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Abstract: In order to obtain a thermostable pectate lyase for ramie degumming, a rational design
based on structural analysis was carried out on a novel pectate lyase (Pel419) derived from the
Dickeya Dadantii DCE-01 for high-efficiency ramie degumming. A total of five potential amino acid
sites were chosen to replace residues. Then, the mutant enzymes were subjected to the heterologous
expressions in Escherichia coli and their enzymatic characteristics were determined. The optimal
reaction temperature for the five mutants kept consistent with that for the wild type. The enzyme
activity and thermal stability of mutant V52A were significantly improved. Meanwhile, the weight
loss rate obtained by V52A with the best enzymatic characteristics in the ramie degumming process at
50 ◦C is comparable with that obtained by commercial cotton-ramie processing pectinases, indicating
that V52A was a potential industrial enzyme that could be applied to large-scale ramie degumming.
In this study, the biological functions of conservative residues of Pel419 were preliminarily explored.
The mutant V52A with both enzymatic activity and improved heat resistance was acquired, providing
a superior material for developing enzyme preparations of ramie degumming, and rendering an
effective method for the rational design aiming to improve the thermostability of pectate lyase.

Keywords: Dickeya dadantii DCE-01; pectate lyase; ramie; degumming; site-directed mutation;
thermostability

1. Introduction

As an important constituent member of the pectinase enzyme family, pectate lyase
(Pel, EC 4.2.2.2) can randomly cut the main pectin chain via a trans-elimination effect
and then generate oligo-galacturonic acids [1]. It has been widely explored and used in
papermaking, textile industries and the food industry since it can serve as a substitutive
countermeasure for chemical processing to relieve environmental pollution [2]. By virtue
of high activity in an alkaline environment, pectate lyase has been extensively applied to
the degradation of pectic substances in various fields such as textiles, food, papermaking
and environmental protection, and it is more common in bast fiber degumming and cotton-
ramie refining in the textile industry [3–7]. If applied to ramie bio-degumming, alkaline
pectate lyase will yield high efficiency, low cost and low pollution. Moreover, it can
reserve the inherent morphology of ramie fibers and improve their quality [8]. In addition,
research findings show that Ca2+ can bind to pectate lyase and substrates to promote the
enzyme-substrate reaction, so as to improve the activity of pectate lyase [9,10].

The high cost of industrial degumming enzymes and their low performance under
extreme conditions have been considered as the main obstacles impeding their industrial
application [2,11]. Given the latest development of pectate lyase, the industrial production
can be significantly promoted by improving the catalytic efficiency and high-temperature
resistance of enzymes. The ramie degumming high-efficiency strain Dickeya dadantii DCE-01
produces multiple pectate lyases, such as Pel419, Pel4J4 and PelG403, among which Pel419
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has superior activity and favorable stability, but its thermostability remains to be further
improved for the sake of bio-degumming [12].

With the development of protein engineering techniques, the protein rational design,
an effective genetic method optimizing protein characteristics, is conducive to generating
mutations with strengthened characteristics, and meanwhile, expounding the structure-
function relationship of enzymes [13–15]. Recently, more attention has been paid to con-
servative catalytic residues that play important roles in regulating enzymatic structure
and catalytic performance [16]. For example, Chen et al. used homologous modeling to
rationally design glycosyltransferase. A mutant with high thermal stability was obtained,
and its optimum catalytic temperature was increased from 35 ◦C to 40 ◦C [17]. However,
the noncatalytic potential residues non-conservative for proteins have been reported in
few studies. In this study, efforts were made to improve the rigidity of the whole protein
structure and enhance the thermostability of the enzyme by strengthening the stability of
secondary structure in the noncatalytic protein region.

In a previous study, pel419 (GenBank ID: JX964997) was identified from the ramie
degumming high-efficiency strain D. dadantii DCE-01 and cloned onto pET28a, which
was a member of the Pec lyase C family with favorable pectate lyases activity and ther-
mostability [12]. In this study, site-directed mutation was performed for the noncatalytic
residues in the nonconservative region of Pel419, expecting to acquire good mutants with
improved thermostability, obtain ideal materials for developing ramie degumming enzyme
preparations and provide a promising candidate method for the large-scale biotechnology
applications aiming to improve the thermostability of pectate lyase.

2. Materials and Methods
2.1. Materials

The recombinant plasmid pET28a-pel419 was constructed and preserved by Functional
Fiber Material Laboratory, Institute of Bast Fiber Crops, Chinese Academy of Agricultural
Sciences. Escherichia coli DH5α (TsingKe, Beijing, China) was used for gene cloning and
E. coli BL21(DE3) (TsingKe, Beijing, China) for the expressions of recombinant proteins.
The rapid site-directed mutation kit (Tiangen, Beijing, China) was used to introduce single
mutation sites.

