R software. Simultaneously, the normalizeBetweenArrays algorithm within the limma 
package [22] was employed for background adjustment and data standardization in GSE72429 and GSE57593. We assessed the 
integrity of the normalized array data utilizing the arrayQualityMetrics package, which bases its evaluation on the mean absolute 
deviation of the M value across each array pair. Ultimately, principal component analysis (PCA) was employed to scrutinize differences 
between groups and identify duplications within sample groups [23]. 

For our analysis of breast cancer, we used the ’TCGAbiolinks’ R package [24] to obtain sequence data, including genomic, epi-
genomic, and transcriptomic profiles, as well as corresponding clinical information [25]. A total of 1226 samples were chosen for 
in-depth analysis, from which the anticipated counts and normalized expression rates of genes, expressed in transcripts per million 
(TPM), were extracted. To reduce the numerical span of TPM values, we presented gene expressions as log2(TPM + 1) and merged 
them into a single matrix table. We downloaded 90, 86 and 121 breast cancer samples from the GSE20711 [26], GSE15852 [27], and 
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GSE42568 [28] datasets, respectively, from the GEO database. Datasets from GEO database were used as verification sets, while the 
TCGA dataset served as the training set. 

2.2. Differential mRNA, miRNA, lncRNA and pseudogene analysis 

We obtained normalized mRNA expression matrix files from GSE61302 and miRNA expression matrix files from GSE72429. Profiles 
for lncRNA and pseudogenes were sourced from GSE57593, with gene symbols acquired via probe conversion, contingent on the 
annotation specifics of the platform. In instances where multiple probes corresponded to a single gene symbol, the final expression 
level was determined by averaging the expression levels of the associated mRNAs or noncoding RNAs [29]. Differential expression 
analysis was conducted utilizing the limma package, applying a threshold of an adjusted P value < 0.05 and |log2− fold change| > 1. To 
identify DE transcripts in BC, we used the raw counts data of transcriptomic profiles (mRNA, miRNA, lncRNA, pseudogene) from TCGA 
database, and applied DESeq2 package [30] in R. The DE mRNAs, miRNAs, lncRNAs, and pseudogenes were then visualized through 
volcano and heatmap plots generated with the ggplot2 and pheatmap packages in R. 

2.3. Enrichment analysis and PPI analysis of the shared mRNA in BC and ADSCs 

We identified the common DE mRNAs, miRNAs, lncRNAs, and pseudogenes by plotting Venn diagrams. To delve into the func-
tionalities of these genes, we executed enrichment analyses using two widely used gene function classification systems, namely Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). GO categorizes genes into three functional domains: biological 
process, cellular component, and molecular function [31]. KEGG offers an in-depth overview of cellular functionalities and metabolic 
pathways [32]. Furthermore, we employed Gene-Set Enrichment Analysis (GSEA), a computational approach designed to ascertain 
whether the distribution of genes significantly diverges across two distinct groups [33]. The clusterProfiler [34] and GOplot [35] R 
packages and the Enrichment Map plugin [36] in Cytoscape [37] were used to analyze and visualize the results. 

To identify key genes involved in both BC and ADSCs, we conducted a protein-protein interaction (PPI) analysis on the intersected 
mRNAs. The STRING (Search Tool for the Retrieval of Interacting Genes) online database [38] was utilized to assess the inter-
connectivity between the mRNAs, and only DE mRNAs with a minimum required confidence score of 0.7 were selected for network 
construction. 

2.4. Construction of the shared lncRNA-miRNA-TF-gene and RBP-mRNA-pseudogene networks 

Transcription factors are a group of proteins that possess the ability of attaching to distinct DNA sequences, thereby regulating the 
expression of genes [39]. To predict the interaction between common genes and TFs, we used the TRRUST database [40] and con-
structed a TF-gene regulatory network using Cytoscape. MicroRNAs, a category of endogenous, short non-coding RNAs, orchestrate the 
degradation or translation inhibition of target mRNAs. They are instrumental in the dysregulation of gene expression across a spectrum 
of physiological and pathological states. LncRNAs are longer than 200 bp and play critical roles in gene regulation and 
post-transcriptional mechanisms. A mRNA-miRNA-lncRNA regulatory network was constructed using the ceRNA hypothesis [41], 
where miRNAs act as a bridge between lncRNAs and mRNAs, using the multiMiR package [42] which scans predictions from various 
databases such as TargetScan, miRTarBase, miRanda, and others. 

RNA binding proteins encompass a varied collection of proteins that engage with RNA molecules, including messenger RNAs, non- 
coding RNAs, and other regulatory RNA species [43]. They play a critical role in post-transcriptional modulation of gene expression 
and are implicated in various biological functions, including cell growth, differentiation, and development. We engaged the StarBase 
platform [44] to examine the interplay among mRNA, RBP, and pseudogene expression, leveraging its integration of CLIP-seq, 
degradome-seq, and RNA-RNA interactome data. Using this platform, we developed an RBP-pseudogene-mRNA network and visu-
alized the results using Cytoscape. 

2.5. Pan-cancer analysis of AK4 expression 

To identify the most significant gene in BC and ADSCs, we employed an algorithm that compared the nodes of the RBP-pseudogene- 
mRNA and lncRNA-miRNA-TF-gene networks. AK4 emerged as the sole RNA shared between the two networks, indicating its potential 
as a core regulator in breast cancer and ADSCs. To investigate AK4 expression in pan cancer, we utilized the TCGA database and 
applied Wilcoxon rank-sum test for unpaired groups and paired Student’s t-test for matched samples. AK4 protein expression in normal 
tissues and tumor was examined using immunohistochemical images from the HPA database [45]. Survival analysis, encompassing 
Kaplan-Meier curves and univariate Cox regression, was undertaken to delve into the prognostic impact of AK4’s variable expression 
across 33 cancer varieties, with a concentrated focus on two principal metrics: overall survival (OS) and disease-specific survival (DSS). 

