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Abstract 

The last decade has witnessed a surge of theoretical and computational models to describe 

the dynamics of complex gene regulatory networks, and how these interactions can give rise 

to multistable and heterogeneous cell populations.  As the use of theoretical modeling to 

describe genetic and biochemical circuits becomes more widespread, theoreticians with 

mathematics and physics backgrounds routinely apply concepts from statistical physics, 

non-linear dynamics, and network theory to biological systems. This review aims at 

providing a clear overview of the most important methodologies applied in the field while 

highlighting current and future challenges, and includes hands-on tutorials to solve and 

simulate some of the archetypical biological system models used in the field. Furthermore, 

we provide concrete examples from the existing literature for theoreticians that wish to 

explore this fast-developing field. Whenever possible, we highlight the similarities and 

differences between biochemical and regulatory networks and “classical” systems typically 

studied in non-equilibrium statistical and quantum mechanics. 
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1. Introduction 

 

Despite sharing similar genetic information, cells in living organisms can diversify into many 

different cell types, each of whom carrying a distinct and unique function [1]. For example, 

cells in the human body differentiate into more than 200 different cell types that can be 

distinguished based on the different profiles of molecular signatures [2]. The process of 

molecule production can be summarized at a very simplified level by stating that special 

sequences of the genome (genes) are used as templates to synthetize messenger RNA 

(mRNA) molecules, which are in turn translated into proteins by the cell’s machinery. Yet, 

transcription (gene to mRNA) and translation (mRNA to protein) are not independent 

processes, but rather happen in a complex cellular environment. For example, special 

molecules called transcription factors can regulate the production of other molecular 

species by binding to the DNA in proximity to genes and either facilitating or obstructing 

transcription [3]. This seemingly simple mechanism can give rise to a spectacular level of 

complexity when considering that living cells have tens of thousands of genes, and their 

mutual interactions are only partially understood [4,5].  

 

The purpose of this review is to provide an overview of the mathematical strategies used to 

describe this complex phenomenon and predict how cellular heterogeneity emerges from 

the underlying regulatory dynamics. The fundamental assumptions connecting all these 

modeling strategies is that it is possible to describe, with some extent of success, the 

intricated interactions between genes and transcription factors with mathematical models 

(such as differential equations or logic circuits), and that the outputs of these models (such 

as probability distributions or attractors) can be related to the different states that cells can 

attain. We acknowledge the existence of other recent reviews that discuss the application of 

mathematical and physical concepts to chemical-reaction systems, stochastic events, and 

simulation strategies in biological systems [6–9]. Compared to these reviews, which explore 

the theoretical aspects in deeper details, we aim at presenting a more hands-on and 

simplified overview of the main theoretical strategies necessary to investigate the 

multistability and heterogeneity in biological systems, explicitly discussing examples and 

offering hands-on tutorials and simulations. With this approach, we aim to create a unifying 
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ground not only for theoreticians interested in biological systems, but also for biologists 

who are interested in the theoretical tools to model complex biological systems. In this 

sense, this review can be seen as a set of suggestions to tackle gene regulation and 

biochemical interactions at different levels of complexity. 

 

In the first section of the review, we introduce theoretical and computational methods to 

model the emerging dynamics of gene regulatory networks and their contribution in many 

biological open problems. First, we discuss discrete, stochastic frameworks to model 

transcription, translation, and interactions between transcription factors. Further, we 

introduce a continuous framework that allows to model larger circuits with several 

transcription factors, and discuss how to characterize multistable systems with the 

pseudopotential landscape, the “systems biology” analogy to the potential landscape. 

Finally, we discuss strategies to tackle large circuits, where missing information about the 

model’s parameters require approximation methods such as Boolean networks and 

parameter randomization, and provide an introduction to how gene regulatory networks 

can be inferred using high-resolution single cell sequencing data. This section also includes 

hands-on tutorials to simulate some of the simplest and most widely used circuit structures 

in the literature. In the second section of the review, we discuss in detail three specific 

biological examples where the application of these methods led to new and significant 

biological insights, including the Epithelial-Mesenchymal Transition, differentiation of Stem 

Cells, and Notch signaling. These examples, which were chosen not least due to the 

expertise of the authors, cannot fully do justice to the extensive available literature, and we 

would like to acknowledge the many outstanding works that could not be included here due 

to the limitation of space. While discussing these three examples, we introduce further 

mathematical tools that have been especially important in their respective fields, including: 

the modeling of non-coding RNA in the epithelial-mesenchymal transition, the application of 

quantum many-body formalism in the modeling of stem cell differentiation, and spatial 

models with many cells in the description of cell-cell communication through Notch 

signaling. 

 

 

https://github.com/federicobocci/Computational-Modeling-of-Gene-Regulatory-Networks
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2. Mathematical methods to study the multistability of regulatory 

networks 

 

2.1 Discrete models of circuits: from reactions to the Chemical Master Equation 

 

2.1.1 Construction of the CME for protein synthesis 

In this first section, we start by analyzing theoretical approaches that aim at modeling the 

stochastic nature of individual molecular reactions. The basic steps in molecule production 

include transcription, where a messenger RNA (mRNA) transcript is created, and translation, 

when the final molecule is produced from the mRNA transcript. This working model can be 

formalized by assuming that a gene transcribes mRNA molecules with constant rate 𝑘𝑚. 

Moreover, each mRNA molecule translates into proteins with rate constant 𝑘𝑝. Further, if 

assuming that mRNA and protein molecules degrade with rate constants 𝛾𝑚, 𝛾𝑝, we can 

write the following set of reactions: 

 

𝑘𝑚
→ 𝑚

𝛾𝑚𝑚
→  ∅   (1𝑎) 

𝑘𝑝𝑚
→  𝑝

𝛾𝑝𝑝
→ ∅   (1𝑏) 

 

Reactions (1a-b) are summarized in figure 1A. Therefore, starting from given initial copy 

numbers of mRNA and protein (𝑚, 𝑝) at time 𝑡, the next reaction will move the system to a 

new configuration (𝑚′, 𝑝′) as shown in figure 1B. Since the rates in the reactions (1a-b) are 

either constant or depend linearly on (𝑚, 𝑝), the copy number of mRNA or protein can be 

changed only by one molecule at a time by any of these reactions. This is not necessarily the 

case; in a more complex process molecules might, for instance, bind or degrade as oligomer 

complexes, which cannot be described by linear rates; we will discuss this case in more 

details at a later point when introducing Hill functions. It is also interesting to note that, in 

eqs. (1a-b), four rates control the copy number of two molecular species. Therefore, infinite 

combinations of the parameters (𝑘𝑚, 𝑘𝑝, 𝛾𝑚, 𝛾𝑝) can give rise to the same (𝑚, 𝑝) state. 

Recent studies using high throughput data suggest, however, that only certain parameter 

combinations are naturally observed as a result of balancing between transcription 
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precision, which is achieved with large rate constants, and costs, which are minimized by 

low rate constants [10].  

 

Starting from reactions (1a-b), we aim at constructing an equation to predict the probability 

to observe a certain combination of copy numbers (𝑚, 𝑝) at any given time. To construct 

the Chemical Master equation (CME), we define a discrete, infinite set of probabilities 

{𝑃(𝑚, 𝑝, 𝑡)}, so that 𝑃(𝑚, 𝑝, 𝑡) describes the probability to observe 𝑚 mRNA molecules and 

𝑝 protein molecules at time 𝑡. These probabilities satisfy a normalization condition (i.e., they 

sum up to one at any time 𝑡): 

 

∑∑𝑃(𝑚, 𝑝, 𝑡)

+∞

𝑝=0

+∞

𝑛=0

= 1   (2) 

 

Following the reaction scheme of Figure 1B, we can write an evolution equation for the set 

of probabilities: 

 

𝑑𝑃(𝑚, 𝑝)

𝑑𝑡
= 𝑘𝑚[𝑃(𝑚 − 1, 𝑝) − 𝑃(𝑚, 𝑝)] + 𝛾𝑚[(𝑚 + 1)𝑃(𝑚 + 1, 𝑝) − 𝑚𝑃(𝑚, 𝑝)]

+ 𝑘𝑝𝑚[𝑃(𝑚, 𝑝 − 1) − 𝑃(𝑚, 𝑝)] + 𝛾𝑝[(𝑝 + 1)𝑃(𝑚, 𝑝 + 1) − 𝑝𝑃(𝑚, 𝑝)]   (3) 

 

In eq. (3), all the positive and negative terms represent influx and outflux of probability. In 

other words, positive terms in eq. (3) are associated with reactions that bring the system to 

the (𝑚, 𝑝) state, whereas negative terms are associated with reactions that bring the 

system out of the (𝑚, 𝑝) state (see again the reactions in Fig. 1B). Moreover, eq. (3) can be 

further simplified with reasonable assumptions when different terms on the right-hand size 

are associated to well-separated timescales. Specifically, one common approximation is to 

separate timescales for mRNA transcription and translation. Given the fast dynamics of 

transcription compared to translation, it can be assumed quasi steady state approximation 

(QSSA) for mRNA, thus 𝑚 = 𝑘𝑚 𝛾𝑚⁄ . In other words, mRNA copy number equilibrates much 

faster than protein copy number and can thus be treated as constant. The resulting CME 

describes only the protein copy number 𝑝: 
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𝑑𝑃(𝑝)

𝑑𝑡
= +𝑘[𝑃(𝑝 − 1) − 𝑃(𝑝)] + 𝛾𝑝[(𝑝 + 1)𝑃(𝑝 + 1) − 𝑝𝑃(𝑝)]   (4) 

 

Where 𝑘 = 𝑘𝑝𝑚 = 𝑘𝑝 𝑘𝑚 𝛾𝑚⁄ . Eq. (4) describes a birth-death process with rate constants 

(𝑘, 𝛾𝑝). The steady state solution of eq. (4) can be evaluated with different analytical, 

numerical or simulation methods that are explored in detail in the following section. 

 

 

Figure 1. Circuit and reactions for transcription-translation chain. (A) mRNA molecules are 

transcribed from the promoter with constant rate 𝑘𝑚. Each mRNA molecule is translated 

into proteins with rate constant 𝑘𝑝. Both mRNA and protein degrade with degradation rates 

𝛾𝑚, 𝛾𝑝. (B) Schematic representation of all the possible reactions leading to or out of the 

configuration with 𝑚 mRNA transcripts and 𝑝 proteins.  

 

 

 

2.1.2 Solving and simulating the birth-death CME 

The steady state solution of the CME (eq. 4) is the complete set {𝑃𝑛
𝑆𝑆} obtained by solving 

𝑑𝑃𝑛
𝑆𝑆

𝑑𝑡
= 0. In this section, we discuss three methods that may be suitable to tackle different 

types of CMEs using the birth-death process (eq. 4) as an example. The insight box 1 offers 

the explicitly solution/implemented of the three methods. First, it is possible to find 

analytical solutions of the CME in certain special cases when the number of variables is 
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small, and the reactions are zeroth or first order. Typically, one first takes advantage of the 

fact that the equation for 𝑃0
𝑠𝑠 has a simpler form since 𝑛 is strictly semipositive. Then, all 

the other 𝑃𝑛
𝑠𝑠 can be found iteratively. This method can be successfully applied to the birth-

death process, yielding 𝑃𝑛 =
1

𝑛!
(
𝑘

𝛾
)
𝑛
𝑒
−
𝑘

𝛾 (see insight box 1). 

 

A more general framework to solve CMEs is obtained by converting the infinite-dimensional 

system of equations into the single differential equation of the generating function. Given 

the set of probabilities {𝑃𝑛, 𝑛 ∝ [0,∞]}, the generating function 𝜙(𝑧) is defined as: 

𝜙(𝑧) = ∑𝑃𝑛

∞

𝑛=0

𝑧𝑛   (5) 

An equation for the temporal dynamics of 𝜙(𝑧) can be obtained by taking a time derivative 

and substituting the actual expression of 
𝑑𝑃𝑛

𝑑𝑡
⁄ . Then, the probabilities 𝑃𝑛 are obtained by 

differentiation the generating function: 

𝑃𝑛 =
1

𝑛!

