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Citrullinemia is a rare autosomal recessive disorder characterized by elevated
concentrations of citrulline in the blood resulting from malfunction of the urea cycle. It
is categorized into two types, types I and II, which are caused by argininosuccinate
synthase 1 (ASS1), and citrin (SLC25A13) gene mutations, respectively. In this study, we
performed genetic analysis on nine Chinese infants with citrullinemia using next-generation
sequencing, which identified a novel mutation (p.Leu313Met) and a rare mutation
(p.Thr323Ile, rs1250895424) of ASS1. We also found a novel splicing mutation of
SLC25A13: c.1311 + 4_+7del. Functional analysis of the ASS1 missense mutations
showed that both significantly impaired the enzyme activity of ASS1, with the p. Thr323Ile
mutation clearly affecting the interaction between ASS1 and protein arginine
methyltransferase 7 (PRMT7). These findings expand the mutational spectrum of ASS1
and SLC25A13, and further our understanding of the molecular genetic mechanism of
citrullinemia in the Chinese population.
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INTRODUCTION

Citrullinemia is a rare autosomal recessive disorder characterized by elevated concentrations of
citrulline in the blood from malfunctions of the urea cycle (Saheki et al., 1987). It is categorized into
two types according to the molecular pathogenesis. Type I citrullinemia (CTLN1, OMIM# 2,15,700)
is caused by argininosuccinate synthase 1 gene (ASS1) mutations, while type II citrullinemia is caused
by citrin gene (SLC25A13) mutations (Woo et al., 2014).

Classic CTLN1 often presents early in the neonatal period in affected individuals with acute
hyperammonemia and neurologic manifestations. If untreated, it can lead to life-threatening
encephalopathy, metabolic coma, and death (Häberle et al., 2002). Late-onset forms of CTLN1
can also occur. These usually have milder phenotypes, including neurodisability, somnolence, and
chronic intermittent hyperammonemia during childhood and adulthood (Häberle et al., 2003).

Type II citrullinemia has two main clinical phenotypes: neonatal intrahepatic cholestatic hepatitis
caused by citrin deficiency (NICCD; OMIM# 6,05,814) and adult-onset type II citrullinemia
(CTLN2; OMIM# 6,03,471) (Saheki and Kobayashi, 2002). NICCD is clinically characterized by
intrahepatic cholestasis and metabolic abnormalities including multiple aminoacidemia,
galactosemia, hypoglycemia, and hypoproteinemia. Most patients improve spontaneously
without medical treatment before 1 year of age. However, some develop severe CTLN2 one or
more decades later (Liu et al., 2014). Patients with CTLN2 suffer from various neuropsychological
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symptoms including disorientation, delirium, seizures, and coma
because of hyperammonemia. Death from brain edema occurs in
some cases (Tabata et al., 2008).

ASS1 is located at chromosome 9q24.11–9q23.12 and contains
16 exons. It encodes the argininosuccinate synthetase enzyme,
which catalyzes the synthesis of argininosuccinate from citrulline,
and aspartate. It is mainly expressed in the periportal hepatocytes
of the liver, but also in most other body tissues (Engel et al., 2009).
At least 153 ASS1 CTLN1 disease-causing mutations have been
reported, of which most are missense mutations distributed
within exons 3–15 (Diez-Fernandez et al., 2017).

SLC25A13 is located at chromosome 7q21.3. It encodes citrin,
which functions as a calcium (Ca2+)-stimulated aspartate-
glutamate carrier. Citrin is expressed in many tissues but most
abundantly in the liver, and is localized to the mitochondrial
inner membrane (Iijima et al., 2001). The first SLC25A13 disease-
causing mutation was identified in a Japanese family with CTLN2
(Kobayashi et al., 1999). Later, some NICCD patients were also
shown to carry homozygous and compound heterozygous
mutations of SLC25A13 (Yamaguchi et al., 2002). To date,
more than 110 pathogenic mutations of SLC25A13 have been
reported, of which most are point mutations or short insertions/
deletions (InDels). These were mainly identified in east Asian
populations, including Japanese, Korean, and Chinese (Zhang
et al., 2017).