Total mutational burden (TMB) represents the total number of somatic coding anomalies, and an elevated TMB is typically 
associated with increased responsiveness to immune checkpoint inhibitors (ICI) [46]. Microsatellite instability (MSI) data were 
quantified. Notably, high levels of MSI, referred to as MSI-H, are frequently linked with more favorable treatment outcomes [47]. The 
correlation between AK4 gene expression and TMB or MSI was analyzed through Spearman’s method, with the P value indicated by the 
number of ’*’ on the graph. 
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2.6. Correlation between immune cell infiltration and AK4 expression 

The tumor microenvironment (TME) represents a complex ecosystem, encompassing a variety of cell types like immune, stromal, 
and endothelial cells, in addition to non-cellular elements such as the extracellular matrix and soluble factors [48]. These components 
interact with each other and with cancer cells, significantly influencing cancer progression and treatment responses. To assess the 
expression of AK4 at the single-cell level within breast and adipose tissue, we utilized single-cell RNA-seq data available in the HPA 
database. We then employed the ESTIMATE algorithm [49], a gene expression-based method that uses single-sample gene set 
enrichment analysis, to appraise the abundance of stromal and immune cells within the TME across 33 cancer types. Utilizing the 
ESTIMATE package with standard settings, three distinct scores were generated for each of the 33 cancer types: the stromal score, 
immune score, and ESTIMATE score. Post-generation, the connection between AK4 gene expression and these scores was investigated 
using Spearman’s correlation test. 

To delve into the link between AK4 expression and the infiltration of immune cells, we applied CIBERSORT deconvolution analysis 
to approximate the proportions of various immune cell types [50]. Normalized expression data from 33 cancer types were matched 
with 22 immune cell types using the CIBERSORT algorithm. We generated heatmaps of Spearman’s correlations between AK4 
expression and diverse immune cell types. To delve deeper into the connection between AK4 and the immune system, we examined the 
relationship between AK4 expression and immune regulatory genes, encompassing major histocompatibility complexes, immunosti-
mulators, chemokines, and their receptors. 

2.7. Construction and validation of the sample cluster 

AK4 and its corresponding RBP and TF, referred to as the hub genes, were determined to be of utmost importance. Unsupervised 
clustering analysis was performed to discern unique groupings predicated on AK4 expression levels, employing the Consensu-
sClusterPlus package [51] and focusing on the expression profile data of hub genes. We employed the PAM algorithm with 1-Spearman 
correlation distance metric in the analysis, utilizing 1000 bootstrap replicates with each replicate comprising 80% of patients in the 
training set. The K value, indicative of the number of clusters, was varied from 2 to 9 to ascertain the most effective classification. To 
determine this optimal classification, both the consistency matrix and the consistency cumulative distribution function were 
computed. Our analysis revealed the presence of 2 distinct clusters based on the expression levels of AK4. We assessed the overall 
survival of the two clusters using the Kaplan-Meier method. The “KEGG biological process" gene set, obtained from the molecular 
signature database, was utilized to conduct Gene Set Variation Analysis (GSVA) [52]. This analysis was conducted to elucidate the 
alterations in signaling pathways between the two identified clusters. In order to gain deeper insights into the inherent immune 
distinctions between the two molecular subtypes, we conducted a thorough immune analysis. This involved profiling the relative 
abundance of different immune cell types using the CIBERSORT tool. 

2.8. Construction of a random forest model by using DE mRNAs between two clusters 

DE mRNAs between the two clusters were pinpointed using the limma R package, employing a threshold of an adjusted P value 
cutoff of less than 0.05 and a |log2− fold change| greater than 1. Enrichment analysis was performed as previously described. To screen 
for signature genes among the identified DE mRNAs, we employed the randomForest package to construct a model with DE mRNAs as 
response variables and tumor/normal tissues as outcome variables, using the TCGA-BRCA dataset [53]. The model was trained using 
5000 decision trees, and the optimal “mtry" parameter, which signifies the number of variables considered at each split, was deter-
mined through recursive random forest classification across all feasible values. The selection was based on the value with the lowest 
average error rate. The training set underwent sampling with replacement, and the significance of response variables was gauged using 
metrics like mean decrease Gini index, which aided in ranking their relative importance. Genes with an importance score greater than 
5 were considered signature genes for breast cancer. To assess the significance of the signature genes, we generated a gene importance 
plot. 

2.9. Development of ANN models and validation of the prediction model 

To ensure batch effects were removed between the train and test groups, we scored the signature genes identified by the random 
forest model before building the artificial neural networks (ANN) prediction model [54]. We developed an ANN model using the 
neuralnet package, consisting of an input layer, a hidden layer, and an output layer. In ANN, the input layer encompassed the scores of 
all signature genes identified by the random forest model. Conversely, the output layer was comprised of two nodes, signifying 
membership in either the tumor or normal sample group. The ANN model classified a sample as belonging to the tumor or normal 
group based on its score, with higher scores indicating membership in the corresponding group. We validated the effectiveness of the 
ANN model by using data from GSE20711, GSE42568, and GSE15852 to verify the results obtained from the training dataset. The 
model’s proficiency in distinguishing between tumor and normal samples was assessed using the receiver operating characteristic 
(ROC) curve. The model’s discriminative capability was evaluated by the Area under the ROC curve (AUC) values, which span from 
0 to 1, with values exceeding 0.9 denoting exceptional performance. 
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3. Results 