A protein quantification kit, Kan mycin, isopropyl-β-d-thiogalactoside (IPTG) and
restriction endonuclease were purchased from Tiangen (Beijing, China). Primer synthesis &
purification and DNA sequencing were completed by TsingKe (Changsha, China). Raw
ramie (China ramie No.1) was gifted by the Perennial Breeding Laboratory, Institute of Bast
Fiber Crops, Chinese Academy of Agricultural Sciences.

2.2. Methods
2.2.1. Prediction of Mutation Sites

Pectate lyases from bacterial were selected in the PDB database as the template.
Next, homology modeling was implemented using SWISS-MODEL (https://swissmodel.
expasy.org/ accessed on 8 February 2022), and the potential unstable amino acid sites
with high temperature B-factor in the protein structure were predicted via B-FITTER
(Table S1) [18]. Conservative regions such as active sites and substrate binding pockets of
the Pel419 structure were determined through multiple sequence alignment and Pymol
visualization analysis. It was generally thought that the amino acids at these sites and
regions were correlated with the enzymatic catalytic function, so these sites were avoided,
whereas the secondary structural sites in the noncatalytic region were chosen for the
mutation. Afterwards, the mutation sites in the Pel419 structure were substituted by the
biological software SPDBV(Version 4.0, ExPASy, Geneva, Switzerland), followed by the
energy minimization, thus determining the mutant structure.

https://swissmodel.expasy.org/
https://swissmodel.expasy.org/
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2.2.2. Construction and Prokaryotic Expression of Recombinant Mutagenic Plasmid,
Preparation of Cell-Free Extract

The recombinant plasmid pET28a-pel419 was taken as the template, and the whole-
plasmid PCR was performed using the rapid site-directed mutation kit and the primers
in Table S2 to introduce the target amino acid site. Next, the enzyme digestion of the
PCR product was conducted through the restriction endonuclease Dpn I to remove the
plasmid template, and the obtained PCR product was transformed into E. coli DH5α. After-
wards, positive transformants were screened on the LB agar plate containing 100 µg/mL
kanamycin for the sake of plasmid extraction and DNA sequencing. The verified recombi-
nant plasmid was transformed into E. coli BL21(DE3), then mutant engineering bacteria
were taken and inoculated into 200 mL LB culture medium (50 µg/mL Kan) until OD600
reached about 0.4–0.6, and then IPTG was added with the final concentration of 0.5 mmol/L
for enzyme induction under the optimal shake-flask culture conditions(28 ◦C,120 r/min).

2.2.3. SDS-PAGE Analysis and Enzymatic Activity Determination

A part of fermentation broth was taken and bacterial cells were collected. Another
part of fermentation broth was operated using an ultrasonic cell disruption system at 300 W
for 30 s with an interval of 20 s, lasting 20 min in total, followed by the centrifugation at
9000 g for 5 min and the supernatant (periplasmic enzyme) was collected and properly
diluted using a buffer solution for the enzymatic activity determination.

SDS-PAGE was performed for the completely induced bacterial cells by reference to
the Laemm1i method [19]. The fermentation broth was treated with the ultrasonic cell
disruption system, then the supernatant was collected, in which the protein content was
determined via the Bradford method, and the activity of pectate lyase was measured as
the release of unsaturated oligogalacturonates during cleavage of polygalacturonic acid
(PGA) [20,21]. The Gly-NaOH buffer solution (pH 9.0, 0.05 mol/L) was used to prepare
polygalacturonic acid sodium solution (5 mg/mL) and CaCl2 was added until the final
concentration of 1 mmol/L. Enzyme solutions were added to 1 mL substrate solution and
incubated at 50 ◦C for 10 min. After the mixture was cooled to an ambient temperature,
absorbance of the mixture at 235 nm was determined after the reaction was terminated by
adding 3 mL of 0.03 mol/L H3PO4. The experiment was carried out using inactive enzymes
in the control group. The unit (U) of enzymes was defined as the enzymatic quantity
when 1 µmol of unsaturated revertose was released per min under the determination
conditions [22]. All experiments were implemented in triplicate.

2.2.4. Thermostability of Mutants

The enzymatic activity of Pel419 mutants in the enzyme solution was determined at
35, 40, 45, 50, 55, 60 and 65 ◦C to determine the optimal enzymatic hydrolysis temperature.
Then, the temperature was held at 50 ◦C for 1 h, and the thermostability was observed by
determining the residual enzymatic activity and evaluated according to the ratio of residual
activity to the initial activity. In addition, the half-life period (t1/2) was determined at 50 ◦C,
which was defined as the time when the enzymatic activity declined to the half of the initial
activity at a specific temperature.