𝜕𝑛𝜙

𝜕𝑧𝑛
(𝑧 = 0)   (6) 

Generating functions advantageously transform an infinite-dimensional problem into a one-

dimensional problem. In the simple case of the birth-death process, this approach can be 

developed analytically (see insight box 1). Nonetheless, large number of variables and 

higher-order interaction terms typically prevent analytical solutions and potentially make 

numerical approaches expansive. 

 

Finally, a third possibility to study the CME is to explicitly simulate the dynamics using 

algorithms such as non-rejective Monte Carlo, more commonly known as Gillespie algorithm 

[11,12]. In the Gillespie algorithm, all chemical reactions are treated as independent events 

(see for example [13,14]). Under this assumption, the waiting time until the next realization 

of any given reaction with rate 𝑤 is an exponentially-distributed random variable with mean 

and standard deviation equal to 1/𝑤. Therefore, an iteration of a Gillespie simulation with 

𝑖 = 1, … ,𝑀 reactions includes the following steps. First, compute the individual reaction 

rates 𝑤𝑖 . Second, draw an exponentially distributed random variable (𝜏) with rate parameter 

𝑊 = ∑ 𝑤𝑖
𝑀
𝑖=1  that represents the waiting time until the next reaction occurs. Finally, draw a 

uniformly distributed random variable (𝑟) to select which reaction occurs. The probability of 
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each reaction is given by its relative weight 𝑤𝑖/𝑊 (a pseudocode is presented in the insight 

box 1 for the birth-death process). The result of the simulation is a trajectory of the number 

of molecules 𝑛(𝑡) as a function of time starting from an initial condition specified by the 

user. In the long-time limit, the statistics of 𝑛(𝑡) will resemble closely and closely the 

steady-state distribution 𝑃𝑛 obtained with iterative and generating function methods 

(provided that these approaches are feasible for the specific system under study). The long-

time limit is identified as a timescale that is substantially larger than any typical timescale in 

the reaction scheme, and therefore depends on the parameters of the model (see the 

insight box 1 for this specific calculation in the birth-death process).  

 

The steady state solution of the simplified birth-death process modeled by eq. (4) is a 

Poisson distribution with mean (𝜇𝑝) and variance (𝜎𝑝) both equal to 𝑘𝑃 𝛾𝑃⁄ . However, as 

discussed in more detail by Tsimring [7], a full model that takes into account mRNA 

dynamics leads to a broader protein copy number distribution with variance equal to: 

𝜎𝑝 = 𝜇𝑝 (
𝑘𝑝

𝛾𝑝 + 𝛾𝑚
+ 1)   (7) 

Experimentally, it is well known that mRNA and protein count distributions in cells can 

exhibit variances much larger than the predicted Poisson distribution of the birth-death 

CME [15]. This effect arises due to the so-called transcriptional bursting. Namely, promoters 

do not transcribe mRNA molecules at a constant rate, but rather switch between ‘ON’ and 

‘OFF’ periods, thus leading to bursts of mRNA molecule production on a typical timescale of 

a few minutes [15], thus leading to broader copy number distributions. The contribution of 

mRNA dynamics on protein copy number dispersion can be quantified with Gillespie 

simulations. The protein copy number distribution over the course of a long simulation is 

narrower in the simpler mRNA QSSA model, compared to the full mRNA-protein model (Fig. 

2A). The relation between width of the distribution and mRNA QSSA can be quantified by 

testing the performance at different mRNA dynamics speed. The average, expected value of 

mRNA copy number is determined by the model’s parameters: 𝑚𝑠𝑠 = 𝑘𝑚/𝛾𝑚. Therefore, 

increasing the both the mRNA production rate 𝑘𝑚 and degradation rate 𝛾𝑚 by the same 

factor does not modify the expected mRNA copy number, but makes the mRNA 

equilibration dynamics faster, thus making mRNA QSSA more and more precise. As these 

parameters are increased, the standard deviation of protein (𝑝) copy number in Gillespie 
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simulations decreases, and finally becomes comparable to the QSSA standard deviation 

when the mRNA dynamics is sufficiently fast (Fig. 2B). Further discussion of transcriptional 

bursting and mathematical attempts to quantitatively capture model it are reviewed in 

[7,15].   

 

 

Figure 2. Testing the mRNA Quasi Steady State Approximation in protein synthesis. (A) The 

distribution of protein copy number for the full model presented in eq. (3) (blue) and for 

mRNA QSSA corresponding to eq. (4) (red). Solid lines indicate Gaussian fit. (B) Blue: The 

standard deviation of protein (𝑝) distribution for increasingly fast mRNA dynamics. The 

dashed black line indicates the parameters used in panel (A). Red: standard deviation for 

mRNA QSSA. The code to simulate protein synthesis is available in our protein synthesis 

tutorial. 

 

 

2.1.3 CME for the toggle switch and larger networks 

The CME formalism can be extended to study the coupled dynamics of an interconnected 

network of species. Perhaps the simplest circuit with the potential to give rise to 

multistability is the toggle switch composed by two genes that mutually repress each other, 

which can be seen as a basic mechanism to model differentiation between two distinct cell 

types [16]. In this section, we will set up the CMEs to describe the toggle switch. This 

method can serve as a general example to tackle more complex networks of interconnected 

biochemical species.  

 

https://github.com/federicobocci/Computational-Modeling-of-Gene-Regulatory-Networks/blob/main/Protein%20Synthesis.ipynb
https://github.com/federicobocci/Computational-Modeling-of-Gene-Regulatory-Networks/blob/main/Protein%20Synthesis.ipynb
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In the toggle switch, two genes (x and y) transcribe mRNA for the transcription factors (TF 

for brevity in the following) X and Y. Similar to the birth-death process of eq. (4), we will 

assume QSSA for mRNA dynamics to reduce the number of degrees of freedom and 

parameters. After being produced, TF X can inhibit the production of Y by binding to the 

promoter transcribing for gene y, and vice versa (see Figure 3A).  

 

TFs do not necessarily bind and regulates the transcription of other species as single 

molecules; often, they first dimerize (or create higher-order oligomer complexes) and then 

bind to DNA. Here, we assume that both TFs X and Y dimerize with forward and backward 

rate constants 𝑘𝐷 , 𝑘𝑀, as often assumed in existing mathematical modeling [17]. 

Considering the fast timescale of molecular binding compared to protein synthesis, we 

further assume that the dimerization/monomerization reactions are equilibrated (see Figure 

3A). Thus, the concentrations of the dimers are [𝑋2] = (𝑘𝐷 𝑘𝑀⁄ )𝑋2 and [𝑌2] = (𝑘𝐷 𝑘𝑀⁄ )𝑌2. 

Then, the dimers bind and unbind to the DNA with rate constants 𝑘+, 𝑘−. Both TFs are 

produced at a rate 𝑘0 when their respective promoters are not bound; the rate, however, 

decreases to 𝑘1 < 𝑘0  when the promoters are bound to the dimerized form of the TF. 

Therefore, the toggle switch can be viewed as two separate birth-death processes where 

the final molecular products X and Y bind to the other protein’s gene to inhibit its 

production. All the considered reactions are depicted in Figure 3A.  

 

The toggle switch can be characterized with four variables: two positive integer variables (n, 

m) accounting for the number of molecules for species X and Y, respectively, and two 

Boolean variables (𝑆𝑋 , 𝑆𝑌) that encode the state of the two promoters. 𝑆𝑖 = 0 implies that 

promoter of species 𝑖 is unbound, while 𝑆𝑖 = 1 implies that promoter is bound, respectively. 

Thus, starting from a generic configuration (𝑛,𝑚, 𝑆𝑥,𝑆𝑦) at time 𝑡, a subsequent reaction 

can either modify the copy number of X and Y or change the state of one of the two 

promoters. All reactions and rates are illustrated in Figure 3B. Following the CME approach, 

we write an evolution equation for the probability 𝑃(𝑛,𝑚, 𝑆𝑥,𝑆𝑦). To write the CME in a 

compact form, we define the following functions. First, a generalized production rate 

function: 

𝑘(𝑆) = 𝑘0(1 − 𝑆) + 𝑘1(𝑆)  (8) 
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This function assumes the value 𝑘0 when the promoter is unbound (𝑆 = 0) and 𝑘1 when the 

promoter is bound (𝑆 = 1). Furthermore, a generalized rate function to describe 

binding/unbinding of a promoter: 

𝑓(𝑆, 𝑘) = 𝑘−𝑆 +
𝑘+𝑘𝐷
𝑘𝑀

𝑘2(1 − 𝑆)  (9) 

This function returns the unbinding rate 𝑘− when the promoter is occupied (𝑆 = 1) and the 

binding rate 
𝑘+𝑘𝐷

𝑘𝑀
𝑘2  if the promoter is free (𝑆 = 0). In this definition, 𝑘 is the molecular 

copy number of the TF that inhibits the promoter. With these definitions, we can formally 

write the CME for the toggle switch by listing all the reactions depicted in Figure 3B: 

 

𝑑𝑃(𝑛,𝑚, 𝑆𝑥, 𝑆𝑦 , 𝑡)

𝑑𝑡

= −[𝛾𝑛 + 𝛾𝑚 + 𝑘(𝑆𝑥) + 𝑘(𝑆𝑌) + 𝑓(𝑆𝑥, 𝑚) + 𝑓(𝑆𝑦 , 𝑛)]𝑃(𝑛,𝑚, 𝑆𝑥, 𝑆𝑦 , 𝑡) + 

𝛾(𝑛 + 1)𝑃(𝑛 + 1,𝑚, 𝑆𝑥, 𝑆𝑦 , 𝑡) + 𝛾(𝑚 + 1)𝑃(𝑛,𝑚 + 1, 𝑆𝑥, 𝑆𝑦 , 𝑡) + 

𝑘(𝑆𝑥)𝑃(𝑛 − 1,𝑚, 𝑆𝑥 , 𝑆𝑦 , 𝑡) + 𝑘(𝑆𝑦)𝑃(𝑛,𝑚 − 1, 𝑆𝑥, 𝑆𝑦 , 𝑡) 

+𝑓(1 − 𝑆𝑥, 𝑚)𝑃(𝑛,𝑚, 1 − 𝑆𝑥 , 𝑆𝑦 , 𝑡) − 𝑓(1 − 𝑆𝑦 , 𝑛)𝑃(𝑛,𝑚, 𝑆𝑥, 1 − 𝑆𝑦 , 𝑡)   (10) 

In eq. (10), the first-row accounts for all the outflux terms from the configuration 

(𝑛,𝑚, 𝑆𝑥, 𝑆𝑦), including degradation, production and change in the promoters’ states. The 

second-row accounts for influx due to degradation in configurations with higher molecule 

copy numbers; the third-row counts influx due to molecular production in configurations 

with lower copy number; and the fourth-row considers influx due to changes in the state of 

one of the promoters. This equation is far too complex for an exact solution with iterative 

methods; moreover, the relatively large number of variables makes eq. (7) stiff for 

generating function approaches. Simulations with the Gillespie algorithm, however, easily 

provide information about the relaxation dynamics and steady state (see for example 

[18,19]).  

 

This treatment of the toggle switch can be considered as a footprint to tackle larger circuits 

of interconnected genes and transcription factors comprising transcription, translation, 

degradation, molecular binding and transcriptional regulation. As the circuits grow in size, 

understanding reasonable approximations to decrease the complexity of the model 

becomes crucial. Here, we applied some common approximations including QSSA for mRNA 
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dynamics and protein-protein binding. In general, these approximations yield good results 

when timescales are well-separable. Therefore, depending on the parameters of the specific 

system of interest, QSSA might or might not be a suitable approximation. 