3.1. Data preprocessing and identification of DE transcripts 

We retrieved three datasets from the GEO database: GSE61302 for mRNA profiling, GSE72429 for miRNA profiling, and GSE57593 
for ncRNA profiling. Relevant information was summarized in Table S1. We excluded abnormal samples from GSE61302 using the 
arrayQualityMetrics package, based on the mean absolute deviation of the M value for each array pair before (Fig. 1A) and after 
normalization (Fig. 1B). To assess the effects of normalization on the undifferentiated ADSCs and control groups, we used PCA to 
visualize the disparity before (Fig. S1A) and after normalization (Fig. S1B). Our preprocessing methods effectively reduced systematic 
and dataset-specific biases in the data. 

The results for all DE transcripts analyzed are shown in Table S2. We identified 1304 DE mRNAs, 7 DE miRNAs, and 580 DE 
lncRNAs using a significance threshold of adjusted P value < 0.05 and |log2− fold change| > 0.5, which are visualized in the heatmap 
(Figs. S1C, S1D, S1E) and volcano plot (Fig. 1C, D, 1E). Additionally, we present the results of pseudogene differential analysis in the 
volcano plot (Fig. 1F) and heatmap (Fig. S2F), which identified 282 DE pseudogenes under the shared cut-off value. To explore the 
biological processes linked to the DE mRNAs, we conducted GO annotation analysis. The results showed that the DE mRNAs were 
involved in various processes, such as the response to hypoxia, cell chemotaxis, and defense response to viruses (Fig. 1G). KEGG 
enrichment analysis further highlighted notable enrichment of DE mRNAs across various pathways, encompassing cytokine-cytokine 
receptor interaction, lysine degradation, and the TNF signaling pathway (Fig. 1H). Moreover, by performing differential expression 
analysis on the TCGA-BRCA training dataset, we identified 3854 DE mRNAs, 186 DE miRNAs, 1167 DE lncRNAs, and 305 pseudogenes 
between breast cancer tissues and normal tissues (Fig. S2 A− D). 

3.2. Common mRNA signatures in BC and ADSC 

We classified mRNAs by identifying the intersection between the GSE61302 and TCGA-BRCA databases and evaluating whether 
their expression changes were in the same direction in both datasets. In the context of ADSCs and BC, a mRNA was deemed concordant 
if it displayed changes in the same direction (either upregulation or downregulation) in both conditions. Conversely, a mRNA was 
deemed discordant if it was upregulated in ADSCs but downregulated in breast cancer. A total of 395 overlapping DE mRNAs were 
detected in both ADSC and BC datasets (Fig. 2A), consisting of 173 concordant mRNAs (104 upregulated and 69 downregulated in both 
ADSCs and BC) and 222 discordant mRNAs (77 upregulated in BC but downregulated in ADSCs, and 145 downregulated in BC but 
upregulated in ADSCs). 

GO enrichment analysis revealed over 500 significantly enriched gene functions (Table S3), with discordant mRNAs enriched in 
endothelium development, regulation of vasculature development, and extracellular matrix structural constituent (Fig. 2D). 
Concordant mRNAs were enriched in mitotic nuclear division and chromosomal region. To facilitate interpretation of functional 
enrichment, we employed EnrichmentMap to create a network of GO terms. Concordant mRNAs were significantly enriched in 
’anaphase checkpoint’, ’cell cycle’, and ’chromosome segregation’ (Fig. 2G), while discordant mRNAs were enriched in ’angiogenesis’, 
’BMP signaling pathway’, and ’viral genome replication’ (Fig. 2H). Similarly, KEGG analysis identified significant pathways, with 
discordant mRNAs enriched in ’Toll-like receptor pathway’, ’NOD-like receptor pathway’, and ’MAPK pathway’, and concordant 

Fig. 1. Data preprocessing and identification of DE transcripts between undifferentiated ADSCs and differentiated ADSCs. A¡B A false color 
heatmap of the distances between arrays. Patterns in this plot can indicate clustering of the arrays either because of intended biological or unin-
tended experimental factors (batch effects) before (A) and after normalization (B). C–F Volcano plot showing the distribution of log2− fold change 
and − log10 adjusted P value of all quantified transcripts between the undifferentiated ADSC group and the differentiated ADSC for mRNA (C), 
miRNA (D), lncRNA (E) and pseudogene (F). Blue circles: adjusted P value < 0.05, log2− fold change < − 1; red circles: adjusted P value < 0.05, 
log2− fold change >1. G¡H Scatterplots displaying enriched GO (G) and KEGG (H) terms of DE mRNAs between undifferentiated ADSCs and the 
differentiated ADSCs. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 2. Common gene signatures and enrichment analysis and PPI analysis in BC and ADSCs. A Overlapping mRNA of GSE61302 and TCGA− BRCA 
databases. B Protein-protein interaction network analysis of the overlapping mRNAs, with green and blue circle nodes representing upregulated and 
downregulated mRNAs in ADSCs, while yellow and red circle nodes represent upregulated and downregulated mRNAs in BC. The blue outer ring 
indicates concordant genes, while the yellow outer ring represents discordant genes. C Chromosome distribution of mRNAs in enriched KEGG 
pathways of concordants. D GO enrichment analysis for common significantly regulated mRNAs in ADSCs and BC. E Chromosome distribution of 
mRNAs in enriched KEGG pathways of discordants. F KEGG enrichment analysis for common significantly regulated mRNAs in ADSCs and BC. G¡H 
Enrichment analysis identifying over 500 significantly enriched gene functions clustered using EnrichmentMap and AutoAnnotate in Cytoscape to 
identify the key gene functions among concordants (G) and discordants (H). Nodes represent individual GO terms, with size relating to the log2− fold 
change value in each term and the color indicating the functional category (Red: biological process, Blue: cellular component, Green: molecular 
function). Edges represent connections between nodes that share genes. (For interpretation of the references to color in this figure legend, the reader 
is referred to the Web version of this article.) 
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mRNAs involved in ’beta-Alanine metabolism’, ’PPAR pathway’, and ’ECM-receptor interaction’ (Fig. 2F). We also annotated the 
genomic positions of common DE mRNAs related to important KEGG terms on human chromosomes (Fig. 2C and E). The PPI network 
analysis demonstrated that 115 proteins, translated from the overlapping mRNAs, interacted (Fig. 2B). 

