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Abstract
Calcium oxalate (CaOx) crystal deposition within the tubules is often a perplexing finding on renal biopsy of both native and 
transplanted kidneys. Understanding the underlying causes may help diagnosis and future management. The most frequent 
cause of CaOx crystal deposition within the kidney is hyperoxaluria. When this is seen in native kidney biopsy, primary 
hyperoxaluria must be considered and investigated further with biochemical and genetic tests. Secondary hyperoxaluria, 
for example due to enteric hyperoxaluria following bariatric surgery, ingested ethylene glycol or vitamin C overdose may 
also cause CaOx deposition in native kidneys. CaOx deposition is a frequent finding in renal transplant biopsy, often as a 
consequence of acute tubular necrosis and is associated with poorer long-term graft outcomes. CaOx crystal deposition in 
the renal transplant may also be secondary to any of the causes associated with this phenotype in the native kidney. The 
pathophysiology underlying CaOx deposition is complex but this histological phenotype may indicate serious underlying 
pathology and should always warrant further investigation.
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Introduction

Calcium oxalate (CaOx) crystal deposition within the 
nephron [1–3], tubular cells [4] or interstitium [5] are 
sometimes found by the histopathologist examining a renal 
biopsy. CaOx, along with calcium phosphate (CaP) deposi-
tion may lead to nephrocalcinosis [6, 7], although in practice 
CaOx crystal deposition is often referred to as renal oxalosis 
or oxalate nephropathy. Bagnasco et al. examined biopsies 
of both native and transplanted kidneys over the course of 
6 years [6]. Overall, 1% of native kidney biopsies and 4% 

of transplanted kidney biopsies demonstrated CaOx crystal 
deposition.

The presence of CaOx crystal deposition within a renal 
biopsy may indicate serious underlying pathology and indi-
cate an underlying diagnosis that may not have previously 
been considered [7, 8]. Of particular relevance are the pri-
mary hyperoxalurias (PH), which may cause end stage kid-
ney disease and may recur following kidney transplantation. 
The diagnosis of PH has potentially life-changing effects 
with a broad range of treatment options, up to and including 
dual kidney and liver transplant [9, 10].

Crystalluria, although associated with hyperoxaluria [11], 
is an uncommon finding [12–14]. There are no descriptions 
of the association between CaOx crystalluria and renal oxa-
losis. Here we aim to explore the causes of CaOx crystal 
deposition within a renal biopsy and therefore the implica-
tions and future management for the patient. We will review 
the histological appearances, the substrates that are most 
likely to cause CaOx crystal deposition and the pathophysi-
ology associated with CaOx crystal deposition.
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Histology of calcium oxalate deposition

Oxalate crystals precipitate in renal tubules causing tubular 
injury and in the longer term, interstitial fibrosis and tubular 
atrophy. They have a clear appearance on light microscopy 
[15] (Fig. 1a) but are much more easily seen when viewed 
under polarised light where they show bright birefringence 
(Fig. 1b). Particularly abundant crystals are typically asso-
ciated with PH or ethylene glycol ingestion. Lesser degrees 
of deposition can be seen in a wide variety of conditions, 
which are discussed below. The main pathological differen-
tial diagnosis is 2,8 dihydroxyadenine crystalline nephropa-
thy other cause of polarisable crystals seen in the kidney by 
the histopathologist. These patients, with biallelic mutations 
in APRT, have adenine phosphoribosyltransferase deficiency 
and often develop recurrent nephrolithiasis. Diagnosis can 

be challenging but the crystals can be distinguished from 
calcium oxalate crystals by their brown colour on haema-
toxylin and eosin staining [16].

Calcium and oxalate: a tale of two substrates

Hypercalciuria and hyperoxaluria are both known to cause 
crystal deposition within the kidney [17]. In patients with 
hypercalciuria, the primary crystal deposited is CaP [2], 
this nidus may form the focus of aggregation for either CaP 
or CaOx [18] This variable aggregation has been demon-
strated in vitro [19], in rat models [17, 20], and observed 
in humans [2]. However, in patients with hyperoxaluria the 
predominant crystal type is CaOx [21]; this has again been 
demonstrated in a rat model [17], in vitro [4, 5, 22] and in 
humans [2].

Crystal type and the components of subsequent aggrega-
tion are dependent upon specific locations along the nephron 
and degrees of supersaturation. In the urinary space, it seems 
that a CaP nidus initiates subsequent CaOx aggregation in 
the in vitro model [19], as in nephrolithiasis.

In the kidney, the type of crystal deposition appears to be 
different dependent on the location along the nephron. CaP 
crystals have been observed in the interstitium surrounding 
the ascending thin limb of the loop of Henle [2], in stone-
forming patients with hypercalciuria. CaOx crystal deposi-
tion is typically seen more distally, having been observed 
within the collecting duct and the interstitium surrounding 
it [1, 14].