There are currently no well-recognized clinical/biochemical
diagnostic criteria for either type of citrullinemia, yet molecular
genetic analysis is critical for the diagnosis of patients. In this
study, we performed genetic analysis of Chinese infants with
citrullinemia using next-generation sequencing (NGS). We also
carried out a functional investigation of ASS1 mutations
identified in this study to better understand the genetic
mechanism of this disease in the Chinese population.

MATERIALS AND METHODS

Subjects
From June 2014 to December 2020, nine infants with
citrullinemia were enrolled in this study. The patients were
diagnosed based on clinical findings and biochemical
characterization. Clinical and biochemical data were
recorded. Whole blood samples were collected for genetic
analysis. A cohort of 100 healthy men was studied as a
control group.

Genetic Analysis
Genomic DNA was extracted from the whole blood of all
recruited subjects using DNA isolation kits (Tiangen, Beijing,
China). A total of 3 µg genomic DNA of affected infants was
used to prepare indexed Illumina libraries according to the
manufacturer’s protocol (Illumina, San Diego, CA,
United States). Coding exons and flanking regions of 165
genes reported to be mutated in disorders of amino acid,
organic acid, and fatty acid metabolism were selected and
captured using the Agilent SureSelect Target Enrichment
System (Agilent, Santa Clara, CA, United States). A list of

the targeted genes is provided in Supplementary Table S1.
The enriched libraries were sequenced on an Illumina HiSeq
2500 sequencer.

After sequencing, low-quality reads and adaptor sequences
were filtered out using the Solexa QA package and the cutadapt
program (https://cutadapt.readthedocs.org/), respectively
(Cox et al., 2010). Clean reads were aligned to the human
reference genome (hg19) using the SOAPaligner program (Li
et al., 2009), which was also used to identify single nucleotide
polymorphisms (SNPs). To detect InDels, reads were realigned
to the reference genome using the Burrows-Wheeler alignment
tool, and InDels were identified with the Genome Analysis
Toolkit (Li and Durbin, 2009; DePristo et al., 2011). The
impact of non-synonymous mutations was assessed in silico
using Polyphen2 and SIFT (Kumar et al., 2009; Adzhubei et al.,
2010), while the effect of splice site mutation was predicted by
MutationTaster (Schwarz et al., 2014). The novelty of the
mutations was confirmed by searching in dbSNP (http://
www.ncbi.nlm.nih.gov/snp/), the 1,000 Genomes Project
(https://www.internationalgenome.org/), and the HGMD
Professional (http://www.hgmd.cf.ac.uk/ac/index.php)
databases. The novel mutations were also confirmed by
Sanger sequencing. Conservation analysis was performed
using CLC Main Workbench Software.

Plasmid Construction
The open reading frame (ORF) of human ASS1 was amplified
by PCR from cDNA and inserted into the Bgl II- and BamH
I-digested pEGFP-N1 vector. p. Leu313Met and p. Thr323Ile
mutations were introduced into wild-type (WT) expression
plasmids by PCR-based site-directed mutagenesis. Then, the
ORFs of WT and mutant ASS1 were amplified and inserted
into the Nde I- and Xba I-digested pCMV5-FLAG vector to
create FLAG-tagged expression plasmids. The ORF of human
PRMT7 was also PCR-amplified and inserted into Nde I and
Xba I sites of the pCMV5-FLAG vector to create expression
plasmids. All plasmids were verified by sequencing. The
sequences of primers used in plasmid construction are
shown in Supplementary Table S2.

Cell Culture and Transient Transfection
Human embryonic kidney cells (HEK 293) were purchased
from Shanghai cell bank (Chinese Academy of Sciences) and
were cultured in Dulbecco’s modified Eagle medium (DMEM)
supplemented with 10% fetal bovine serum, 100 U/ml
penicillin, and 100 μg/ml streptomycin in a humidified
incubator containing 5% CO2 at 37°C. Transient
transfection was carried out using Lipofectamine 2000
(Invitrogen, Carlsbad, CA, United States) according to the
manufacturer’s instructions.