3.3. The common lncRNA-miRNA-TF-gene and pseudogene-RBP-mRNA network in BC and ADSCs 

To identify regulatory pairs, we intersected the differentially expressed mRNAs with the TRRUST database, resulting in 60 TF- 
mRNA pairs and 47 nodes. Using Cytoscape software, we constructed an mRNA-TF network (Fig. S3D) from these pairs. We then 
analyzed the TCGA-BRCA database and the GSE73429 profile to identify shared DE miRNAs, resulting in the selection of hsa-miR- 
130b-3p, hsa-miR-377-3p, and hsa-miR-503-5p (Fig. S3A). 84 common DE lncRNAs (Fig. S3B) and 26 pseudogenes (Fig. S3C) were 
also identified. Based on the common DE miRNAs, target lncRNA and mRNA were predicted using the multiMiR package. The pre-
dicted genes were intersected with the previously generated differential TF-mRNA network to identify 3 DE miRNAs and their cor-
responding target mRNAs (including TF) and lncRNAs. Based on this information, we constructed a lncRNA-miRNA-TF-gene network 
consisting of 23 nodes, including 3 miRNAs, 7 mRNAs (without TF), 7 TFs, and 6 lncRNAs (Fig. 3A). 

We used the StarBase database to download RBP-pseudogene pairs and mRNA-RBP pairs for five RBPs (VIM, MBNL2, ZFP36, 
CELF2, and CBX7) identified in our bioinformatics analysis of BC and ADSCs. As RBPs bind to mRNA and pseudogenes may act as 
competing endogenous RNAs that bind to RBPs, we analyzed the interactions between these RBPs and the DE pseudogenes identified in 
our study. We established an RBP-mRNA-pseudogene network, utilizing the target genes forecasted by the online dataset. The network 
included 57 nodes, consisting of 3 RBPs, 3 pseudogenes, and 51 mRNAs, with 57 edges (Fig. 3B). The network’s core RBP was 
muscleblind like splicing regulator 2 (MBNL2), which exhibited an experimental correlation with 53 significant mRNAs (containing 
RBPs). The results showed that “synapse organization" and “Calcium signaling pathway" were the most significantly enriched GO and 

Fig. 3. Construction of mRNA regulatory network of the overlapping transcripts. A lncRNA-miRNA-TF-gene regulatory network. B RBP-mRNA- 
pseudogene regulatory network, with green and blue circle nodes representing upregulated and downregulated mRNAs in ADSCs, while yellow 
and red circle nodes represent upregulated and downregulated mRNAs in BC. The blue outer ring represents concordant genes, while the yellow 
outer ring represents discordant genes. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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KEGG terms (Figs. S3E and S3F). 

3.4. Pan-cancer analysis of AK4 

AK4, or adenylate kinase 4, is the exclusive mRNA shared among the PPI, lncRNA-miRNA-TF-gene and RBP-mRNA-pseudogene 
networks, and its role in cancer was investigated through pan-cancer analysis. Notable disparities in AK4 mRNA expression levels 
were detected when comparing cancer patients and controls within the TCGA database (Fig. 4A). Specifically, AK4 mRNA expression 
was significantly higher in six tumor tissues, including head and neck squamous cell carcinoma (HNSC), lung squamous cell carcinoma 
(LUSC), lung adenocarcinoma (LUAD), pancreatic adenocarcinoma (PAAD), pheochromocytoma and paraganglioma (PCPG), and 
uterine corpus endometrial carcinoma (UCEC). Conversely, AK4 mRNA expression was significantly lower in six tumor tissues, 
including breast invasive carcinoma (BRCA), bladder urothelial carcinoma (BLCA), cholangiocarcinoma (CHOL), kidney chromophobe 
(KICH), kidney renal papillary cell carcinoma (KIRP), and sarcoma (SARC). Table S4 provides the full names of the abbreviations used. 
Furthermore, we examined AK4 protein expression across a range of tumor and normal tissues, utilizing the HPA database, with the 
findings concisely presented in Table 1. Our analysis revealed variations in AK4 expression levels across different cancer types, with 
lower expression observed in KIRC, LIHC, LGG, and STAD (Fig. 4B), and higher expression noted in skeletal muscle tissues. Immu-
nofluorescence localization studies in Hep-G2 and A-431 cells confirmed that AK4 was primarily located in mitochondria (Fig. 5A). 