The situation therefore appears that in hypercalciuria, 
CaP crystals are deposited within and around the nephron, 
especially near the loop of Henle. By contrast, in hyperox-
aluria, CaOx crystal deposition is found within collecting 
duct nephron segments. To test this hypothesis, Khan and 
Glenton examined hypercalciuric mice with increasing lev-
els of oxaluria [20]. They demonstrated that in the genetic 
hypercalciuric stone-forming (GHS) rat model before die-
tary manipulation, only CaP crystals were formed. However, 
as the oxalate precursor hydroxyproline was added to their 
diet, CaOx crystals were observed. As hydroxyproline con-
centrations increased, inducing a hyperoxaluria, the crystal 
type switched to become entirely CaOx. This suggests that 
intrarenal CaOx crystal formation is dependent upon hyper-
oxaluria rather than hypercalciuria.

The mechanism of CaOx deposition within the kidney 
is subject to several factors. These include supersatura-
tion and precipitation, crystal aggregation and deposition 
within the tubule/epithelium/interstitium. Several studies 
have demonstrated that hyperoxaluria induces intratubular 
precipitation of CaOx crystals located in the collecting duct 
[1, 23]. There are two potential mechanisms by which crys-
tal passage through the tubule is inhibited (crystal reten-
tion). They have either aggregated and become too large [24, 

Fig. 1   a = Oxalate nephropathy. A transplant kidney biopsy show-
ing calcium oxalate crystals in dilated tubules. The crystals are clear 
with a refractile quality on routine microscopy (haematoxylin and 
eosin × 400). b = Oxalate nephropathy. The same calcium oxalate 
crystals exhibit bright birefringence when viewed under polarised 
light (polarised haematoxylin and eosin × 400)
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25], or they have adhered to the epithelium [26]. Following 
either of these mechanisms, CaOx crystals then migrate 
into the epithelium [27] and interstitium [5]. The process 
behind this migration is unclear. However, crystal contain-
ing macrophages have been observed in both animal [28, 
29] and human [30] epithelium/interstitium. Therefore active 
removal by macrophages is a possible mechanism for this 
observation, although this has yet to be demonstrated.

Pathologies associated with calcium oxalate crystal 
deposition

CaOx crystal deposition may be noted in both native and 
transplanted kidneys, as a consequence of hyperoxalu-
ria. Oxalate has both endogenous and exogenous sources 
[31, 32] and both are equally able to induce hyperoxalu-
ria (defined as > 40–45 mg per 24 h or > 0.45–0.5 mmol 
per 24 h). Tubular CaOx deposition leading to acute or 
chronic tubular injury, interstitial fibrosis and progressive 
renal insufficiency is termed oxalate nephropathy or renal 
oxalosis.

Both native and transplanted kidneys are susceptible 
to hyperoxaluria and subsequent oxalate nephropathy and 
the causes for hyperoxaluria and crystal deposition differ 
(Table 1).

On light microscopy 2,8-hydroxyadenine crystals may 
mimic CaOx crystals under polarized light, because of 
their high birefringence [15]. However, the finding of 
2,8-hydroxyadenine crystals mimicking CaOx crystals can 
lead to a rare, often missed and important genetic diagnosis 
being made. Likewise, genuine CaOx deposition can lead 
to other important diagnoses being made and should never 
be ignored.

Diabetes mellitus is a common cause of nephropathy 
and it is unclear whether it is associated with renal oxa-
losis. Diabetics have demonstrably higher urinary oxalate 
concentrations than healthy patients [33]. They have also 
been observed to develop oxalate nephropathy in several 
case reports [34, 35]. However, in these case reports, the 
patients had independent risk factors for renal oxalosis 
including Roux-en-Y bypass and increased dietary oxalate. 
Moreover, CaOx crystals are not among the number of his-
tological features of diabetic nephropathy [36, 37]. A large 
study of cadaveric renal biopsies examined risk factors asso-
ciated with renal oxalosis [38] Diabetes mellitus was shown 
not to be associated with renal oxalosis. Therefore, if CaOx 
crystals are seen on renal biopsy of a patient with diabetes, 
the likely driving factor is hyperoxaluria. The type and cause 
of hyperoxaluria should therefore be investigated as this may 
lead to important changes in patient management.