 

Figure 3. Circuit and reactions in a CME model of the toggle switch. (A) In the toggle switch, 

gene x encodes for protein X (red blocks). X can dimerize and bind to DNA to inhibit the 

production of Y. Similarly, Y dimerizes and inhibits X. The dimerization reactions are fast 

compared to protein production and can thus be treated as instantaneously equilibrated. (B) 

Schematic of all the possible reactions leading to or out of the configuration (𝑛,𝑚, 𝑆𝑥 , 𝑆𝑦). 

For convenience, reactions are separated into two groups: changes in molecule copy number 

and changes in the state of activity of one of the promoters. 

 

 

-------------------------------------------------------------------------------------------------------------------------- 

2.1.4 Insight box 1: three ways to compute the steady state of the birth-death CME 

 

In this insight box, we discuss three approaches to tackle the birth-death CME derived in 

section 2.1: 

𝑑𝑃𝑛
𝑑𝑡
= −𝑘𝑃𝑛 + 𝑘𝑃𝑛−1 − 𝛾𝑛𝑃𝑛 + 𝛾(𝑛 + 1)𝑃𝑛+1  (11) 
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Iterative solution of the CME 

This infinite system of equations can be solved by taking advantage of the simplified form of 

the equation for 𝑃0 and then using induction. Since the copy number is strictly positive (𝑛 ≥

0):  

𝑑𝑃0
𝑑𝑡
= −𝑘𝑃0 + 𝛾𝑃1   (12) 

Steady state 𝑑𝑃0 𝑑𝑡⁄ = 0 implies 𝑃1 = (𝑘/𝛾)𝑃0. Similarly, 𝑑𝑃1 𝑑𝑡⁄ = 0 yields: 

𝑃2 =
1

2𝛾
(𝑘𝑃1 − 𝑘𝑃0 + 𝛾𝑃1) =

1

2
(
𝑘

𝛾
)
2

𝑃0   (13) 

Where 𝑃1 = (𝑘/𝛾)𝑃0 was used to obtain the final expression. Continuing the process to 

higher-order equations, one finds the general expression for 𝑃𝑛: 

𝑃𝑛 =
1

𝑛!
(
𝑘

𝛾
)
𝑛

𝑃0   (14) 

The constant 𝑃0 can be calculated by imposing normalization of the total probability: 

∑𝑃𝑛

∞

𝑛=0

= 𝑃0∑
1

𝑛!
(
𝑘

𝛾
)
𝑛∞

𝑛=0

= 𝑃0𝑒
𝑘
𝛾 = 1   (15) 

Thus, the steady state set of probabilities follows a Poisson distribution with rate 𝜆 = 𝑘/𝛾: 

𝑃𝑛 =
1

𝑛!
(
𝑘

𝛾
)
𝑛

𝑒
−
𝑘
𝛾   (16) 

 

Generating functions 

Using the definition of generating function 𝜙(𝑧) introduced in section 1.2, we write the 

single ODE that describes the temporal variation of 𝜙(𝑧): 

 

𝑑𝜙(𝑧)

𝑑𝑡
= ∑

𝑑𝑃𝑛
𝑑𝑡

∞

𝑛=0

𝑧𝑛

= −𝑘∑𝑃𝑛

∞

𝑛=0

𝑧𝑛 + 𝑘∑𝑃𝑛−1

∞

𝑛=0

𝑧𝑛 − 𝛾∑𝑛𝑃𝑛

∞

𝑛=0

𝑧𝑛 + 𝛾∑(𝑛 + 1)𝑃𝑛+1

∞

𝑛=0

𝑧𝑛   (17) 

 

This equation can be tackled as follows. The first term on the RHS is simply −𝑘𝜙(𝑧). In the 

second term, we shift indexing to 𝑚 = 𝑛 − 1; then, it becomes apparent that the term 
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equals +𝑘𝑧𝜙(𝑧). In the third term, we can eliminate the factor 𝑛  by exploiting 
𝑑

𝑑𝑧
(𝑧𝑛) =

𝑛𝑧𝑛−1; then, the term can be rewritten as −𝛾𝑧
𝑑𝜙(𝑧)

𝑑𝑧
. Finally, combining the tricks used for 

the second and third terms, the fourth term becomes 𝛾
𝑑𝜙(𝑧)

𝑑𝑧
. The long-time limit solution 

𝑑𝜙(𝑧)

𝑑𝑡
= 0 is then: 

(1 − 𝑧)
𝑑𝜙(𝑧)

𝑑𝑧
= (1 − 𝑧) (

𝑘

𝛾
)𝜙(𝑧)  (18) 

In any point 𝑧 ≠ 1, this equation has the simple general solution 𝜙(𝑧) = 𝐶1𝑒
𝑘

𝛾
𝑧
+ 𝐶2. The 

probabilities {𝑃𝑛, 𝑛 ∝ [0,∞]} are then obtained by differentiating the generating function: 

𝑃𝑛 =
𝜙𝑛(0)

𝑛!
=
1

𝑛!
(
𝑘

𝛾
)
𝑛

𝐶1   (19) 

This is exactly the same expression found with the iterative method, with the parameter 𝐶1 

in place of 𝑃0. Therefore, normalization of the probability set {𝑃𝑛} yields 𝑃𝑛 =
1

𝑛!
(
𝑘

𝛾
)
𝑛
𝑒
−
𝑘

𝛾.  

 

Gillespie simulation 

In the simple case of the birth-death process, starting from a generic configuration at time 𝑡 

with 𝑛 molecules, two reactions are possible: birth of a new protein molecule with rate 𝑘 

and death of an existing molecule with rate 𝛾𝑛. Below we provide the pseudocode for the 

implementation of the Gillespie scheme for the birth-death process.  

 

Pseudocode: 

 

𝑛 = 𝑛𝑖𝑛  # set the initial number of molecules  

𝑡 = 0      # start the simulation at t=0 

 

while 𝑡 < 𝑇: 

 # compute total rate 

 𝑊 = 𝑘 + 𝛾𝑛 

 # sample an exponentially-distributed random variable with rate parameter 1/𝑊 

 𝜏 = exp_𝑟𝑛𝑑(1/𝑊) 

 # sample a uniformly distributed random number in [0,1] to pick the reaction 
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 # select birth reaction 

 if 𝑢𝑛𝑖𝑓𝑜𝑟𝑚([0,1]) <
𝑘

𝑊
: 

   𝑛 = 𝑛 + 1  

 # select death reaction 

 else: 

  𝑛 = 𝑛 − 1 

 # update time 

 𝑡 = 𝑡 + 𝜏 

 

In the birth-death process case, the birth rate is configuration-independent and always 

equal to 𝑘. The death rate, however, depends on protein number and is minimal at 𝑛 = 1. 

Therefore, the simulation time (𝑇) required to obtain substantial information about the 

steady state must at least satisfy 𝑇 ≫ max (1 𝑘⁄ , 1 𝛾⁄ ). 

-------------------------------------------------------------------------------------------------------------------------- 

 

2.1.5 Explore further: RNA splicing 

In this section, we mostly focused on transcription (production of mRNA) and translation 

(production of the finalized molecule) as the building blocks of cellular reaction systems. 

Newly transcribed RNA molecules, however, require a specific reaction where pre-

determined portions of the RNA sequence are removed. This “splicing” reaction converts 

nascent to mature RNA, which can be then effectively translated into protein [20]. mRNA 

splicing has recently drawn interest in the systems biology field due to the development of 

new single cell sequencing technologies that now enable to precisely measure the amount 

of unspliced (nascent) and spliced (mature) RNA within individual cells [21,22]. This high-

dimensional information has been used to build biochemical reaction models that infer 

interactions between chemical species and predict transitions between cellular states [23–

25]. A detailed discussion of the mathematical approaches and consequences of splicing in 

the molecular dynamics can be found in [26,27].   
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2.2 Continuous models of regulatory networks 

 

2.2.1 The chemical rate equation emerges as the average dynamics of the CME 

In the previous section, we developed a probabilistic framework to account for the inherent 

stochasticity of biochemical reactions in regulatory networks. This probabilistic framework is 

especially important when the copy number of a protein is low within a cell, and thus 

stochastic fluctuations can substantially influence a biochemical circuit’s response and 

potentially play a role in cellular function. A well-known example of the role of fluctuations 

is the selection of a competent state for DNA uptake in Bacillus subtilis [28]. In the limit of 

large molecular copy number, however, one can assume that stochastic fluctuations 

become less and less relevant. In this limit, the concentration or copy number can be 

described as a continuous variable. In more practical terms, when moving from the CME to a 

continuous formalism, we coarse-grain the model of a biochemical network by describing 

each chemical species with a single, continuous variable, whose temporal dynamics can be 

described by a single ordinary differential equation (ODE), rather than an infinite-

dimensional system of CMEs.  

 

The relation between the CME and the continuous chemical rate equation can be 

understood in the simple case of a birth-death process presented in eq. 4 by considering the 

dynamics of the average number of proteins 〈𝑛(𝑡)〉: 

 

𝑑〈𝑛(𝑡)〉

𝑑𝑡
= ∑𝑛

𝑑〈𝑃𝑛(𝑡)〉

𝑑𝑡

+∞

𝑛=0

= 𝑘∑[𝑛𝑃𝑛−1(𝑡) − 𝑛𝑃𝑛(𝑡)]

+∞

𝑛=0

− 𝛾∑[𝑛2𝑃𝑛(𝑡) − 𝑛(𝑛 + 1)𝑃𝑛+1(𝑡)]   (20)

+∞

𝑛=0

 

 

After some manipulation of the summation indexes, eq. (20) can be simplified as: 

𝑑〈𝑛(𝑡)〉

𝑑𝑡
= 𝑘 − 𝛾〈𝑛(𝑡)〉   (21) 

Therefore, the evolution of the average number of molecules, which is now a continuous 

variable, is described by a single ODE.  
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This approach facilitates the treatment of large networks with many interconnected 

regulations that would be unfeasible with the CME approach. In general, a circuit of N 

interconnected species can be described as a dynamical system: 

�̇� = 𝐹(𝒙)  (22) 

Where 𝒙 = (𝑥1, 𝑥2,… , 𝑥𝑁) is the vector of concentration/copy number of the N species in 

the circuit and the force field 𝐹(𝒙) describes their coupled dynamics and the possible 

interconnections between them. Therefore, all the prior knowledge on the circuit of interest 

is encoded by the choice of functions and parameters in the force field. The force field 𝐹(𝒙) 

captures all the relevant reactions, including transcription, translation, chemical binding and 

degradation. The continuous formulation of eq. (22) conveniently allows to apply all the 

tools of nonlinear dynamics, including linear stability analysis, phase diagrams and 

bifurcations that are usually applied to classical physical problems. In the following section, 

we will develop some of these methods in the study of the continuous toggle switch. 