OS and DSS were employed to evaluate the prognostic significance of AK4. Kaplan-Meier analysis indicated that low AK4 
expression was associated with favorable OS in CESC, GBM, KICH, LUAD, LGG, PAAD, STAD, and UCEC (Fig. 4C). Cox regression 
analysis identified AK4 as a protective factor for BLCA, CESC, HNSC, KICH, LIHC, LGG, LUAD, PAAD, PRAD, UCEC, and UVM, while 
AK4 expression was a risk factor in KIRC (Fig. 5B). As for DSS, we observed that low expression of AK4 was associated with higher DSS 
in BLCA, CESC, HNSC, KICH, LUAD, LGG, PAAD, STAD, and UCEC (Fig. 5C). Cox regression analysis indicated that AK4 expression 
served as a protective factor in several cancers, including BLCA, CESC, HNSC, KICH, LIHC, LGG, PRAD, PAAD, UVM, and UCEC. The 
results suggest that AK4 could act as an independent prognostic indicator for specific cancers such as CESC, KICH, LGG, STAD, PAAD, 
and UCEC. 

Additionally, we conducted a correlation analysis to ascertain the connection between AK4 expression and both TMB and MSI. In 
cancers such as HNSC, KICH, KIRC, KIRP, LIHC, LAML, PAAD, SKCM, THYM, and UCEC, AK4 expression demonstrated a significantly 
positive correlation with TMB. Conversely, in COAD, the correlation between AK4 expression and TMB was negative (Fig. 4D). 
Moreover, AK4 showed a positive correlation with MSI in UCEC, while a negative correlation was observed in COAD, THCA, and PRAD 
(Fig. 5D). These findings suggest that AK4 may have a role in the response to ICIs in specific cancer types. 

3.5. Tumor microenvironment analysis of AK4 in pan-cancer 

To gain a deeper insight into AK4’s function within the tumor microenvironment, we conducted a comprehensive analysis from 
four perspectives: single-cell sequencing, tumor microenvironment analysis, immune infiltration analysis, and correlation with 
immune-related genes. Using the single-cell RNA-seq data from the HPA database, we investigated AK4 mRNA expression at the 

Fig. 4. AK4 expression and survival analysis in pan-cancer. A AK4 mRNA expression in pan-cancer in TCGA database. B AK4 protein expression in 
BRCA, STAD, BLCA, LIHC, LGG, adipose tissue and skeletal muscle from the HPA database. C The Kaplan-Meier curves for OS between AK4 
expression (red: high AK4 expression; blue: low AK4 expression) in pan-cancer. D The correlation of AK4 expression with TMB (*P < 0.05; **P <
0.01; ***P < 0.001; ****P < 0.0001). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Table 1 
AK4 protein expression in various cancers.  

Tissue Number of samples High expression Low expression Medium expression Not detected 

Brain glioma 11 0 2 2 7 
Breast cancer 11 0 5 3 3 
Cervix cancer 11 0 1 0 10 
Colorectal cancer 13 0 4 5 4 
Endometrial cancer 11 0 4 0 7 
Liver cancer 9 0 3 1 5 
Lung cancer 13 0 0 0 13 
lymphoma 11 0 0 0 11 
Melanoma 9 0 0 1 8 
Ovarian cancer 10 0 2 2 6 
Pancreatic cancer 13 0 3 2 8 
Prostate cancer 12 0 0 11 1 
Renal cancer 12 1 5 6 0 
Skin cancer 10 0 0 0 10 
Stomach cancer 9 0 3 1 5 
Testis cancer 10 4 1 5 0 
Urothelial cancer 6 0 3 0 3  
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cellular level in normal breast (Fig. 6A) and adipose tissue (Fig. 6B). Our analysis demonstrated that AK4 exhibited high expression 
levels in fibroblasts, macrophages, and adipocytes, whereas its expression was lower in most other individual cell types. We utilized the 
ESTIMATE algorithm to probe the relationship between AK4 expression and both stromal and immune scores across 33 types of cancer. 
Our analysis showed that AK4 expression was negatively correlated with stromal and immune scores in ACC, CESC, LUSC, SARC, 

Fig. 5. AK4 expression and survival analysis in pan-cancer. A Immunofluorescence staining of the subcellular localization of AK4 in HPA database. 
B The univariate regression for OS in pan-cancer. C The univariate regression for DSS in pan-cancer. D The Kaplan- Meier curves for DSS between 
AK4 expression (red: high AK4 expression; blue: low AK4 expression) in pan-cancer. E The correlation of AK4 expression with MSI (*P < 0.05; **P <
0.01; ***P < 0.001; ****P < 0.0001). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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SKCM, UCEC, and TGCT, while it was positively correlated in BLCA, THCA, and UVM. Moreover, AK4 expression displayed either a 
positive or negative correlation with stromal scores and immune scores in specific cancer types (Fig. 6C). Subsequently, we explored 
the relationship between AK4 expression and the infiltration of Macrophages M0, employing Spearman correlation analyses. Our 
results showed that AK4 was positively related to Macrophages M0 in 21 cancers, with the correlation coefficient greater than 0.2 in 5 
cancers (Fig. 6D and E). Furthermore, AK4 exhibited either a positive or negative correlation with the infiltration of 21 other immune 
cell types in the majority of the analyzed cancers. 

In alignment with our objective of comprehending the role of AK4 in the TME, we explored the correlation between AK4 expression 
and immune regulatory genes across 33 different types of tumors. Major histocompatibility complex (Fig. S4A), chemokine receptors 
(Fig. S4B), and chemokines (Fig. S4C) were among the genes of interest. Our findings indicate that in certain cancers, AK4 expression 
exhibited a significant and positive correlation with immune regulatory genes. Additionally, we observed that AK4 was positively 
correlated with immune checkpoint genes, including CTLA4, TIGIT, PD-1, PD-L1 (CD274), LAG3, SIGLEC15, HAVCR2, and 
PDCD1LG2, in the majority of the analyzed cancers (Fig. S4D). 