ASS1 Immunoprecipitation and Activity
Assay
ASS1 immunoprecipitation was performed as described
previously with minor modifications (Herrera Sanchez et al.,
2017; Miyamoto et al., 2017). Briefly, FLAG-tagged expression
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plasmids of ASS1 (WT or mutant) and empty vector were
transfected into HEK 293 cells. Two days after transfection,
cells were collected and lysed in NP-40 lysis buffer (Beyotime,
Shanghai, China). The supernatants were collected after
centrifugation at 10,000 × g for 15 min at 4°C and incubated
with anti-FLAG M2 Beads (Sigma-Aldrich, Shanghai, China)
at 4°C for 4 h. The beads were then washed three times with
lysis buffer. Bound proteins were eluted by adding 100 μg/ml
3 × FLAG peptide, and eluted proteins were used for ASS1
activity assays.

For these assays, equal amounts of eluted proteins were
resuspended in reaction buffer (20 mM Tris-HCl, pH 7.8,
2 mM ATP, 2 mM citrulline, 2 mM aspartate, 6 mM MgCl2,
20 mM KCl, and 0.1 U pyrophosphatase) to a final volume of
100 µl. Samples were incubated for 30 min at 37°C, then the
reactions were stopped by the addition of 100 µl molybdate
buffer (10 mM ascorbic acid, 2.5 mM ammonium molybdate,
and 2% sulfuric acid). The accumulation of pyrophosphate was
determined at 660 nm by spectrophotometry. Experiments
were performed in triplicate and repeated three times.

Co-Immunoprecipitation and Western
Blotting
Expression plasmid pCMV5-FLAG-PRMT7 was co-
transfected with pEGFP-ASS1, pEGFP-ASS1-Leu313Met,
pEGFP-ASS1-Thr323Ile, or pEGFP-N1 empty vector into
HEK293 cells. Immunoprecipitation was carried out as
described above. For western blotting, cell lysates and
immunoprecipitates were separated by sodium dodecyl
sulfate polyacrylamide gel electrophoresis and transferred to
nitrocellulose membranes. The membranes were blocked
overnight with 5% (w/v) non-fat milk in Tris-buffered
saline with 0.1% Tween 20, then probed with anti-green
fluorescent protein (GFP) (Sungene, Tianjin, China), anti-β-
actin (Sungene), or anti-FLAG M2 (Sigma-Aldrich, Shanghai,
China) primary antibodies. They were then incubated with
horseradish peroxidase-conjugated goat anti-mouse or goat
anti-rabbit secondary antibodies and visualized by enhanced
chemiluminescence (Sigma-Aldrich).

RESULTS

Patient Characteristics
A total of nine patients (three females, six males) were included in
this study. All had high plasma citrulline levels (>1,00 μmol/L),
and most had elevated levels of blood arginine, methionine, and
threonine. Five patients presented with hyperammonemia.
Patient clinical and biochemical characteristics are summarized
in Table 1.

Mutational Spectrum
Six mutations (15 mutated alleles) of SLC25A13were identified in
the patients through NGS. The most common was c.851_854del
(seven alleles, 47%), followed by c.1638_1660dup23 (four alleles,
27%). A novel splicing mutation of SLC25A13 was identified:
c.1311 + 4_+7del (Supplementary Figure S1), which resulted in a
deletion of “AGUA” at the 5′ splice site. This mutation was not
observed in healthy controls, nor reported in dbSNP, 1,000
Genome Project, or the HGMD Professional databases. It was
predicted to result in splice site changes and be disease-causing by
MutationTaster.