 

 

2.2.2 Continuous model of the toggle switch 

Following the parallel with the treatment of the CME, we develop a continuous formalism 

for the toggle switch system composed of two genes that mutually repress each other. We 

also exploit this example to present some common functions used to model transcriptional 

activation and inhibition in the gene regulatory network literature. In the CME, the mutual 

inhibition between two TFs was explicitly modeled by considering TF dimerization and 

binding to the DNA. The main challenge of the continuous version is to find a suitable force 

field 𝐹(𝒙) that effectively captures the same dynamics. This is typically achieved by 

introducing a continuous function that modulates the transcription rate. First, we can 

introduce transcriptional regulation in the simpler case of the noise-free chemical rate 

equation of the birth-death process:   

𝑑𝑝

𝑑𝑡
= 𝑘 𝐻(𝑅) − 𝛾𝑝   (23) 

Here, 𝑅 is the concentration of a transcription factor that inhibits or activates the 

production of 𝑝; 𝐻(𝑅) is a continuous function that modulates the production rate. In 

general, 𝐻(𝑅) must satisfy the condition 𝐻(0) = 1 so that the basal transcription rate 𝑘 is 

recovered in the absence of external regulation. Then, 𝐻(𝑅) increases or decreases 
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monotonically as a function of 𝑅 depending on whether 𝑅 activates or inhibits 𝑝. Assuming 

equilibration of both TF dimerization/multimerization and TF-DNA binding leads to the so-

called Hill function, which was originally introduced in 1910 to describe the binding of 

oxygen to hemoglobin [29], and has been since applied to a variety of biological contexts 

[30]: 

𝐻(𝑅) =  
1 + 𝜆 (

𝑅
𝑅0
)
𝑛

1 + (
𝑅
𝑅0
)
𝑛    (24) 

The functional form of the Hill function in Eq. (24) is derived exactly from the underlying 

chemical reactions in the insight box 2. In this expression, 𝑅0 represents a threshold 

concentration that is related to the rate constants for TF-TF and TF-DNA binding (see insight 

box 2). Therefore, when 𝑅 > 𝑅0 the regulatory effect of 𝑅 becomes important. 𝜆 is a fold-

change that represents the change in transcription rate due to 𝑅. In the limit 𝑅 ≫ 𝑅0, the 

production rate relaxes to 𝑘𝜆. Therefore, 0 < 𝜆 < 1 indicates transcriptional inhibition and 

𝜆 > 1 indicates transcriptional activation. Lastly, the Hill coefficient 𝑛 indicates the 

cooperativity of the transcription factor. For instance, 𝑛 = 1 indicates that 𝑅 binds to the 

promoter of 𝑝 as a single molecule, 𝑛 = 2 indicates dimerization of the TF, and so forth. It is 

important to stress that a Hill-like relation between protein and TF does not necessarily 

imply TF cooperation and binding, as other biological processes upstream or downstream of 

transcriptional regulation that are not accounted for in the model can lead this nonlinear 

response of eq. (24). The insight box 2 further discusses how these parameters can be fitted 

or inferred from experiment observations. 

 

In this continuous formalism, the toggle switch can be thus described by a set of two ODEs 

of the form: 

𝑑𝑥

𝑑𝑡
= 𝑘

1 + 𝜆 (
𝑦
𝑡0
)
𝑛

1 + (
𝑦
𝑡0
)
𝑛 − 𝛾𝑥    (25𝑎) 

𝑑𝑦

𝑑𝑡
= 𝑘

1 + 𝜆 (
𝑥
𝑡0
)
𝑛

1 + (
𝑥
𝑡0
)
𝑛 − 𝛾𝑦    (25𝑏) 
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For simplicity, we assumed that both 𝑥 and 𝑦 are produced and degraded with the same 

rate constants. Furthermore, the system is completely symmetric as the Hill thresholds, 

fold-changes and coefficients are the same for the two species. The ODE system of eq. (25) 

can exhibit bistability between a (high X, low Y) and a (low X, high Y) states (Fig. 4A). A 

potential pitfall of this modeling approach is the uncertainty in the estimation of the 

model’s parameters. The dependence on the parameter choice can be investigated with 

parameter sensitivity approaches. Figure 4B shows the change of steady state X level in the 

(high X, low Y) state upon varying the model’s parameter one at a time by 5%. More 

sophisticated approaches to parameter sensitivity exist in the current literature that can be 

reviewed in references[31,32]. 

 

 

Figure 4. The deterministic and stochastic toggle switch. (A) The phase space of the toggle 

switch described in eq. (25) including nullclines and fixed points. (B) Local sensitivity analysis 

of the toggle switch parameter around the (high X, low Y) stable fixed point. (C) A temporal 

trajectory for the stochastic toggle switch. (D) The pseudopotential landscape of the toggle 
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switch. The white noise level is fixed to 𝜎 = 2 in panels C, D. The source code to reproduce 

these results is available in our toggle switch tutorial. 

 

 

 

2.2.3 Introducing noise in continuous circuits with the overdamped Langevin equation 

We derived the continuous chemical rate equation as a noise-free approximation to the 

CME. In many situations, however, the continuous limit is utilized because the complexity 

and size of the circuit of interest prevents a treatment with discrete modeling. The effect of 

stochastic fluctuations, however, can be still incorporated in continuous models in a coarse-

grained manner by considering the stochastic differential equation: 

 

�̇� = 𝐹(𝒙) + 𝜉(𝒙, 𝑡)   (26) 

 

This equation describes the motion of a particle in the overdamped limit (�̈� = 0) under the 

presence of a force 𝐹(𝒙) and a noise term 𝜉(𝒙, 𝑡) that satisfies 〈𝜉(𝒙, 𝑡)𝜉(𝒙, 𝑡′)〉 =

2𝐷 𝑫 𝛿(𝑡 − 𝑡′). In other words, the noise term is a random variable whose intensity at any 

time 𝑡 is completely uncorrelated to the intensity at any other given time. 𝐷 is a constant 

with the interpretation of an effective diffusion coefficient. In most of the current models of 

genetic circuits, the noise is assumed to be white. Thus, 𝑫 is simply a unitary matrix. In 

other words, the noise term for each species has the form 𝜉(𝑥, 𝑦, 𝑡) = 𝜎 𝑁(0,1), where 𝜎 is 

the noise amplitude and 𝑁(0,1) is a Gaussian random variable with zero mean and unitary 

variance. In the case of the bistable toggle switch, white noise introduces stochastic 

fluctuations can induce transitions between the two stable states (Fig. 4C). 

 

It is important to stress that stochastic fluctuations modeled in the previous section with 

Gillespie simulations are functions of the models’ parameters. In other words, each 

chemical species has its own ‘personal’ noise amplitude, which could furthermore be a 

function of time as the species’ reaction rates depend on other species’ copy numbers. For 

this reason, the stochastic fluctuations arising from biochemical reactions and modeled with 

Gillespie-style simulations are referred to as ‘intrinsic noise’. Conversely, the so-called 

‘extrinsic noise’ broadly captures all other perturbations related to other cellular 

https://github.com/federicobocci/Computational-Modeling-of-Gene-Regulatory-Networks/blob/main/Toggle%20Switch.ipynb
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components and/or external factors in the cell’s local microenvironment [33,34]. Modeling 

fluctuations with white noise implies that all species in a circuit are subjected to a fixed 

noise intensity. This assumption could become especially problematic when certain species 

are near an extinction point, such as an attractor where the copy number of a given species 

is very low. For this reason, other ways to model noise have been explored. One notable 

example is shot noise where 𝑫 is a diagonal matrix with 𝐷𝑖𝑖 = 𝑥𝑖. In other words, the 

intensity of noise for the 𝑖-th species is proportional to the square root of the variable’s 

copy number (√𝑥𝑖). Therefore, variables with higher copy number experience fluctuations 

with larger amplitude. On the other hand, the noise-to-signal ratio √𝑥𝑖 𝑥𝑖⁄ = 1 𝑥𝑖⁄  is lower 

for high copy number species. As a practical example, a species with average copy number 

𝑛 = 102 molecules will have typical fluctuations of ~10 molecules, or 10% of its average 

copy number. Conversely, the average fluctuations of a species with copy number of 𝑛 =

104 will be larger in absolute intensity (~102 molecules) but will only correspond to 1% of 

the variable’s copy number. Thus, species with low copy number can be subjected to large 

deviations somewhat similar to the bursting effect discussed in the context of the CME. As 

noted by Lu and collaborators, a combination of white and shot noise is likely a more precise 

way to model stochastic fluctuations in continuous, ODE model of biochemical regulatory 

networks as shot noise captures low copy number deviations while white noise captures 

external inputs [35]. 

 

 

2.2.4 Characterizing the landscape of multistable gene regulatory networks 

In general, a multistable circuit governed by the overdamped Langevin equation will exhibit 

multiple attractors and, as in the case of the bistable toggle switch, stochastic fluctuations 

introduce the possibility of transitions from one state to another. Landscape theory is a 

popular way to quantify the global stability in a multistable system by computing the 

equivalent of a potential function. 

The idea that cells follow “paths” in some underlying, high-dimensional landscape that guide 

the transition toward new cell states was first formalized by Waddington, albeit at a 

qualitative level. In Waddington’s representation, cells are visualized as marbles that roll 

through a downhill landscape where valleys and ridges define alternative routes leading to 
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different final states. In turn, the location and structure of these “valleys” is controlled by 

the underlying interactions between genes, mRNAs and transcription factors [36]. 

The construction of the landscape begins by mapping the Langevin dynamics onto a Fokker-

Planck (FP) equation describing the joint probability distribution 𝑝(𝑥1, 𝑥2, … 𝑥𝑁 , 𝑡): 

 

𝜕𝑝(𝒙, 𝑡)

𝜕𝑡
= −∇ ∙ [𝐹(𝒙)𝑝(𝒙, 𝑡)] + ∇2[𝐷(𝒙)𝑝(𝒙, 𝑡)]   (27) 

 

In this equation, 𝐹(𝒙) is the force field driving the Langevin dynamics and 𝐷(𝒙) is a diffusion 

tensor related to the noise amplitude by 𝐷(𝒙) = 𝜎(𝑋)𝜎𝑡(𝑥)/2. We will not discuss the 

derivation of the FP equation form the Langevin equation, which can be found in many 

textbooks on non-equilibrium statistical mechanics. The FP equation can be written more 

compactly in the form of a continuity equation:  

 

𝜕𝑝(𝒙, 𝑡)
𝜕𝑡
⁄ + ∇ ∙ 𝐽 = 0   (28) 

 

where 𝐽(𝒙, 𝑡) = 𝐹(𝒙)𝑝(𝒙, 𝑡) − ∇ ∙ [𝐷(𝒙)𝑝(𝒙, 𝑡)]. From eq. (2), it is evident that the steady 

state solution 
𝜕𝑝(𝒙, 𝑡)

𝜕𝑡
⁄ = 0 requires a divergence-free flux ∇ ∙ 𝑱 = 0. This condition can 

be satisfied in different ways. Systems that respect detailed balance satisfy the stringent 

condition 𝐽 = 0; in this case, there is a clear relation between force, potential and 

equilibrium probability distribution. Indeed, enforcing 𝐽 = 0 implies:  

𝐹(𝒙) =
∇ ∙ [𝐷(𝒙)𝑝𝑒𝑞]

𝑝𝑒𝑞
= 𝐷(𝒙)

∇𝑃𝑆𝑆
𝑃𝑆𝑆

+ ∇ ∙ 𝐷(𝒙)  (29) 

Rewriting 
∇𝑃𝑒𝑞

𝑃𝑒𝑞
= −∇ log (𝑃𝑒𝑞) clarifies the relation between potential and the equilibrium 

probability distribution 𝑈 = −log (𝑃𝑒𝑞). The dynamics of the system is completely 

determined by the gradient of the potential 𝑈 (up to a shift due to local variation of the 

diffusion matrix ∇ ∙ 𝐷(𝒙)). In the simple case of white noise, the diffusion is uniform (∇ ∙

𝐷(𝒙) = 0) and the correspondence between force and potential gradient is exact.   

Typically, force fields describing regulatory networks are constructed in a phenomenological 

manner to capture biochemical interactions such as transcription, binding or degradation 

with the use of functional forms such as Hill functions. For this reason, they cannot be 
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derived from an underlying potential and do not satisfy 𝑱 = 0. Therefore, at steady state, 

the force field can be written as the sum of two components. A gradient of the log-scaled 

steady-state probability distribution and flux term: 

𝐹(𝒙) = 𝐷(𝒙) ∙
∇𝑃𝑆𝑆
𝑃𝑆𝑆

+ ∇𝐷(𝒙) +
𝐽𝑆𝑆
𝑃𝑆𝑆
   (30) 

The flux term 𝐽𝑆𝑆  effectively quantifies the deviation from gradient-driven dynamics. Since 

there are no sources or sinks of probability in the domain of existence of 𝒙, 𝐽𝑆𝑆 must be 

locally curled, and is therefore often referred to as the curl flux. As observed by Wang, the 

dynamics of ‘gradient’ dynamical systems that respect detailed balance can be compared to 

the motion of an electron in an electric field; conversely, the dynamics of ‘non-gradient’ 

systems such as gene regulatory networks is similar to the motion of an electron in an 

electromagnetic field [37]. 