Fig. 6. Tumor microenvironment analysis of AK4 in pan-cancer. A¡B Single-cell analysis of AK4 in adipose tissue (A). and breast tissue (B). C The 
heatmap of the correlation between AK4 expression and the stromal score, immune score. D Heatmap of AK4 expression correlation with 24 tumor 
infiltrating cells (*P < 0.05; **P < 0.01; ***P < 0.001). E The correlation between AK4 expression and Macrophages M0 level in ACC, KICH, KIRC, 
MESO and UCS. 
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3.6. Identification of two molecular subtypes based on AK4, ATF3, and MBNL2 expression 

We identified AK4, its corresponding RNA-binding protein MBNL2, and transcription factor ATF3 as hub genes of utmost 
importance. By employing the ConsensusClusterPlus package in R software and a consistent clustering methodology grounded on the 
expression of these three signature genes, we delineated two hub gene-based patterns, denoted as cluster 1 and cluster 2. We visualized 
the clustered data in heatmaps based on the multiplied relative expression levels in the two clusters, with 417 samples in Cluster 1 and 
696 samples in Cluster 2 (Fig. 7A). Additionally, t-SNE analysis confirmed that the clusters were well-distributed (Fig. 7B). Further 
analysis was undertaken to contrast the overall survival times between the two clusters, revealing that Cluster 1 exhibited a notably 
shorter survival duration relative to Cluster 2 (P = 0.01) (Fig. 7C). To delve into the connection between the enriched pathways and the 
prognosis of hub gene-based clusters, we executed GSVA to assess the relative expression disparities of pathways in the two clusters. 
The GSVA analysis unveiled a multitude of differentially expressed pathways, which were depicted in a heatmap (Fig. 7D). Our 
analysis showed that cluster 1 had higher expression levels of pathways related to autophagy, apoptosis, ErbB signaling pathway, and 
ECM receptor interaction compared to cluster 2. Conversely, cluster 2 had lower expression levels of energy metabolism-associated 
pathways such as oxidative phosphorylation and cardiac muscle contraction. In addition, our statistical analysis showed significant 
differences in the immune status of the two molecular subtypes, particularly in NK cells and T cells (Fig. 7E). 

3.7. Screening of BC signature genes based on DEG between two distinct clusters and development of ANN models 

To compare the differences between the two hub gene-based patterns, we identified 162 DE mRNAs between cluster 1 and cluster 2 
(Table S5). Subsequently, we examined the impact of DE mRNAs between the two clusters on the biologically relevant functions of 
patients (Fig. 8A). KEGG analysis revealed that these DE mRNAs were enriched in pathways related to ECM-receptor interaction, the 
MAPK pathway, and regulation of actin cytoskeleton (Fig. 8B). 

To assess the significance of the hub genes and validate their diagnostic utility, we constructed a random forest classifier using the 
DEGs between the two hub gene-based patterns as response variables in the TCGA database. After optimizing the parameters, we found 
that the optimal mtry value for random forest selection was 2 and the number of decision trees was 5000 (Fig. 8C). We then ranked the 
importance of the hub genes. The genes that ranked highest in significance included CACHD1, CHRDL1, SRPX, MME, SPRY2, NTRK2, 
FMO2, MSRB3, ADIPOQ, EGFR, DST, ECRG4, MYLK, and PROS1, each with a MeanDecreaseGini index exceeding 5, indicating their 
significant contribution to the accuracy of the model (Fig. 8D). 

Subsequently, we applied the ANN algorithm to optimize the weight values of each gene, converting the expression data of the 14 
DE mRNAs into a Gene Score. The control and experimental samples were aggregated in the model, enabling the distinction of 
pathogenic gene expression between normal and BC samples (Fig. 8E). We calculated the AUC of our diagnostic prediction model using 
the pROC package, which was 0.938, indicating the excellent predictive power of our model (Fig. 8F). We further validated our model 
on three independent datasets (GSE20711, GSE42568, GSE15852) and found that the AUCs of these datasets were 0.994, 0.973, and 
0.995, respectively (Fig. 8G). These findings indicate that our BC diagnostic prediction model can function as an independent predictor 
of BC. 

4. Discussion 

Recent research has shown that breast cancer is not simply a disease of malignant cells, but rather a complex ecosystem comprising 
a diverse range of non-cancerous cells and their interactions within the tumor microenvironment. These non-cancerous cells include 

Fig. 7. Consensus clustering analysis of hub gene in the TCGA-BRCA cohort. A Heatmap of consensus matrix k = 2 in the TCGA-BRCA cohort. B T- 
SNE analysis of clusters. C Kaplan-Meier curve of overall survival in two clusters of the TCGA-BRCA cohort. D Heatmap illustrating the result of 
GSVA analysis between two clusters of the TCGA-BRCA cohort. E Boxplot depicting the enriching level of 22 immune-related cells evaluated by 
CIBERSORT algorithm between two clusters. 
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stem cells, immune cells, fibroblasts, and endothelial cells, among others. ADSCs are particularly crucial for the survival of autologous 
fat transplantation, a popular technique for breast reconstruction after cancer surgery. However, the relationship between ADSCs and 
breast cancer is not fully understood, and it is unclear whether ADSCs promote or inhibit tumorigenesis. To address this gap, we 
utilized various bioinformatics analyses to identify shared molecular pathways between ADSCs and breast cancer. 