ThreeASS1mutations were detected in the patients, of which a
missense mutation was novel: c.937C > A (p.Leu313Met, shown
in Supplementary Figure S2). The c.968C > T (p.Thr323Ile)
mutation (rs1250895424, shown in Supplementary Figure S3)
was identified by Trans-Omics for PrecisionMedicine (TOPMed)
program previously. The minor allele frequency (MAF) is
0.000008. In the Genome Aggregation Database (gnomAD),
the MAF of this mutation is 0.00002 in Asian population. So
it was a rare mutation. Both mutations were not detected in
healthy controls. And both are located at sites that are highly
conserved among species (Figure 1). They were predicted to be
pathogenic by Polyphen2 and SIFT (Supplementary Table S3).
The mutations identified in this study are summarized in Table 2.

Functional Analyses of Missense Mutations
Because splicing mutation can cause improper intron removal
and alterations of the ORF, functional analyses were performed of
the two ASS1missense mutations. WT and mutant ASS1 proteins
were over-expressed and purified from HEK293 cells. Assays of

TABLE 1 | Clinical and Biochemical characteristics of patients.

Patients
ID

Gender Age of
onset

Blood
ammonia

(9–33 μmol/
l)*

Initial plasma amino acids (μmol/l)

Arginine
(1.5–25)*

Citrulline
(7–40)*

Methionine
(8–35)*

Serine
(20–100)*

Threonine
(15–100)*

Tyrosine
(20–100)*

Ornithine
(15–80)*

P1 Male 18 months 60 89.1 416.9 58.6 32.3 119.9 168.3 39.6
P2 Male 1 month 29 63.2 248.9 312.6 58.0 233.9 283.1 58.5
P3 Male 12 months 26 19.5 115.6 37.2 46.7 80.3 93.8 33.7
P4 Female 2 months 39.8 29.6 100.4 21.9 21.7 71.5 31.3 36.0
P5 Female 1 month 10 24.2 359.1 178.1 21.2 142.6 107.6 48.9
P6 Male 3 months 60 78.8 171.9 41.9 19.6 95.8 326.0 29.9
P7 Male 2 months 43.2 58.1 331.2 49.7 54.1 130.2 125.5 134.7
P8 Male 1 month 119.7 119.7 671.3 40.4 26.2 173.7 52.2 48.2
P9 Female 1 month 23.3 23.3 1924.1 51.8 25.0 16.8 38.3 39.3

The symbol “*” indicates reference value.
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FIGURE 1 | Sequence alignment of ASS1 proteins among species.

TABLE 2 | Mutations detected in included infants.

Mutations Gene Location rsID Type Patients ID

Homozygotes (n = 3) c.851_854del (p.Met285Profs*2) SLC25A13 Exon 9 rs80338720 Frameshift P1
c.851_854del (p.Met285Profs*2) SLC25A13 Exon 9 rs80338720 Frameshift P2
c.1638_1660dup23 (p.Ala554Glyfs*17) SLC25A13 Exon 16 rs80338725 Frameshift P3

Compound heterozygotes (n = 6) c.615+5G > A (p.Ala206Valfs*7) SLC25A13 Intron 6 rs80338717 Frameshift P4
c.640C > T (p.Gln214*) Exon 7 — Nonsense
c.851_854del (p.Met285Profs*2) SLC25A13 Exon 9 rs80338720 Frameshift P5
c.1638_1660dup23 (p.Ala554Glyfs*17) Exon 16 rs80338725 Frameshift
c.851_854del (p.Met285Profs*2) SLC25A13 Exon 9 rs80338720 Frameshift P6
c.1638_1660dup23 (p.Ala554Glyfs*17) Exon 16 rs80338725 Frameshift
c.1311 + 4_+7del§ SLC25A13 Intron 13 — Splicing P7
c.1762C > T (p.Arg588*) Exon 17 — Nonsense
c.851_854del (p.Met285Profs*2) SLC25A13 Exon 9 rs80338720 Frameshift P8
c.968C > T (p.Thr323Ile) ASS1 Exon 13 rs1250895424 Missense
c.937C > A (p.Leu313Met)§ ASS1 Exon 13 — Missense P9
c.970+5G > A Intron 13 — Splicing

The symbol “§” indicates novel mutation. And the symbol “–” indicates no record. NM_014251.3 and NM_000050.4 were used as reference sequences for SLC25A13 and ASS1,
respectively. The italic values mean the numbers of homozygotes or heterozygotes.