 

Fig. 4D shows the pseudopotential landscape of the bistable toggle switch under the effect 

of white noise, which include two deep minima corresponding to the two stable fixed points 

of the deterministic system.  

 

Therefore, in non-gradient systems such as coupled biochemical networks, the steady-state 

probability distribution 𝑝(𝒙, 𝑡) cannot be established a priori, but only as a result of 

stochastic simulations of the Langevin equation or steady state solution of the FP equation. 

Nonetheless, the steady-state probability distribution and curl flux provide key information 

about (1) the number of accessible states, (2) their relative stability, and (3) the deviation 

from gradient-driven dynamics.  

 

 

-------------------------------------------------------------------------------------------------------------------------- 

2.2.5 Insight box 2: Modeling transcriptional regulation with Hill functions 

 

In the simplest model of protein production, a gene transcribes mRNA at a constant rate 

𝑘𝑚; in turn, mRNA molecules are translated into proteins with rate constant 𝑘𝑝. Therefore, 

the copy number of mRNA (m) and protein (p) can be described by first order equations: 
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𝑑𝑚

𝑑𝑡
= 𝑘𝑚𝐷0 − 𝛾𝑚𝑚   (31𝑎) 

𝑑𝑝

𝑑𝑡
= 𝑘𝑝𝑚− 𝛾𝑝𝑝   (31𝑏) 

Where 𝐷0 is the total number of promoters transcribing for the protein p, and can be 

treated as a constant unless DNA is being replicated during cell division; 𝛾𝑚 and 𝛾𝑝 are 

degradation rate constants for mRNA and protein. Assuming fast equilibration of mRNA 

(𝑑𝑚 𝑑𝑡 = 0⁄ ), the mRNA copy number is 𝑚 = 𝑘𝑚𝐷0 𝛾𝑚⁄  and the protein copy number 

directly depends on the number of genes 𝐷0: 

𝑑𝑝

𝑑𝑡
= 𝑘𝐷0 − 𝛾𝑝𝑝   (32) 

Where 𝑘 = 𝑘𝑚𝑘𝑝 𝛾𝑚⁄ . In presence of a transcriptional factor 𝑥 that activates or inhibits 

gene expression, the mRNA production rate is modulated by a function 𝑘𝑚 → 𝑘𝑚𝑓(𝑥) 

(Figure 5A). First, we assume that the transcription factor can bind and unbind to DNA as a 

single molecule with rate constants 𝑘+, 𝑘−. Assuming fast equilibration of the TF-DNA 

binding, the fraction of genes that are unbound (𝑈) and bound (𝐵) to the transcription 

factor are: 

𝑈 = 𝐷0
1

1 +
𝑥
𝑥0

  (33𝑎),     𝐵 = 𝐷0 − 𝑈 = 𝐷0

𝑥
𝑥0

1 +
𝑥
𝑥0

   (33𝑏) 

Where 𝑥0 = 𝑘+ 𝑘−⁄  represents the half-concentration so that 𝑈 = 𝐵 when 𝑥 = 𝑥0. The 

mRNA is transcribed with rate constant 𝑘𝑢 by an unbound promoter and 𝑘𝑏  by a bound 

promoter, respectively. 𝑘𝑏 > 𝑘𝑢  implies that 𝑥 is an activator while 𝑘𝑏 < 𝑘𝑢 implies that 𝑥 is 

an inhibitor. The corresponding protein (𝑝) is then produced with rate (𝑘𝑢𝑘𝑝 𝛾𝑚)𝑈⁄ +

 (𝑘𝑏𝑘𝑝 𝛾𝑚)𝐵⁄ . Thus, the dynamics of protein 𝑝 is governed by the following equation: 

𝑑𝑝

𝑑𝑡
= 𝑘𝑝𝑈

1

1 +
𝑥
𝑥0

+ 𝑘𝑝𝐵

𝑥
𝑥0

1 +
𝑥
𝑥0

− 𝛾𝑝𝑝 = 𝑘
𝑝
𝑈

1 + 𝜆
𝑥
𝑥0

1 +
𝑥
𝑥0

− 𝛾𝑝𝑝   (34) 

Where 𝑘𝑝𝑈 = (𝑘𝑢𝑘𝑝 𝛾𝑚)⁄  and 𝑘𝑝𝐵 = (𝑘𝑏𝑘𝑝 𝛾𝑚)⁄ . In the compact form on the right-hand 

side, 𝜆 = 𝑘𝑝𝐵/𝑘
𝑝
𝑈 represents a fold-change in the transcription of 𝑝 due to the regulatory 

activity of 𝑥. 

In the more complex case where the transcription factor dimerizes reversibly (𝑥 + 𝑥 ↔ 𝑥2) 

with dimerization and monomerization rate constants 𝑘2, 𝑘1, and binds and unbind to DNA 

only in its dimer form 𝑥2, the fractions of bound and unbound DNA become: 
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𝑈 = 𝐷0
1

1 + (
𝑥
𝑥0
)
2    (35𝑎),     𝐵 = 𝐷0 − 𝑈 = 𝐷0

(
𝑥
𝑥0
)
2

1 + (
𝑥
𝑥0
)
2   (35𝑏) 

Where 𝑥0 = √𝑘1𝑘+ 𝑘2𝑘−⁄ . The corresponding equation for protein 𝑝 becomes: 

𝑑𝑝

𝑑𝑡
= 𝑘𝑝𝑈

1 + 𝜆 (
𝑥
𝑥0
)
2

1 + (
𝑥
𝑥0
)
2 − 𝛾𝑝𝑝   (36) 

In general, a transcription factor that binds to DNA as an n-oligomer is described by the n-th 

power of its monomeric concentration. If the transcription factor is an activator, it is often 

assumed that the transcription rate of the unbound gene is zero (i.e. 𝑘𝑢 = 0), hence:  

𝑑𝑝

𝑑𝑡
= 𝑘

(
𝑥
𝑥0
)
𝑛

1 + (
𝑥
𝑥0
)
𝑛 − 𝛾𝑝𝑝    (37) 

Where the concentration of DNA (𝐷0) has been absorbed into the production rate constant 

𝑘. Similarly, if a transcription factor is a very effective inhibitor, no transcription is assumed 

for the bound genes (i.e. 𝑘𝑏 = 0), hence: 

𝑑𝑝

𝑑𝑡
= 𝑘

1

1 + (
𝑥
𝑥0
)
𝑛 − 𝛾𝑝𝑝    (38) 

The expressions in eq. (37) and eq. (38) are referred to as positive and negative Hill 

functions, whereas the general form presented in eq. (36) is referred to as shifted Hill 

function. Detailed data about TF oligomerization is not always available. The Hill coefficient, 

half-concentration and fold-change (𝑛, 𝑥0, 𝜆), however, can still be inferred from an 

experiment describing protein concentration as a function of TF concentration (Figure 5B). 

In this case, however, there is no guarantee that the inferred Hill coefficient truly reflects TF 

oligomerization, as other processes can modulate transcription and change the protein-TF 

relation. 
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Figure 5. Derivation and fitting of the Hill function. (A) The derivation of the Hill function 

considers a case where the regulator can dimerize (or create a higher-order oligomer) and 

then bind to DNA. (B) The parameters of the Hill functions can be inferred from experimental 

data reporting the expression of the molecule 𝑝 as a function of transcription factor 

concentration. 

-------------------------------------------------------------------------------------------------------------------------- 

 

 

2.2.6 Explore further: Transitions in the pseudopotential landscape 

One of the main quests in the modeling of gene expression and regulatory networks is 

understanding noise-driven transitions between stable states. For example, the attractors in 

a multistable pseudopotential landscape might represent the states that a cell can assume. 

Therefore, a transition from one attractor to the next represents a transition from one cell 

state to another. These transitions can be studied with long simulations of the overdamped 

Langevin equation (such as the trajectory in Fig. 4C). This approach, however, is time 

consuming and often cannot provide large statistics because escape events from attractors 

are rare. More complex methods based on the path integral formalism have been widely 

applied to biochemical systems to reconstruct transition trajectories and rates in a more 

computationally efficient manner. Interesting examples of these approaches include [38,39], 

and are summarized in [40] for interested readers. 
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2.3 Large networks: Boolean models, parameter randomization and 

interfacing with data 

 

In the previous two sections we discussed CME and continuous models that describe genetic 

and biochemical interactions in a mechanism-based, detailed manner. These approaches 

can become impractical when applied to large networks with dozens, or even hundreds, of 

chemical species. These considerations are becoming more and more relevant as detailed 

experimental techniques provides detailed insight into the organization of large regulatory 

networks, thus providing an opportunity to build and benchmark larger models of gene 

regulation. A first challenge, from a computational standpoint, is to perform long 

simulations on models with hundreds of reactions and/or ODEs. A second, more 

fundamental problem is the difficulty to precisely estimate all the parameters of the model. 

Quite often, only a qualitative relation can be established between species in a network, 

such as inhibition or induction. In this section, we discuss two classes of models that resolve 

these issues and allow the modeling of large networks. First, we discuss Boolean models 

where nodes can only be active or inactive, and transcriptional and biochemical interactions 

are described via logic operators. Second, we present parameter randomization approaches 

that assume the functional form of the interactions and test many different combinations of 

parameter values. Finally, we introduce how the problem of determining the gene 

regulatory network architecture and connections can be tackled by interfacing quantitative 

modeling and high-resolution single cell sequencing data. 

  

 

2.3.1 Boolean Models 

Boolean models perhaps represent the most coarse-grained approach to describe 

regulatory networks since they require a minimal amount of information including solely the 

circuit’s connections of positive or negative interactions among genes [41]. For this reason, 

Boolean approaches stand out as some of the first attempts to model gene regulation [42]. 

In Boolean models, each node can either be ON (𝜎 = 1) or OFF (𝜎 = 0), thus representing a 

gene or molecular species that is active or inactive, respectively. Therefore, the state of a 

regulatory network of N genes at any given time 𝑡 is specified by an array of N Boolean 
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variables 𝜎 = (𝜎1, 𝜎2, … , 𝜎𝑁). The value of each node 𝑖 (𝜎𝑖) is a function of all the incoming 

signal from nodes that directly regulate node 𝑖. These functions 𝐵𝑖 are typically constructed 

in an ad hoc manner starting from experimental evidence and using the logic commands 

AND, OR and NOT. Similar to their continuous counterparts, Boolean networks can be 

represented graphically as a set of nodes and arrows to indicate mutual activation or 

inhibition, such as shown in figure 6A. It is important to stress that the functional form of 

the functions 𝐵𝑖 cannot be inferred by simply looking at the schematic representation. For 

example, in the circuit of figure 6A, x and z both activate the node y. Their input, however, 

can be combined in an AND or OR manner, which must be specified. 

 

Starting from an initial configuration, the values of the nodes are updated according to an 

integration scheme. In particular, the synchronous scheme is the simplest update method 

on a Boolean network. Under this deterministic scheme, the state of each node (𝑖) at 

iteration 𝑡 + 1 is the output of the Boolean function 𝐵𝑖 computed at time 𝑡: 

𝜎𝑖(𝑡 + 1) = 𝐵𝑖(𝝈(𝑡))    (39) 

This method presents some important drawbacks. Specifically, reactions in regulatory 

networks can be time-separated, with given reactions evolving on faster timescales than 

others. A popular solution is given by asynchronous updating schemes, which can be 

considered as a Boolean equivalent of the Gillespie algorithm. With this method, any 

reaction in the network is associated with a typical timescale. At any updating step, one 

node is selected with a probability proportional to the frequency of that reaction. Therefore, 

faster reactions are more probable and thus selected more often. These reference 

timescales are not known a priori, so they must be inferred from literature and given as an 

additional input in the construction of the model. A more in-depth discussion and 

comparison between different integration schemes is provided in [43,44]. 