2.2.5. Ramie Degumming through Enzymatic Method

In total, 20 g of shell-less ramie was accurately weighed and placed into a 500 mL
shake flask. Next, the wild enzyme and V52A were taken for ramie degumming. The
pectate lyase (Novozymes, BioPrep) produced for commercial ramie degumming was taken
as the positive control and treated ramie with distilled water as a negative control (CK).
Afterwards, each enzyme solution was diluted using the buffer solution (pH 9.0) until
the final enzymatic activity of 100 U/mL. The CaCl2 was added until reaching the final
concentration of 1 mmol/L, and then the temperature was regulated to 50 ◦C. The diluted
pectate lyase solution was taken for ramie soaking at the proportion of 10:1. After the
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oscillation reaction at 50 ◦C for 2 h, a temperature of 105 ◦C was held for 20 min, and thus
ramie degumming was terminated.

Morphological observation of fibers: The ramie fibers of raw ramie and those after
degumming through the enzymatic method were taken, followed by metal spraying.
The longitudinal surface morphologies of the fibers were observed via scanning electron
microscope (SEM, Hitachi S-4800)

Determination of weight loss rate [23]: The mass of the raw ramie and fermented
ramie were set as Gm and Gf, respectively, and the weight loss rate was calculated through
the following formula:

Weight loss rate % =
Gm − G f

Gm
× 100

3. Results
3.1. Selection of Mutation Sites

The Pel from Dickeya chrysanthemi (PDB: 2EWE) with the amino acid sequence ho-
mology as high as 89% was taken as the template for homology modeling, and the spatial
structure of Pel419 was acquired [24]. By combining the amino acid sequence alignment
and spatial structure analysis [2] (Figures 1 and 2), D151, D153, E188, D192 and their nearby
regions were obtained as the Ca2+ binding sites of Pel419, which formed substrate binding
pockets with G200, K212, C215, R240, P242 and R245. All these binding pockets were
exposed on the surface of the 3D space (Figure 2A,B). Meanwhile, it was speculated that the
highly conservative W164, D166, E275, Y342 and Y344 were closely related to the catalytic
activity of enzymes (Figure 2C). Moreover, the stability of Pel419 was positively influenced
by the two pairs of disulfide bonds formed between C94 and C177 and between C351 and
C374 (Figure 2A,C). All of these sites were important potential sites influencing the catalytic
function of Pel419, so they should be avoided in the rational design aiming to improve the
thermostability. By combining the potential unstable amino acid sites with high B-factors in
the 3D structure Pel419, the conservative regions and disulfide bonds were excluded, a total
of 5 non-catalytic mutation sites, V52, K99, A282, N284 and N294, were chosen to detect
the influence of mutation on the thermostability of enzymes and three strategies were
adopted. Firstly, low molecular weight amino acids in the flexile region were replaced by
high molecular weight ones to enhance their rigidity. Alanine mutated into valine (A282V)
and lysine mutated into arginine (K99R). Secondly, the amino acids, to the disadvantage of
the α-helix stability in the rigid region, were replaced by those contributing to the stronger
α-helix stability. The valine of α-helix mutated into alanine (V52A). Thirdly, charged amino
acids were introduced to enhance the effect of ionic bonds and strengthen their stability.
Asparagine was mutated into aspartic acids (N284D and N294D). The recombinant plasmid
pET28a-pel419 was taken as the template for whole-plasmid PCR to introduce the target
amino acid site (Figure S2).

3.2. Heterologous Expression Analysis of Mutant Pectate Lyase

To determine the enzymatic characteristics, prokaryotic expression was performed for
mutant enzymes in E. coli BL21(DE3) under the same conditions as the wild type Pel419.
SDS-PAGE analysis was conducted after the IPTG induction. Compared with the blank
control group, the original enzyme Pel419 and five mutant enzymes all showed evident
specific bands, and each recombinant mutagenic protein had an obvious band at 42 kDa,
which was consistent with Pel419 (Figure S1).
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Figure 1. Sequence alignment of pectate lyases from different microbial sources. The circle represents
the Ca2+ binding site, the five-pointed star and its vicinity represent the site related to the substrate
binding pocket, and the triangle represents the important conserved amino acid site. Two sets of green
numbers represent two pairs of disulfide bonds. Namely 2EWE_A (PDB ID), AGC13165 (GenBank),
AAD35518 (GenBank), BAA96478 (GenBank), NP638163 (GenBank), P11073 (UniProt), ACY38198
(GenBank) and CAD56882 (GenBank).
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Figure 2. Pel419 conserved site. (A) Ca2+ binding site; the green and dark blue sticks indicate
calcium-binding and catalytic residues in the active center, respectively. The red bars represent the
selected mutation sites. (B) Substrate binding pocket; green and dark blue indicate the calcium
ion-binding site and catalytic site of the active center, respectively. (C) Highly conserved site; dark
green bars correlate with catalytic activity. All of the structural diagrams were drawn using PyMOL
software (Version 2.4, Schrödinger, New York, NY, USA).