In this study, we downloaded ADSC datasets (GSE61302, GSE57593, GSE72429) and BC datasets. Our results present compelling 
genetic proof that ADSCs have a dual role in breast cancer, exhibiting both promoting and inhibitory effects on tumorigenesis. Spe-
cifically, 173 mRNAs were commonly upregulated or downregulated in both breast cancer and ADSCs, while 222 mRNAs exhibited 
differential regulation in breast cancer and ADSCs, further highlighting the complex interplay between ADSCs and breast cancer. In GO 
and KEGG enrichment analyses, the concordant mRNAs were primarily associated with cell proliferation, suggesting a promoting 
effect on tumorigenesis. The discordant mRNAs were related to angiogenesis, extracellular matrix constituent, and fat cell differen-
tiation, which align with the known stromal behavior of ADSCs and further support their dual role in breast cancer. 

Previous studies have emphasized the significance of ceRNA interactions in various diseases. However, these studies have pre-
dominantly concentrated on the competitive interplays between two molecules, overlooking the existence of numerous competitive 
connections inherent within cancer. To overcome this limitation, we conducted an extensive investigation of RBP-pseudogene-mRNA 
and lncRNA-miRNA-TF-gene networks. This approach allowed us to gain a more comprehensive understanding of the complex 
interplay among multiple molecules involved in cancer. In the mRNA-RBP-pseudogene network, MBNL2 was the sole RBP detected and 
displayed known regulatory associations with several pseudogenes and mRNAs, highlighting its potential role as a crucial regulatory 
gene within the ceRNA network. Research has shown that RNA-binding protein MBNL2 modulates tumor cell proliferation and DNA 
damage response by post-transcriptional regulation of target genes, including the modulation of the PI3K/AKT pathway and the 
protein levels of p21 [55]. These regulatory mechanisms affect DNA damage response and repair mechanisms, leading to changes in 
tumor cell fate after DNA damage. Juan Zhang et al. [56] reported that Neobractatin can efficiently inhibit metastasis of breast and 
lung cancer cells, partly by upregulating the expression of MBNL2. They found that MBNL2 was significantly downregulated in breast 
and lung carcinoma tumor tissues. Collectively, these discoveries imply that MBNL2 may hold a pivotal role in the regulation of gene 
expression and could potentially emerge as a therapeutic target not only for breast cancer but also for other forms of cancer. 

Transcription factors are different from RBPs in that they exert control over gene expression at the transcriptional level. Several 
studies have demonstrated the regulatory role of various transcription factors in breast cancer pathogenesis [57]. To identify key 
transcription factors in BC and ADSCs, we obtained lncRNA-miRNA-TF-gene pairs by combining DE miRNAs and DE lncRNAs. In the 
ceRNA network, AK4 is regulated by the ATF3, a stress-induced transcription factor that plays a critical role in the cellular 
adaptive-response network by regulating metabolism, immunity, and oncogenesis [58]. ATF3 possesses the capacity to serve as both a 
transcriptional activator and a transcriptional repressor. In mammary tumors, it has been demonstrated to activate the canonical 
Wnt/β-catenin pathway, leading to the upregulation of genes associated with cancer cell metastasis [59]. Furthermore, ATF3 has been 
demonstrated to regulate adipose tissue through several mechanisms, including the downregulation of adipocyte differentiation, 
promotion of beige and brown cell differentiation, and inhibition of adipogenesis and lipogenesis [58]. These findings further support 
the notion that ATF3 may hold a significant role in both BC and ADSCs. Furthermore, ATF3 serves as a vital regulator of immune 

Fig. 8. Differential analysis between two hub genes-based patterns. A-B Scatterplots displaying enriched GO (A) and KEGG (B) terms of DE mRNAs 
between two clusters. C The relationship between the number of decision tree and the model error. D Random Forest algorithm showed the most 
important candidate genes. E artificial neural network which is divided into three layers. On the left is the input layer, which is the score of the 
fourteen signature genes. In the middle is a hidden layer containing 5 knots. On the right are an output layer containing normal and tumor sample 
junctions. F-G Receiver operating characteristic (ROC) curve of the ANN in training dataset (F) and validation datasets (G). 
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responses and the preservation of host defense mechanisms. This is exemplified by its induction in response to various Toll-like re-
ceptors (TLRs), encompassing TLR4, 2/6, 3, 5, 7, and 9 [60]. Therefore, investigating the immunological role of ATF3 in breast cancer 
and adipose-derived stem cells may provide new insights into its function in these contexts. 

Our study has identified AK4 as the common mRNA most closely related to both ADSCs and BC. AK4 belongs to the adenylate kinase 
family, which holds a pivotal role in cellular energy metabolism and the maintenance of adenine nucleotide homeostasis within 
various subcellular compartments [61]. Specifically, adenylate kinases facilitate the reversible transfer of a phosphate group from ATP 
to AMP, resulting in the formation of two molecules of ADP. AK4 has been shown to interact with ADP/ATP translocase and indirectly 
modulate mitochondrial membrane permeability, indicating a potential role in regulating mitochondrial function. To further explore 
the relationship between AK4 and various cancers, we conducted a pan-cancer analysis, which unveiled a downregulation of AK4 in 
both ADSCs and BC. Our results suggest that AK4 downregulation in both ADSCs and BC is a protective factor against breast cancer, 
providing further evidence for the anti-tumor effect of ADSCs. Consistent with our results, several studies have provided evidence that 
elevated AK4 expression is strongly linked to tumor metastasis and drug resistance, primarily through the regulation of mitochondrial 
activity and oxidative stress [62]. Specifically, AK4 has been demonstrated to contribute to tamoxifen resistance in BC through 
mechanisms such as the attenuation of mitochondrial apoptosis, heightened production of reactive oxygen species, and increased 
activation of p38, all mediated by an m6A-mediated epitranscriptomic mechanism [63]. Considering the evidence presented, it is 
reasonable to posit that AK4 holds promise as a potential novel molecular biomarker for both cancer diagnosis and prognosis. It is 
prudent to advocate for further exploration and research in this direction to fully realize its potential. 