 

Starting from a given initial condition, a Boolean network relaxes to an attractor or limit 

cycle by following the update scheme. In figure 6A, we present a simple example of a 3-

nodes network originally proposed by Wang and collaborators [45] with the following 

Boolean functions: 

𝐵𝑥 = 𝑥 𝑂𝑅 (𝑁𝑂𝑇 𝑧)   (40𝑎) 

𝐵𝑦 = 𝑥 𝐴𝑁𝐷 𝑧    (40𝑏) 
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𝐵𝑧 = 𝑦    (40𝑐) 

Three different initial conditions lead to three different steady states, including two stable 

attractors and a limit cycle (Figure 6B). More generally, a large Boolean network with N 

nodes has 2𝑁 different initial conditions that can lead to multiple attractors and/or limit 

cycles. Typically, their basin of attraction is quantified with a large number of simulations 

starting from randomized initial conditions. 

 

 

Figure 6. (A) Example of a three-node Boolean model. (B) Three different initial conditions 

that lead to oscillations between two configurations 

 

 

2.3.2 Parameter randomization 

Boolean models overcome the insufficient knowledge of the model’s parameters by 

assuming more coarse-grained relationships between species based on logical operators, 

thus sacrificing the detailed description of biochemical reactions. An alternative approach is 

to hypothesize more detailed functional forms to describe the circuit’s reactions, such as hill 

functions for transcriptional regulation, and explore several parameter combinations.  

 

For example, random circuit perturbation (RACIPE) takes the topological information of a 

network (i.e., the list of positive and negative interactions between species) as the input and 

generates an ensemble of mathematical models[46]. Each mathematical model, also 

referred to as a RACIPE model, is simulated with the same set of chemical rate equations 

but with distinct sets of parameters. Each set of parameters are randomly sampled from a 

fixed distribution (uniform, Gaussian etc.) within their biologically reasonable ranges. For 
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each RACIPE model, multiple (typically tens of thousands) initial conditions are used to 

perform the numerical simulation to solve all possible stable-state solutions. The stable-

state solutions from the ensemble RACIPE models and their corresponding parameters are 

collected for statistical analysis, by which the pattern of solutions and the differences in 

parameters leading to different solutions can be identified. RACIPE originally focuses on 

transcriptional regulatory networks and uses the shifted Hill function[47] to simulate the 

transcriptional regulations. The method RACIPE has been implemented as a free open 

source software which can be accessed in GitHub[48]. To reach convergence of RACIPE 

simulation results, there are two key parameters - the number of RACIPE models and the 

number of initial conditions for each model should be evaluated and decided. As the 

average simulation time of a RACIPE model is linearly proportional to the number of 

parameters of that model, RACIPE can be potentially applied to large gene networks. 

Notably, the main purpose of RACIPE is to determine the robust stable states enabled by the 

gene networks by considering the large variations in parameters. For example, parameter 

randomization of the toggle switch topology using RACIPE showed that, even though the 

toggle switch topology is typically associated with bistability, more than 75% of parameter 

combinations lead to a single stable fixed point[46]. 

 

To detect the stability of different stable states exhibited by the gene network, a method 

integrating RACIPE with stochastic analysis, referred to as sRACIPE, has been recently 

developed[49]. The sRACIPE employs a simulated annealing-based scheme to estimate the 

stability of different stable states resulting from various initial conditions. One interesting 

observation by applying sRACIPE to toggle-switch-like circuits is that high expression noise 

induced state merging. Recently, the Boolean and randomized approaches were compared 

on the same set of network topologies, showing that both methods can successfully recover 

the important dynamical features of the circuits[50]. 

 

 

2.3.3 Learning regulatory networks from single cell transcriptomics 

So far, we have always assumed the existence of biological knowledge that serves as input 

to build GRN models. In many cases, however, the interactions between genes are not well 

known, and alternative, data-driven strategies are necessary. Over the last decade, many 
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single cell Omics technologies have started to provide unprecedented resolution over gene 

regulation at the single cell level [51]. In this section, we focus specifically on single cell RNA 

sequencing (scRNA-seq), a technology capable to measure the copy number of tens of 

thousands of RNA species simultaneously within a cell [52]. The output of a scRNA-seq 

experiment can be intuitively understood as a count matrix where the rows identify 

individual cells, and the columns identify the genes in the cell’s genome. While this data can 

be very useful to investigate the gene expression patterns associated to different types of 

cells, recently several models have been proposed to infer the regulation between genes 

[53,54]. Here, we briefly introduce the topic and focus on the emerging mathematical 

challenges. The inference of GRN from the scRNA-seq data introduces the challenge of 

inferring causal relationships from data that lacks temporal information. Generalizing the 

mathematical models of GRN developed in previous sections, the GRN inference problem 

can be generally set up as a nonlinear, high-dimensional system of the form: 

�̇� = 𝑓(𝑿)   (41) 

In eq. (24), 𝑿 represents the vector of mRNA counts of the 𝑁 genes in the cell, and 𝑓(𝑿) is a 

general nonlinear function that describes how genes mutually regulate each other. In most 

existing applications, the problem is further simplified by assuming linear interactions 

between genes and degradation: 

�̇� = 𝐴𝑿 − 𝛾𝑿    (42) 

Where 𝐴 is a 𝑁x𝑁 matrix encoding linear interactions between genes, with the implicit 

assumption that the positive and negative coefficients 𝐴 correspond to activation and 

inhibition, and 𝛾 is a degradation rate vector. Interestingly, the existing bioinformatics 

methods for GRN inference can be broadly divided into two main classes based on whether 

steady state is assumed in eq. (42), with both approaches exhibiting strengths and pitfalls. 

First, steady state methods assume that �̇� = 0 [55,56]. Without further assumptions, 

however, this leads to the trivial, non-interacting solution 𝐴 = 𝛾. This problem is typically 

circumvented by eliminating self-interactions by setting the diagonal elements of 𝐴 to zero. 

This way, the off-diagonal elements of 𝐴 can be resolved, one row at a time, by solving the 

regression problem: 

𝑥𝑖 =∑𝑎𝑖𝑗𝑥𝑗
𝑗≠𝑖

− 𝛾𝑖𝑥𝑖    (43) 
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Bocci and collaborators showed that this method can detect the presence of GRN edges 

(i.e., causal connections between genes), but might lead to inaccurate sign prediction [24]. 

Alternatively, eq. (42) can be interpreted as an out-of-equilibrium problem [57–59]. This 

approach, however, requires an estimation of the first derivative �̇� from scRNA-seq data 

that typically does not have temporal information. Thus, physical time is typicaly substituted 

with pseudotime. Pseudotime (pst) is a cell ordering technique based on cell-cell gene 

expression similarity, so that, starting from a root cell (pst=0), a differentiation trajectory is 

reconstructed [60]. Cells with gene expression patterns that are similar to the root cell will 

have smaller pseudotime while cells with different gene expression patterns will have larger 

pseudotime. After substituting physical time with pseudotome in the RHS, eq. (42) can be 

solved for 𝐴. While pseudotime is a powerful tool to reveal the lineages of biological 

systems, there might be pitfalls when using it as a proxy for physical time. For example, in a 

scenario of multistability cells at different points of a differentiation trajectory coexist at the 

same physical time while exhibiting different pseudotime values. Interested readers can find 

more in-depth description of GRN inference methods and their application to biological 

datasets in topical reviews [53,54]. 

 

 

 

3. Examples from various biological contexts  

 

In this section, we examine examples where the tools to model multistable regulatory 

networks have been successfully applied and unraveled new biological functions. First, we 

consider the epithelial-mesenchymal transition (or EMT in short), a trans-differentiation 

process that regulates cell motility in physiological processes and diseases. In our 

description of EMT, we further review mathematical approaches to describe the regulation 

of non-coding RNAs which play an essential part in the control of EMT. Second, we review 

theoretical and computational models of stem cell differentiation, along with theoretical 

approaches that rephrase multistable gene regulatory networks as a many-body problem. 

Finally, we examine models of cell-cell communications through the Notch signaling 
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pathway. These models introduce spatial patterning and multicellular communication that 

arise when cells can exchange information with their neighbors.  

 

3.1 Intermediate states in the Epithelial-Mesenchymal Transition 

 

3.1.1. Epithelial-Mesenchymal Transition in development and cancer 

The Epithelial-Mesenchymal Transition (EMT) is a complex biochemical and biophysical 

process where epithelial cells, typically characterized by strong adhesion to neighboring 

cells and apicobasal polarity, loosen their adhesion and gain motility [62]. EMT and its 

reverse, MET, play a fundamental role in several developmental and physiological 

processes, such as organogenesis and wound healing, when cells need to transiently acquire 

motility to travel and rearrange their spatial organization. Moreover, EMT is implicated in 

several aspects of cancer progression, including metastasis and resistance to therapies 

[63,64]. A particularly interesting topic in EMT is the existence of intermediate cellular states 

separating the epithelial and mesenchymal phenotypes. These hybrid 

epithelial/mesenchymal cells (called E/M for short in the rest of the section) retain both cell-

cell adhesion typical of epithelial cells and migration potential typical of mesenchymal cells. 

For this reason, these hybrid E/M states play an important role in collective cell migration in 

both physiological and pathological processes [65–67]. In recent years, theoretical modeling 

helped targeting several elusive questions about hybrid epithelial/mesenchymal states: is 

the EMT spectrum discretized in a set of intermediate states? Are these states truly stable 

or just metastable intermediates? Are they redundant or do they serve different biological 

functions? In this section we explore mathematical models that applied a wide array of 

methods to seek answers to these poignant questions.  

 

3.1.2. Multistability predicted by continuous models of a core EMT regulatory network  

Experiments have revealed intricated and interconnected network of genes, transcriptional 

factors and protein that regulate the epigenetic and biophysical transformations associated 

with EMT. Nonetheless, mathematical modeling has shown that some of the main aspects 

of EMT including the existence of intermediate cell states can be captured by a simple 

model of a core gene regulatory network including two micro-RNAs (miR-34 and miR-200) 
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and two transcription factors (Zeb and Snail). In this core circuit, miR-34 and miR-200 inhibit, 

and are in turn inhibited, by Zeb and Snail, respectively. Moreover, Zeb regulates its own 

activity, while Snail activates Zeb and self-inhibits (Figure 7A). Zeb and Snail are typically 

activated when a cell undergoes EMT and are therefore associated with a mesenchymal 

phenotype. Conversely, miR-34 and miR-200 inhibit the action of Zeb and Snail and are 

therefore associated with an epithelial phenotype. A continuous framework proposed by 

Zhang and collaborators [68] models all these coupled interactions with Hill functions. 