Primary hyperoxaluria

Primary hyperoxaluria is a rare autosomal recessive disorder 
associated with renal CaOx crystal deposition. Oxalate is an 
end metabolite for glyoxylate and the three types of primary 
hyperoxalurias (PH1-3) affect enzymes of glyoxylate metab-
olism. The enzymes implicated are: alanine glyoxylate ami-
notransferase (PH1) [39], glycolate reductase/hydroxypyru-
vate reductase (PH2) [40] and 4-hydroxy-2-ketoglutarate 
aldolase (PH3) [41, 42]. These disorders tend to present in 
childhood to early adolescence with severe recurrent nephro-
lithiasis, although given some may be asymptomatic (espe-
cially PH3), they may not present until the development of 
advanced renal failure. PH may also present in late adult life 
with calcium oxalate stone formation or insidious chronic 
kidney disease.

Table 1   Causes of Calcium Oxalate crystal deposition within the native and transplanted kidney

Calcium oxalate crystal deposition

Native kidney Transplanted kidney
Primary hyperoxaluria – types 1–3 Causes as per native kidney
 Secondary hyperoxaluria: Transient hyperoxaluria due to sudden increase in GFR and 

previous systemic oxalosis secondary to end stage kidney 
disease

 Enteric hyperoxaluria (fat malabsorption) Acute tubular necrosis
 High oxalate diet Chronic allograft nephropathy
 Ethylene glycol intoxication
 Thiamine/Pyridoxine deficiency
 Vitamin C overdose (precursor of oxalic acid)
 Orlistat use
 Alterations in intestinal flora
 Genetic variations of oxalate transporters

Acute tubular necrosis



380	 Urolithiasis (2020) 48:377–384

1 3

The majority of cases are PH1, which have the most 
severe disease phenotypes. PH1 and PH2 both cause pro-
gressive nephrocalcinosis, nephrolithiasis and renal dam-
age resulting in early end stage renal failure [13, 26–28]. 
With the progressive decline in renal function comes rising 
plasma oxalate levels. At a glomerular filtration rate < 45 ml/
min/1.73  m2 plasma oxalate concentrations exceed the 
supersaturation threshold leading to systemic deposition of 
CaOx (systemic oxalosis) [43]. This leads to early death if 
left untreated [44].

It is unclear if patients with PH3 have the same natu-
ral history as PH1/2 given its rarity and recent description. 
Recent data has shown children with PH3 show a decline in 
renal function [45]. However, there remains a lack of long-
term follow-up data to allow for an accurate description of 
its clinical course. It is possible that all types of PH may 
present with unexplained chronic kidney disease and CaOx 
crystal deposition on renal biopsy.

Secondary hyperoxalurias

Secondary hyperoxaluria may be due to a number of differ-
ent causes. The passage of oxalate through the body helps 
illustrate why differing mechanisms cause hyperoxaluria. 
There is a large oxalate content in certain foods [46], which 
is both metabolized by gut commensals (Oxalobacter formi-
genes) [47] and absorbed into the enterohepatic circulation 
[48, 49]. Absorbed oxalate is then filtered and excreted in the 
kidney [48, 49] along with oxalate produced as an end-point 
of glyoxylate metabolism.

At each of these points, excess oxalate may occur. Case 
reports describing high intakes of oxalate containing foods 
[46] or vitamin C [50] (which is catabolized into oxalate) are 
associated with hyperoxaluria. Deficiencies, dietary or oth-
erwise, in thiamine or pyridoxine [51–54], deliberate inges-
tion of orlistat [55] or ethylene glycol [56, 57] may also lead 
to hyperoxaluria. High doses of vitamin C [50], some foods 
[58–61], excessive dieting [62] and ethylene glycol [56] have 
been demonstrated to induce acute oxalate nephropathy.

The gut commensal Oxalobacter formigenes, catabolizes 
oxalate thus diminishing gut absorption [63, 64]. There has 
been an attempt to exploit this phenomenon for PH, which 
showed initial promise, but unfortunately failed in phase II/
III trials [65]. Although touted as a treatment, there have not 
been further studies of its effectiveness to treat secondary 
hyperoxaluria.

Several case reports have associated hyperoxaluria with 
bariatric surgery [66, 67] as well as chronic pancreatitis 
[68, 69], with both conditions associated with acute oxa-
late nephropathy [66, 68]. Increased oxalate absorption is a 
function of fat malabsorption (enteric hyperoxaluria). In the 
normal state, oxalate is bound to calcium within the gut. Fat 

malabsorption leads to free fatty acids binding to calcium, 
leaving the oxalate in its absorbable, ionised state [49].

Mice and humans with genetic variations of gut oxalate 
transporters have also been demonstrated to have increased 
urinary oxalate [70] Deletion of Slc26a6 in mice [71, 72] 
along with variants V185M in the SLC26A6 transporter in 
humans [73] have both been associated with hyperoxaluria. 
None of these studies performed renal biopsies and therefore 
further study is required to see if these are risk factors for 
oxalate nephropathy and CaOx deposition.

Transplanted kidneys

Around 4% of transplanted kidneys will display CaOx crys-
tals on biopsy [6]. Crystals can be found early or late, dis-
tributed throughout the kidney or only in focal segments.