To delve deeper into the potential significance of AK4, we conducted an exploration of its correlation with immune cell infiltration. 
Given the significant contribution of mitochondria function to the control of inflammation, it is clear that the adenylate kinase family 
present in mitochondrial compartments are integrated into the network of inflammatory modulators [64]. A retrospective study has 
demonstrated a connection between AK1 and the season of conception and fetal sex through metabolic adaptability and immune 
modulation to environmental changes during conception [65]. Our research revealed a positive correlation between AK4 expression 
and M0-type macrophage expression in various tumors, including ACC, KICH, MESO, and UCS, based on CIBERSORT analysis. 
Furthermore, single-cell analysis in our research showed that AK4 was substantially upregulated in fibroblasts and macrophages. A 
more in-depth investigation into AK4 expression in fibroblasts and their role in interactions within the immune microenvironment, 
particularly the intricate mechanisms connecting fibroblasts with immune cells, has the potential to yield innovative strategies for BC 
immunotherapies. 

In the last decade, cancer immunotherapy, including ICIs such as PD-1 inhibitors, has demonstrated significant clinical progress 
[66]. Our study revealed a significant positive correlation between AK4 expression and PD-L1 in 16 tumors, as well as a high cor-
relation with TMB in 10 tumors, suggesting the potential of AK4 as a target in immunotherapy. The adenylate kinase family plays a 
crucial role in the eADO-generating pathway, which regulates both innate and adaptive immune responses [67]. Ecto-AK, a secreted or 
membrane-associated form of adenylate kinase, can phosphorylate extracellular AMP to generate eATP. Furthermore, CD39 and CD73 
hydrolyze eAMP and eATP to produce immunosuppressive adenosine(eADO) [68]. Inhibitors of eADO-generating enzymes, such as 
ecto-AK, have been shown to promote antitumor immunity [67]. Thus, adenylate kinase might have a role in cancer immunotherapy 
by modulating the levels of eADO and affecting the immunosuppressive adenosinergic axis. Additionally, MSC-derived extracellular 
vesicles (EVs) have been shown to contain enzymatically active glycolytic enzymes, ATPases, and ATP-generating enzymes, including 
adenylate kinase [69]. This suggests a potential role for ADSC-derived EVs in regulating energy metabolism and anti-cancer immu-
notherapy. Nevertheless, the precise function of AK4 in the context of cancer immunotherapy remains incompletely understood, and 
additional research is required to unravel its underlying mechanisms and implications. 

A previous study reported an association between aberrant expression of AK4 and heightened malignancy in lung cancers through 
downregulation of the transcription factor ATF3 [70]. Given the significant role of AK4 in tumor drug resistance and metastasis, which 
may be related to its corresponding transcription factor ATF3 and RNA-binding protein MBNL2, we performed clustering analysis 
based on the expression levels of AK4, ATF3, and MBNL2. We used random tree machine learning classifiers based on these DE mRNAs 
between two clusters and selected fourteen mRNAs with a MeanDecreaseGini index greater than 5 to build our machine learning 
models. Our artificial neural network yielded the best diagnostic performance with AUC values of 0.994, 0.973, and 0.995, indicating 
its excellent ability to distinguish between breast cancer and non-breast cancer cases. These results provide new insights into breast 
cancer diagnosis and highlight the potential of machine learning for improving disease management and developing innovative 
therapeutic options. 

Several limitations of our study need to be addressed. Firstly, mRNA validation was conducted using online and GEO datasets 
instead of experimental validation. Additionally, the information on miRNA, lncRNA, RBP, TF, pseudogene and mRNA targets was 
collected from TRRUST, STRING and StarBase database, which may not be exhaustive due to data recording limitations. Secondly, it is 
imperative to conduct both clinical and experimental studies to validate the differential expression levels of the 14 DE mRNAs in breast 
cancer patients. Additionally, collecting a more comprehensive set of clinical features is essential to further validate the performance of 
the predictive model. Despite these limitations, our study offers valuable insights into the molecular mechanisms driving the devel-
opment and progression of breast cancer, particularly in relation to the protective relationship between AK4 and breast cancer. Future 
research can build upon these findings to validate the predictive model’s performance and elucidate the complex pathways involved in 
adenosine metabolism and shared pathological processes in ADSCs and breast cancer. 

5. Conclusions 

In conclusion, our study uncovered the dual role of ADSCs in breast cancer at the genetic level, with both promoting and inhibitory 
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effects on tumorigenesis. Through various bioinformatics analyses, we constructed PPI, lncRNA-miRNA-TF-gene and RBP-mRNA- 
pseudogene networks to comprehensively investigate the shared mechanisms of BC and ADSCs and identified AK4 as a key protec-
tive mRNA in pan-cancer. Our findings suggest that immune cells and AK4 may be critical susceptibility factors for BC and have 
potential as biomarkers or therapeutic targets for immunotherapy. Additionally, we identified 14 genes based on the AK4 cluster and 
developed a robust diagnostic prediction model for breast cancer using an artificial neural network, which may aid in the development 
of new diagnostic tools. Despite the limitations of our study, these results provide valuable insights into the molecular mechanisms of 
breast cancer and its relationship with ADSCs and offer potential targets for further research and the development of novel therapeutic 
options. 
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