Under this approximation, both the miR-34/Snail and miR-200/Zeb motifs behave as 

bistable toggle switches. Therefore, EMT is achieved by first flipping the miR-34/Snail switch 

from (high miR-34, low Snail) to (low miR-34, high Snail), and subsequently flipping the miR-

200/Zeb switch from (high miR-200, low Zeb) to (low miR-200, high Zeb). The intermediate 

state with (low miR-34, high miR-200, high Snail, low Zeb) does not exhibit clear epithelial or 

mesenchymal signatures and is therefore interpreted as a hybrid E/M transition state 

(Figure 7B). 
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Figure 7. Continuous models of EMT. (A) A core EMT gene regulatory network comprising 

the epithelial microRNAs miR-34, miR-200 and the mesenchymal transcription factors Zeb, 

Snail. (B) In the model by Zhang and collaborators [68], the transition state with (low miR-

34, high miR-200, high Snail, low Zeb) is identified as the hybrid E/M. Conversely, in the 

model by Lu and collaborators [47], the hybrid E/M state has intermediate expression of all 

nodes. (C) Example of ‘phenotypic stability factor’ motifs that increase the stability of the 

hybrid E/M state by coupling to the core EMT circuit. (D) The stabilizing action of the PSF 

NRF2 is evaluated with a bifurcation diagram of miR-200 as a function of EMT inducer 

(adapted from Bocci and collaborators [69]); PSFs extend the hybrid E/M branch. (E) 

Pseudopotential landscape of the EMT circuit adapted from Li and collaborators [70]. E, P 
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and M indicate the locations of the Epithelial, hybrid E/M (Partial) and Mesenchymal 

attractors. White and purple continuous lines indicate the minimum action paths (MAPs) of 

EMT and MET, while the dashed lines indicate the EMT and MET MAPs that pass through the 

hybrid E/M attractor.   

 

 

3.1.3. Micro-RNA based regulation of EMT 

As we previously discussed, Hill functions can effectively model transcriptional 

activation/inhibition where a transcription factor binds to DNA – either alone, as a dimer, or 

as an oligomer, to enhance or repress the transcription of its target gene (see Insight box 2). 

Micro-RNAs such as miR-34 and miR-200, however, inhibit their target at a post-

translational stage by binding to the transcribed mRNA and facilitating its degradation. This 

reaction, which is always inhibitory, is therefore better described with an explicit model of 

microRNA-mRNA binding, rather than Hill functions [71,72]. Targeted mRNA molecules have 

a variable number (𝑛) of available binding sites for the micro-RNAs. The higher the number 

of micro-RNA molecules bound to the mRNA, the larger the degradation rate of the 

complex. Therefore, micro-RNAs inhibit their target by preventing translation of the mRNA 

into protein. Lu and collaborators [47] developed a model of EMT regulation with similar 

circuit topology but different functional form to describe the action of miR-34 and miR-200 

[47,73]. The micro-RNA based chimeric circuit approach models the chemical binding 

between micro-RNA and target mRNA molecules and the possible translation and 

degradation rates as a function of number of occupied binding sites. This mathematical 

model is discussed in detail in the insight box 3. 

 

Similar to the model of Zhang and collaborators [68], Lu and collaborators [47]  predicted 

the existence of a hybrid E/M state. Different modeling assumptions on micro-RNA 

regulation, however, are reflected into distinct features of the hybrid E/M state. In the 

model of Lu and collaborators, the miR-200/Zeb circuit acts as a tristable switch with an 

additional stable fixed point with intermediate expression of both miR-200 and Zeb (Figure 

7B). The miR-34/Snail circuit, conversely, is monostable, and was proposed to act as a buffer 

that filter noise and confers robustness to the miR-200/Zeb switch [47]. 
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This models has been further extended to investigate the coupling with various ‘phenotypic 

stability factors’ that modify the topology of the core EMT circuit and increase the stability 

of the hybrid E/M phenotype [69,74–76]. This approach shifts the focus from the underlying 

biology characterizing a specific EMT regulator, and successfully predict its qualitative 

impact on EMT based on how it is connected to the core EMT gene regulatory network 

(Figure 7C-D). 

 

 

3.1.4. Landscape and path integral analysis highlights EMT transition routes  

To gain further insights about the stability of the various EMT states and the transitions 

between them, Li and collaborators [70] studied the pseudopotential landscape of the EMT 

circuit of Lu and collaborators by explicitly solving the Fokker-Planck equation associated 

with the circuit. Specifically, the authors focused on the miR-200/Zeb switch that is 

responsible for the tristability of the circuit. This way, the pseudopotential can be easily 

visualized on a two-dimensional (miR-200, Zeb) space. The pseudopotential is obtained from 

the steady state probability 𝑈 = −log ( 𝑝𝑆𝑆(𝑚𝑖𝑅 − 200, 𝑍𝑒𝑏) ) and is shown in Figure 7E. 

As expected, the landscape features three attractors corresponding to Epithelial, hybrid 

E/M, and Mesenchymal phenotypes. The authors further identified the minimum action 

paths (MAPs) connecting the three states. As discussed previously, the transitions are 

determined by the pseudopotential as well as the curl flux arising from broken detailed 

balance. Due to the curl flux, the MAP connecting the E and M attractors does not pass 

through the saddle points of the landscape, thus deviating from the behavior of ‘classical’, 

gradient-driven physical systems. There are several interesting biological implications 

stemming from this observation. First, cells undergoing E-to-M transition do not necessarily 

pass through the hybrid E/M phenotype, because the action of the E-E/M-M path is higher 

than the action of the direct E-M path. Moreover, the paths for the E-M transition and its 

reverse, M-E, are different, hence making them irreversible (Figure 7E). This suggests that 

cells undergoing EMT and MET might exhibit different molecular signatures. Finally, the 

action required for the E-E/M-M transition is higher than the action of the irreversible E-M 

transition; the action required for the first step (E-E/M transition), however, is lower than 

that of the E-M transition. Therefore, the E-E/M transition path could be chosen when the 

cell is not exposed to enough stimulus to undergo a complete E-M transition.  
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3.1.5. Boolean networks identify biological regulators and intermediate states in EMT 

While small circuits of a core regulatory network enable a detailed analysis of EMT, several 

molecular players and signaling pathways participate in the regulation of EMT. Steinway and 

collaborators [77] reconstructed a large EMT Boolean network with 70 nodes and 135 

connections by integrating experimental observations on known EMT factors and regulators 

from human hepatocellular carcinoma (HHC). To simulate the dynamics of EMT driven by 

TGF-𝛽 – a well-known EMT inducer – the authors initialized the network in an epithelial 

state and updated the model following a stochastic asynchronous scheme. To decrease the 

complexity of the network, they also applied reduction methods to eliminate ‘redundant’ 

nodes and connections. Interestingly, they identified a reduced network with 19 nodes and 

70 connections with a very similar dynamical behavior (Fig. 8A). This reduced network 

enabled the identification of transition trajectories from the initial epithelial state to the 

final mesenchymal state, thus offering interesting information on the temporal ordering in 

the activation and deactivation of relevant genes. Furthermore, the authors explored the 

effect of knockout and/or constitutive activation of nodes or combinations of nodes by 

artificially enforcing an ‘ON’ or ‘OFF’ state for certain nodes in the circuit [78]. Strikingly, 

some of these perturbations prevent EMT but do not reverse the transition to the original 

epithelial attractor; rather, alternative attractors with both epithelial and mesenchymal 

active genes become stable, which are identified as candidates for hybrid 

epithelial/mesenchymal states. 

 

Font-clos and collaborators [79] described the same EMT network with a pseudo 

Hamiltonian based on the formalism of spin systems 𝐻 = −∑ 𝐽𝑖𝑗𝑠𝑖𝑠𝑗𝑖,𝑗 . Compared to the 

Hamiltonian typically used to describe spin systems, here the 𝑠𝑖 = 0, 1 describe an inactive 

or active gene, respectively, and the 𝐽𝑖𝑗  describe inhibition (𝐽𝑖𝑗 = −1), activation (𝐽𝑖𝑗 = 1) or 

lack of interaction (𝐽𝑖𝑗 = 0) from gene 𝑖 to gene 𝑗. Thus, differently from standard spin 

system Hamiltonians, interactions are not symmetric (i.e., 𝐽𝑖𝑗 ≠ 𝐽𝑗𝑖) and therefore it is not 

guaranteed that the fixed points of the system correspond to the minima of 𝐻. The authors 

sampled the landscape of the network with a large number of stochastic simulations using 

the same update scheme originally used by Steinway and collaborators [77,78]. This analysis 

revealed two deep minima associated with the epithelial and mesenchymal states separated 
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by a complex landscape with several local minima that are interpreted as intermediate, less 

stable states. On a two-dimensional PCA map, the distribution of steady states shows two 

dense regions corresponding to Epithelial (E-cadherin node is ON) and mesenchymal (E-

cadherin node is OFF), separated by a sparser region where E-cadherin can be ON or OFF 

(Fig. 8B-C). 

 

 

Figure 8. Boolean models of EMT. (A) A large EMT network used by Steinway and 

collaborators [78]. Yellow areas highlight the motifs that are found to stabilize the Epithelial 

state. White-colored nodes are active in the Epithelial state while black-colored nodes are 

inactive. Nodes with blue background are predicted as sensible knockout targets that 

suppress EMT. (B) Density of steady states on the PCA0-PCA1 plane in the model of Font-Clos 

and collaborators [79]. Green and purple color shading indicate high or low probability that 

E-cadherin is on in the steady state. (C) Clustering and correlation of 500 steady state 

solutions in the model of Font-Clos and collaborators. 
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-------------------------------------------------------------------------------------------------------------------------- 

3.1.6 Insight box 3: Describe micro-RNA mediated inhibition with mass action and 

chimeric circuits 

 

Micro-RNAs (miRs) inhibit the expression of a protein by binding to the target mRNA 

molecules and degrade them before translation. Several models that describe miR-mediated 

inhibition employ the principles of mass action [71,72]. Suppose that mRNA of a given 

protein (𝑚) is transcribed with rate 𝑘𝑚 and the corresponding molecule (𝑝) is translated 

with rate 𝑘𝑝. Moreover, we consider a miR species (𝜇) that is produced and degraded with 

rate constants 𝑘𝜇 , 𝛾𝜇 , respectively. 𝜇 binds and unbinds to 𝑚 with rate constants 𝑘𝐵 and 𝑘𝑈, 

respectively, and the mRNA-miR complex [𝑚𝜇] degrades with rate constant 𝛾𝑚𝜇. The 

coupled dynamics of mRNA, miR, mRNA-miR complex and protein (𝑚,𝜇, [𝑚𝜇], 𝑝) is 

described by the following system of ODEs: 

𝑑𝑚

𝑑𝑡
= 𝑘𝑚 − 𝑘𝐵𝑚 𝜇 + 𝑘𝑈[𝑚𝜇] − 𝛾𝑚𝑚  (44𝑎) 

𝑑𝜇

𝑑𝑡
= 𝑘𝜇 − 𝛾𝜇𝜇    (44𝑏) 

𝑑[𝑚𝜇]

𝑑𝑡
= 𝑘𝐵𝑚 𝜇 − 𝑘𝑈[𝑚𝜇] − 𝛾𝑚𝜇[𝑚𝜇]    (44𝑐) 

𝑑𝑝

𝑑𝑡
= 𝑘𝑝𝑚 − 𝛾𝑝𝑝    (44𝑑) 

Various approximations can be made from this basic framework, for instance by assuming 

fast mRNA-miR binding and writing the loss term of 𝑚 as a function that only depends on 𝑚 

and 𝜇. Moreover, as discussed in the insight box 1, fast mRNA dynamics can be another 

valid approach. More details on this are provided in other reviews [71,72]. 