In the initial post-operative period it is thought that, due 
to the poor renal function indicating the need for transplant, 
there is systemic oxalosis. With the improvement in renal 
function attained by transplantation there is rapid excretion 
of the excess oxalate. This leads to a transient hyperoxaluria 
with a small proportion developing subsequent renal precipi-
tation of CaOx [74]. There is debate as to whether or not this 
initial transient hyperoxaluria is pathological, and long-term 
outcomes of this have not been proven.

There is more evidence for the implications of CaOx crys-
tals on renal biopsy, albeit conflicting. In the short term, the 
presence of CaOx crystals on graft biopsy up to 3 months 
after transplantation seems to be associated with poorer 
longer term graft survival [75]. Although a later study dem-
onstrated that, although graft function at 1 year was signifi-
cantly poorer in those with CaOx deposition, there was no 
statistically significant difference in renal function at 2 years 
[6]. In this second study however, there was an overall drop 
in both control and crystal graft function in the second year 
compared to the first. It is likely that CaOx crystals are a 
negative prognostic indicator for long-term graft survival in 
the initial period following transplantation. These patients 
should be followed-up closely.

Delayed graft function and acute tubular necrosis (ATN) 
or acute cell‐mediated rejection is associated with focal 
CaOx deposition [76, 77]. The long-term impact of these 
acute events is unclear. The majority of transplanted kidneys 
demonstrated normal function at follow-up [76]. However, 
these observations were underpowered, lacked follow-up 
biopsies, and biochemical data for clinical correlation. The 
authors postulated this observation was due to high oxalate 
excretion using the mechanism previously described. How-
ever, inferring this mechanism from the data is difficult due 
to the lack of clinical context and small numbers of patients.

In the longer term, CaOx crystals are seen on biopsy of 
those with chronic allograft nephropathy [76]. In the two 
patients studied, CaOx crystal deposition was widespread 
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in keeping with chronic renal failure (mechanism discussed 
below). An earlier study by Memeo et al. of forty allograft 
nephrectomies showed 87% had widespread CaOx crystals 
[78]. Again, given the low numbers it is difficult to draw con-
clusions from these case reports, but they suggest CaOx crys-
tals, identified at any point in time from biopsy, are associated 
with long-term graft failure.

Transplanted kidneys can also be affected by any of the 
primary or secondary hyperoxalurias. Failure to diagnose PH 
prior to transplantation may result in early graft failure [79, 
80]. Likewise for secondary hyperoxalurias, failure to recog-
nise may lead to acute kidney injury [81] or even graft failure. 
There have been graft failure case reports for enteric hyperox-
aluria [82, 83] and excessive vitamin C intake [84].

Pathophysiology of renal damage associated 
with crystal deposition

Severe hyperoxaluria has been demonstrated to be clinically 
associated with acute or chronic renal failure, although it 
is unclear which is causative of the other. It is also unclear 
whether mild to moderate hyperoxaluria, such as that seen 
in PH3, is associated with renal damage, despite evidence of 
CaOx crystal deposition in both conditions.

There is a large body of evidence from rat and in vitro mod-
els, and human observation that CaOx crystal deposition is 
associated with renal epithelial damage [4, 5, 85–89]. Differ-
ing structures of CaOx crystals can damage renal epithelial 
cells inducing apoptosis [22]. This body of evidence suggests 
that epithelial injury and progressive inflammation is caused 
by CaOx crystals, rather than CaOx crystals forming second-
ary to renal damage. This explains the findings in PH and 
severe secondary hyperoxaluria.

The observation that CaOx crystals are only found in focal 
segments of acute tubular necrosis in transplanted kidneys 
[76, 77] however, does not fit with the widespread renal dam-
age and CaOx crystals of hyperoxaluria. It implies that CaOx 
crystal deposition seen in this situation is secondary to focal 
epithelial damage [4], rather than crystal precipitation and sub-
sequent epithelial damage.

The pathophysiology of renal oxalosis secondary to severe 
hyperoxaluria has been described. However, the mechanism 
of focal CaOx crystal deposition in acute tubular necrosis 
remains unclear. CaOx crystals on renal biopsy should always 
prompt investigation for serious underlying conditions in both 
the native and transplanted kidney (Table 1), that could lead to 
progressive renal failure.

Conclusion

CaOx crystals identified histologically on renal biopsy are 
indicative of a potential underlying pathology. This finding 
warrants further investigation to determine the cause, the 
most serious of which is PH. Much of the clinical litera-
ture describing conditions associated with CaOx crystal 
deposition are case reports. In the long-term there appears 
to be a potential association between CaOx deposition and 
increased risk of chronic kidney disease. Larger studies are 
needed to examine this association in more depth.
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