FIGURE 2 | Functional analysis of ASS1 mutations. (A) Effect of p. Leu313Met and p. Thr323Ile mutations on ASS1 activity. The enzymatic activity of ASS1
immunoprecipitated from HEK293 cells expressing pCMV5-FLAG empty vector, ASS1-FLAG, ASS1-Leu313Met-FLAG, or ASS1-Thr323Ile-FALG was determined.
Data are normalized to ASS1wild-type protein (lane 2). Three independent experiments were performed. Statistical significancewas determined by one-way ANOVA. (B)
Effect of p. Leu313Met and p. Thr323Ile mutations on the ASS1–PRMT7 interaction. HEK293 cells co-expressing PRMT7-FLAG and GFP, or PRMT7-FLAG with
ASS1-GFP, ASS1-Leu313Met-GFP, or ASS1-Thr323Ile-GFPwere harvested. PRMT7-FLAG was immunoprecipitated using anti-FLAGM2 Beads. Immunoprecipitates
were analyzed by western blotting using anti-GFP and anti-FLAGM2 antibodies. Total cell lysates were analyzed by western blotting using anti-GFP, anti-FLAGM2, and
anti-β-actin antibodies.
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enzyme activity showed that both p. Leu313Met and p. Thr323Ile
mutant proteins had significantly decreased activity compared
with WT (Figure 2A).

PRMT7 was previously reported to interact with ASS1 (Verma
et al., 2017), so we next investigated the effect of the mutations on
this interaction. Co-immunoprecipitation experiments using
FLAG-tagged PRMT7 and GFP-tagged ASS1 revealed similar
expression levels of the two mutant proteins with that of WT
ASS1 in HEK293 cells. A similar amount of p. Leu313Met mutant
protein to WT ASS1 was co-immunoprecipitated by PRMT7.
However, less p. Thr323Ile mutant protein was co-
immunoprecipitated by PRMT7 compared with WT
(Figure 2B), suggesting that the p. Thr323Ile mutant protein
binds weakly to PRMT7.

DISCUSSION

Although citrullinemia types I and II are caused by mutations in
different genes, they exhibit partial similarities in clinical
phenotypes. In the present study, we performed genetic
analysis of nine Chinese infants with citrullinemia, and
identified homozygous or compound heterozygous mutations
of ASS1 and SLC25A13 (Table 2). This demonstrated that
genetic analysis can help determine the subgroup of
citrullinemia besides clinical and biochemical examinations.

Our study identified a novel splicing mutation of SLC25A13,
which leads to the deletion of “AGUA” at the 5′ splice site. This
mutation is very likely to affect pre-mRNA splicing for three main
reasons. First, during the splicing process, the 5′ splice site (CAG/
GUAAGU sequence) and 3′ splice site (NYAG/G sequence) are
recognized by spliceosome components (Ohno et al., 2018).
While most common mutations affect +1 and +2 residues at
the 5′ donor splice site and −1 and −2 residues at the 3′ acceptor
splice site, any mutations in these canonical sequences could
impair the interaction between pre-mRNA and the spliceosome,
leading to abnormal pre-mRNA splicing (Anna and Monika,
2018). TheOXCT1 c.1248+5G >Amutation, IKBKAP c.2204+6T
> C mutation, and CDHR1 c.2040+5G > T mutation were
previously found to cause exon skipping (Ibrahim et al., 2007;
Hori et al., 2013; Stingl et al., 2017). Moreover, the ATF6 c.82+5G
> T mutation led to intron retention (Kohl et al., 2015), while
ASS1mutations c.773+4A > C and c.970+5G > A were identified
in patients with citrullinemia (Kobayashi et al., 1995; Lin et al.,
2019). Second, the MutationTaster predicted that the mutation
was disease-causing. Finally, high levels of plasma citrulline
(331.2 μmol/l; normal: 7–40 μmol/l) were detected in the
patient carrying this mutation. Considering that he also
carried a nonsense mutation of SLC25A13 (p.Arg588*), it is
likely that these compound heterozygous mutations caused the
production of defective citrin protein.