3.3. Determination of the Optimal Catalytic Temperature

The optimal reaction temperatures of all enzymes to polygalacturonic acids were
evaluated at different temperatures (35–65 ◦C). The influence of temperature on the en-
zymatic catalysis of polygalacturonic acids is shown in Figure 3B. All mutants presented
the maximum activity at 50 ◦C, and their activity declined rapidly after the temperature
exceeded 55 ◦C. The data showed that the optimal reaction temperature of enzymes
was not influenced much by these mutants selected at the noncatalytic residues on the
secondary structure.
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Figure 3. (A) Thermostability and specific activity of mutants. (B) The optimal reaction temperature
of mutant enzyme compared to wild type Pel419. (C) Half-life of Pel419 and mutants at 50 ◦C. Each
enzyme was assayed in 0.05 mol/L Gly-NaOH buffer (pH 9.0) using sodium polygalacturonic acid
solution (5 mg/mL) as substrate enzymatic activity. The highest activity was taken as 100%. Values
are the means ± SD of three replicates.

3.4. Thermostability Test

After incubation at 50 ◦C for 1 h, the catalytic activity of all enzymes was reduced to
different degrees. Following the treatment at 50 ◦C for 1 h, the residual activity of V52A
was 33.4%, showing superior thermostability. In comparison to the wild type, the residual
activity of K99R was also relatively improved, indicating that its thermostability was
slightly enhanced. A282V and N294D presented lower residual activity than the wild type,
but its thermostability was relatively elevated. N284D was relatively more sensitive to high
temperature (Figure 3A) than the wild type. In addition, V52A effectively strengthened the
thermostability of enzymes, as further proved by the half-life period (t1/2) of these pectate
lyase at 50 ◦C (Figure 3C).

3.5. Ramie Degumming Effect

The appearance morphology and fiber morphology of ramie were qualitatively an-
alyzed after the pectate lyase treatment. The results in Figure 4A showed that the ramie
fibers by the enzymatic treatment displayed favorable effects in flexibility, fiber disper-
sity and fiber whiteness. Compared with Pel419, the ramie fibers experiencing V52A
treatment were of more eident dispersity, and their surface was smoother by the SEM
observation (Figure 4B).
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Figure 4. Surface morphology of the treated ramie. (A) Surface morphology of the untreated and
treated ramie. (B) Scanning electron micrograph of the untreated and treated ramie.
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The ramie weight loss rate after different enzyme treatments were determined. As
indicated by the results in Table 1, the ramie weight loss rate was the highest (19.22%) in
the positive control treatment. The V52A treatment was 18.77%, being 5.88% higher than
that in the treatment with the wild enzyme, and it is comparable with the industrially
used enzyme.

Table 1. Comparison on weight loss rate of ramie.

Enzymes CK Pel419 V52A Novo

Weight loss rate (%) 4.77 ± 0.32 12.89 ± 0.28 18.77 ± 0.23 19.22 ± 0.21
Values are the means ± SD of three replicates.

4. Discussion

It is of great practical significance to apply pectate lyase to degumming bast fiber
crops such as ramie. In fact, a series of pectate lyase from different microorganisms have
been reported and commercialized, but more effective enzymatic characteristics are still
lacking to satisfy large-scale industrial production [25–28]. To acquire enzymes with higher
thermostability and specific activity, rational design based on the homology modeling
structure has become an effective strategy for improving enzymatic performance [29].
Zhou et al. rationally designed pelN derived from Paenibacillus sp. 0602 to shift the
optimal temperature of its enzymatic activity from 67.5 ◦C to 60 ◦C, and the half-life was
increased by 15.9 min [30,31]. In this study, we constructed a series of proposed mutants
by rational design. Finally, we obtained Pel419-V52A and Pel419-K99R with improved
thermostability. Their optimum reaction temperature remained unchanged and their half-
life increased significantly.