We also identified a novel mutation (p.Leu313Met) and a rare
mutation (p.Thr323Ile) of ASS1, which are both located at highly
conserved sites and were absent from the 100 healthy controls.
Polyphen2 and SIFT predicted them to be damaging, and
functional analyses showed that they significantly impaired the

enzyme activity of ASS1. Furthermore, PRMT7 encodes a protein
arginine methyltransferase which catalyzes arginine methylation.
A previous study showed that PRMT7 interacts with ASS1, and
that several mutations associated with citrullinemia disrupt this
interaction (Verma et al., 2017). In this study, we found that the p.
Thr323Ile mutation also considerably decreased the binding of
ASS1 to PRMT7. Therefore, we believe that these two mutations
are pathogenic for citrullinemia.

Digenic inheritance refers to mutations in two distinct genes
causing a genetic phenotype or disease. With increasing exome
and genome sequence data being generated through NGS, the
number of human diseases exhibiting digenic inheritance
continues to grow (Gazzo et al., 2016; Deltas, 2018). It
provides new insights into the genetics underlying many
disorders classically considered monogenic (Schäffer, 2013).
Distal renal tubular acidosis (dRTA) is just one example
(Nagara et al., 2018). In the present study, we identified a
patient (P8) harboring both a heterozygous mutation of ASS1
(p.Thr323Ile) and a heterozygous mutation of SLC25A13
(p.Met285Profs*2). The patient had high levels of plasma
citrulline (671.3 μmol/l, normal: 7–40 μmol/l) and arginine
(119.7 μmol/l, normal: 1.5–25 μmol/l). Together, these results
might implicate a putative digenic inheritance mechanism in
citrullinemia. A mutated allele of ASS1may reduce the formation
of argininosuccinate from citrulline and aspartate, while a
mutated SLC25A13 allele is likely to further inhibit the
reaction by limiting the supply of aspartate from
mitochondria. Thus, the compound mutations would be
predicted to lead to the upstream accumulation of citrulline.
Further analyses are required to investigate the effects of these
compound mutations on cell metabolism.

The clinical presentation of citrullinemia is very
heterogeneous. In our study, patient P9 with ASS1 mutations
displayed the most severe clinical symptoms. She had the highest
plasma citrulline level (1924.1 μmol/l; normal: 7–40 μmol/l), and
died at 1 year of age. This indicates that ASS1 mutations might
cause more severe clinical manifestations than SLC25A13
mutations. Consistent with this, patient P8 carrying compound
heterozygous mutations of ASS1 and SLC25A13 also showed
more severe clinical manifestations than patients only
harboring SLC25A13 mutations. Most mutations of SLC25A13
identified in this study led to truncated proteins. However, no
firm genotype–phenotype correlations could be observed in
patients carrying SLC25A13 mutations.

The present study had some limitations. First, we did not
perform functional analysis of the c.1311 + 4_+7del mutation
to support its predicted effect on SLC25A13 splicing. Second,
because of limited sample sources, genetic analysis of the
patients’ parents was not carried out to determine if the
identified novel mutations were de novo; additionally, the
segregation test for identified mutations could not be
performed.

In summary, we carried out genetic analysis and functional
investigation in Chinese infants with citrullinemia. We identified
a novel mutation of ASS1 and a novel mutation of SLC25A13.
These findings expand the mutational spectrum of ASS1 and
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SLC25A13, and improve our understanding of the molecular
genetic mechanism of citrullinemia in the Chinese population.
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