In fact, many studies have shown that certain mutational changes at residues display-
ing high B-factors and therefore high flexibility could result in thermostabilization [32]. For
example, Bornscheuer et al. designed a clever sequence of mutagenesis experiments using
B-FITTER for identifying residues with high B-factors, aiming for the thermostabilization
of the esterase from Pseudomonas fluorescens. Following mutation, a variant was evolved
showing a gain in thermostabilization [33]. In this study, based on multiple sequence align-
ment and homology modeling structure analysis (Figures 1 and 2), the substrate binding
pocket and the conservative sites in the structure were avoided, and a total of 5 mutation
sites were determined combining the B-factor and mutation strategy of Pel419, and these
recombinant enzymes were successfully expressed via E coli (Figure S1). Both wild type
and mutant pectate lyases showed the maximum enzymatic activity at 50 ◦C (Figure 3B).

Compared with the wild type, the thermostability of K99R was evidently enhanced,
but the enzymatic activity was slightly impaired. Since Val is entropy penalized in the
α-helix, the thermostability of V52A was improved efficiently (Figures 3A and S4A). Ho-
mology modeling predictions for Pel419, then calcium and substrate, are grafted from
2EWE, where the K99 residue attached to the random coil was far away from the calcium
ions and substrates, exceeding the distance of non-covalent bond interaction (Figure 5).
However, when lysine is mutated to arginine, it is speculated that this will lead to a change
in the dynamic correlation of the alpha helix adjacent to the mutated amino acid, which
in turn indirectly affects the active center (Figure S3B) [34]. Meanwhile, K99 is located on
the protein surface, and the hydrogen bonds between arginine residues and coordination
water molecules increase after replacing, so as to strengthen the thermostability of proteins
Figures 5 and S4B) [35,36].

The thermostabilization trend of N294D and A282V was slightly higher than that
of natural enzymes (Figure 3A). According to Figures 5 and S4C, A282V mutated from
Ala with a small molecular weight to Val with a relatively large molecular weight, which
enhanced the rigidity of coil. N294D increases the number of hydrogen bonds (Figure S4E).
N284D is relatively sensitive to high temperature and the enzyme activity is significantly
reduced (Figure 3A) because Asp is an acidic amino acid, and the reaction under alkaline
conditions will affect the enzyme activity. In addition, it is speculated that because N284D
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is located at the entrance of the substrate binding pocket, the group exposed to the protein
surface changes from amino to carboxyl, which leads to the change of the charge on
the protein surface. Meanwhile, because N284D is located at the exit of the substrate,
the side chain carboxyl group of Asp residue binds to Ca2+ and hinders the release of
substrates (Figure S4D).
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Figure 5. Molecular mechanism study of WT and mutants. Red and green sticks indicate pre- and
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Ramie degumming was implemented by selecting V52A with the best enzymatic
activity and thermostability, and the ramie weight loss rate was 18.77%, which is compara-
ble with the commercial enzymes, so V52A could be considered as a potential industrial
enzyme applicable to the large-scale ramie degumming. Since the design and construction
of new salt bridges is an effective method to improve the thermostability of proteins [37–39],
in the follow-up study, the heat resistance of pectate lyase can be further transformed by
combining the mutants V52A and K99R or introducing disulfide bonds and adding salt
bridges, etc.

5. Conclusions

By comparing the enzymatic activity and heat resistance of five mutants, it was ob-
tained that the enzymatic activity and thermostability of V52A were substantially improved.
The thermostability of K99R was improved to a small extent, and its activity slightly de-
clined. Despite the lower enzymatic activity than the wild type, A282V and N294D showed
the similar thermostability to the wild type. The enzyme activity and thermal stability
of N284D were decreased. The optimal reaction temperature of the five mutants was
consistent with that of the wild type. Meanwhile, the ramie weight loss rate obtained by
V52A at 50 ◦C is comparable with the commercial cotton-ramie processing pectate lyase,
so V52A was regarded as a potential industrial enzyme applicable to the large-scale ramie
degumming. Therefore, the enzymatic activity and heat resistance of Pel419 in alkaline
environment were successfully transformed in this study, providing a potential material for
developing ramie degumming enzyme preparations, and meanwhile, rendering a promis-
ing candidate method for the large-scale biotechnology applications aiming to improve the
thermostability of pectate lyase.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14142878/s1, Table S1: Highest B-factors of residues in
homologous enzyme Pel419 as obtained by application of B-FITTER; Table S2: List of primers;
Figure S1: SDS-PAGE analysis of crude solution of recombinant enzymes; Figure S2. Nucleic acid
detection peak at mutation site; Figure S3. (A) Specific enzyme activity of wild enzyme and mutant
enzyme. (B) Residual enzyme activity after holding at 50 ◦C for one hour. Values are the means ± SD
of three replicates; Figure S4. Panels before and after mutation.
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