 

The general scheme of eqs. (44), however, assumes a 1-to-1 stoichiometry in the mRNA- 

miR binding. Often, mRNA molecules have multiple binding sites, whose occupancy 

modulates translation and degradation rates (Figure 9). In the following, we discuss a 

generalization of eqs. (44) developed by Lu and collaborators that accounts for multiple miR 

binding sites that has been successfully applied to the gene circuit that regulates the 

Epithelial-Mesenchymal Transition [47,73].  
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Similar to eqs. (44), let us consider a system with an mRNA species (𝑚) and an inhibiting miR 

(𝜇). Moreover, let us assume that each mRNA molecule has 𝑛 binding sites for miR 

molecules. miR molecules bind and unbind to the mRNA with rate constants 𝑟𝜇+ and 𝑟𝜇−, 

respectively. In the model, binding at different sites are treated as independent events due 

to the small size of the miR compared to the mRNA molecule. Assuming fast equilibration of 

mRNA-miR binding, the fraction of mRNA molecules with 𝑖 occupied binding sites satisfies: 

𝑟𝜇+ 𝜇 [𝑚𝑖] = 𝑟𝜇− [𝑚𝑖+1]   (45) 

Iteratively, [𝑚𝑖] can be expressed as a function of [𝑚0], i.e. the fraction of mRNAs without 

any occupied binding site: 

[𝑚𝑖] = (
𝜇

𝜇0
)
𝑖

[𝑚0]   (46) 

Where 𝜇0 = 𝑟𝜇−/𝑟𝜇+. The set of concentrations [𝑚𝑖], 𝑖 = 0, 1,… 𝑛, must also satisfy: 

∑ 𝐶𝑛
𝑖 [𝑚𝑖]

𝑛

𝑖=0

= 𝑚   (47) 

Where  𝐶𝑛
𝑖 = 𝑛! 𝑖! (𝑛 − 1)!⁄  is the number of arrangements for 𝑖 micro-RNA molecules on 𝑛 

binding sites. Plugging eq. (46) into eq. (47) yields: 

𝑚 = [𝑚0]∑  𝐶𝑛
𝑖  (
𝜇

𝜇0
)
𝑖

𝑛

𝑖=0

=  [𝑚0] (1 +
𝜇

𝜇0
)
𝑛

    (48) 

Thus, using eq. (46) and (48), the fraction of mRNA molecules with 𝑖 miR bound ([𝑚𝑖]) can 

be expressed as: 

[𝑚𝑖] = 𝑚
(
𝜇
𝜇0
)
𝑖

(1 +
𝜇
𝜇0
)
𝑛    (49) 

Finally, we introduce sets of rate constants [𝑙𝑖], [𝛾𝑚𝑖] and [𝛾𝜇𝑖] that represent the 

translation rate of a mRNA molecule with 𝑖 miR bound, the degradation rate of a mRNA 

molecule with 𝑖 miR bound, and the degradation rate of miR molecules associated with 𝑖-

bound mRNAs. Therefore, it is possible to write total translation and degradation terms: 

𝑑𝑚

𝑑𝑡
= 𝑘𝑚 −𝑚∑𝛾𝑚𝑖 𝐶𝑛

𝑖 𝑀𝑛
𝑖(𝜇)

𝑛

𝑖=0

− 𝛾𝑚𝑚   (50𝑎) 

𝑑𝜇

𝑑𝑡
= 𝑘𝜇 −𝑚∑𝛾𝜇𝑖  𝐶𝑛

𝑖 𝑀𝑛
𝑖(𝜇)

𝑛

𝑖=0

− 𝛾𝜇𝜇   (50𝑏) 
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𝑑𝑝

𝑑𝑡
= 𝑘𝑝𝑚∑𝑙𝑖 𝐶𝑛

𝑖 𝑀𝑛
𝑖(𝜇)

𝑛

𝑖=0

− 𝛾𝑝𝑝   (50𝑐) 

Where  𝑀𝑛
𝑖(𝜇) = (

𝜇

𝜇0
)
𝑖
(1 +

𝜇

𝜇0
)
𝑛

⁄ . 

 

Compared to modeling inhibition with Hill functions or simpler mass-action dynamics, the 

chimeric circuit approach requires knowledge of more parameters which might or might not 

be readily accessible from experiments. In the case of the EMT circuit proposed by Lu and 

collaborators, the expression levels of translated protein with various number of occupied 

mRNA binding sites were used to calibrate the model’s parameters. Further information 

about this procedure can be found in the original publication [47]. 

 

 

 

Figure 9. Schematic representation of microRNA-based regulation in the chimeric circuit 

model. A mRNA molecule (large white-filled rectangle) can bind to multiple microRNA 

molecules (small blue rectangles). mRNA-microRNA binding does not depend on the number 

of already occupied binding sites (same binding and unbinding rate constants in the different 

pictures). The more microRNA molecules bound, the higher the complex degradation rate 

(indicated by brighter red arrow from leftmost to rightmost panel) and the lower the mRNA 

translation rate (indicated by lighter blue arrow from leftmost to rightmost panel). 

-------------------------------------------------------------------------------------------------------------------------- 
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3.2 Stem cell differentiation 

 

It has been a continuing research interest to understand how stem cells accurately specify 

cell fates during differentiation, referred to as stemness regulation. Mathematical modeling 

approaches have been applied extensively to elucidate the gene regulatory mechanisms 

underlying stem cell differentiation. 

 

 

3.2.1 A toggle switch topology regulates the differentiation of stem cells 

Mathematical models focusing on the acquisition of stable states representing cell 

phenotypes are often derived using chemical rate equations. Similar to the approaches 

discussed in EMT that focus on small circuits, the modeling of stem cell differentiation are 

often applied to the proposed “core” stemness regulatory networks that contain master 

stemness regulators.  

 

Huang and co-workers developed a continuous model focusing on the binary decision-

making during the lineage commitment of erythroid and myelomonocytic fates[80]. The 

model is derived to represent the temporal dynamics of a core circuit containing the two 

lineage specifying transcription factors (TFs) GATA1 and PU.1. GATA1 and PU.1 exhibit 

mutual inhibition and auto-stimulation, which are modeled by Hill functions (Fig. 10A). 

Modeling analysis shows that the circuit can generate stable attractors corresponding to 

erythroid (GATA1 high, PU.1 low) and myelomonocytic (GATA1 low, PU.1 high) phenotypes, 

and a metastable state representing the “multilineage priming” stage, characterized by 

coexpression of both GATA1 and PU.1. This study describes a binary cell fate decision-

making for a bipotent progenitor cell.   

 

Another kinetic model of stemness regulation has been developed by Jolly and co-workers 

focusing on the LIN28/let-7 circuit[81]. LIN28 (an RNA-binding protein) and let-7 (a 

microRNA) are mutually inhibitory and self-excitatory (Fig. 10B). Two ordinary differential 

equations have been derived to represent the birth and death process of LIN28 and let-7. 

The shifted Hill functions are used to represent the let-7/LIN28 mediated inhibition and self-

activation. The modeling analysis suggests that the LIN28/let-7 circuit can operate as a 
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three-way switch enabling three stable states characterized by (high LIN28, low let-7), (high 

let-7, low LIN28) and (intermediate LIN28, intermediate let-7), respectively. As the 

experimental studies suggest that intermediate levels of OCT4 account for pluripotency and 

OCT4 is a downstream target of LIN28, this model proposes the stable state characterized by 

(intermediate LIN28, intermediate let-7) associates with pluripotency. From a theoretical 

perspective, this model highlights the effect of additional regulatory interactions on the 

“standard” toggle switch topology. While mutual inhibition typically leads to bistability, the 

additional self-activation of both LIN28 and let-7 introduces a third state with intermediate 

expression of both factors. 

 

To elucidate the transcriptional dynamics of  the master stemness regulatory TFs - OCT4, 

SOX2 and Nanog during stem cell differentiation, Chickarmane and co-workers developed a 

kinetic model to study the stemness circuit containing three master stemness regulatory TFs 

- OCT4, SOX2 and Nanog[82] (Fig. 10C). These three TFs play a critical role in positively 

regulating the stemness genes and negatively regulating the differentiation genes. The 

modeling analysis in this study shows that the OCT4/SOX2/Nanog circuit can function as a 

binary switch, and enable two stable states that are characterized by (high OCT4-SOX2, high 

Nanog) and (low OCT4-SOX2, low Nanog), respectively. Here OCT4-SOX2 is a heterodimer 

formed by OCT4 and SOX2 and can regulate OCT4, SOX2 and Nanog individually. The stable 

state characterized by (high OCT4-SOX2, high Nanog) exhibits high expression of stemness 

genes and low expression of differentiation genes thus corresponding to stem cell 

phenotype. Conversely, the stable state characterized by (low OCT4-SOX2, low Nanog) 

corresponds to cells undergoing differentiation. Through bifurcation analysis, the study 

shows how stem cells - (high OCT4-SOX2, high Nanog) can maintain their stemness state 

upon removal of the stimulus signals that upregulate OCT4 and SOX2. Later Chickarmane 

and Peterson [83] extended their model by including additional stemness TFs (Cdx2, Gcnf, 

Gata-6) to elucidate the Trophectoderm and Endoderm lineage commitment. By performing 

perturbation analysis on the circuit, the study suggests strategies to reprogram cells back to 

stemness state, such as activation of Nanog and suppression of Gata6.  
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Figure 10. Core regulatory circuits to model stem cell differentiation. (A) Huang and 

coworkers [80] modeled stem cell differentiation via mutual inhibition between GATA1 and 

PU.1. (B) The stemness circuit constructed by Jolly and collaborators [81]. to model the 

acquisition of cancer stem cell traits in cancer. (C) The circuit developed by Chickarmane and 

co-workers [82] focuses in the stemness regulators OCT4, SOX2 and Nanog. 

 

3.2.2 Role of stochastic fluctuations in stem cell differentiation 

While the deterministic models discussed in the previous section successfully capture the 

stem cells decision-making dynamics, it remains unclear how this differentiation is regulated 

in the fluctuating cellular environment. To capture the stochastic effects, Kalmar and co-

workers developed a continuous model based on the Oct4/Nanog circuit[84]. The dynamics 

of the Oct4/Nanog circuit are represented by two coupled differential equations. The 

transcription noise (represented by Gaussian white noise) is incorporated into the 

differential equation representing the temporal dynamics of Nanog.  This study sheds light 

on how cells can vary their Nanog level without losing their pluripotency. The study suggests 

an interesting view of pluripotency. The pluripotency, instead of being viewed as a stable 

state characterized by fixed amount of gene expression levels, can be viewed as a 

heterogenous population driven by transcriptional noise such as the noise during Nanog 

transcription. 
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To continue studying the mechanisms underlying the heterogenous levels of Nanog in 

mouse embryonic stem cells, Glauche and co-works developed an ODE model to simulate 

the Oct2/Sox2/Nanog circuit[85]. They showed that the experimental characteristics of 

Nanog variation can be recapitulated by the model via either adding a Gaussian white noise 

term in the ODE representing Nanog (noise-induced transition between Nanog low and 

Nanog high states) or including a transcriptional repressor of Nanog (oscillation). This study 

also shows how Nanog low cells can be more prone to differentiation relative to Nanog high 

cells. Another modeling study to elucidate the variation of Nanog levels in embryonic cells 

has been performed by Herberg and co-workers by integrating a negative feedback loop 

FGF4/Erk signaling with the Oct4/Sox2/Nanog/Rex1 circuit. The effect of the transcriptional 

noise, defined by the zero-mean Gaussian process, has been incorporated into the ODEs 

representing the temporal dynamics of Oct4-Sox2, Nanog and Rex1. The model shows a 

bimodal distribution of Nanog levels and blocking the Erk signaling pathway can lead to a 

merged Nanoga distribution[86].  

 

3.2.3 Chemical master equation models characterize the role of Nanog during 

differentiation 

The heterogeneous expression of Nanog in pluripotent cells has also been studied by 

applying master equations to describe the stochastic dynamics of a stemness network 

containing eight stemness TFs (Oct4, Sox2, Nanog, GATA6, Gcnf, Cdx2, Pbx1, Klf4) and one 

heterodimer (Oct4-Sox2) formed by Oct4 and Sox2[87]. The master equations for the 

stemness network were derived by considering both the concentration of proteins and the 

occupancy of the DNA sites. This study shows how the stemness network can enable up to 

five steady states, corresponding to two stem cell phenotypes expressing (high Oct4, high 

Sox2 and high Klf4), one primitive endoderm phenotype, one trophectoderm phenotype 

and one differentiated cell type. The stem cell steady states are differentiated by distinct 

levels of Nanog, which is consistent with its experimental characteristics. Through analyzing 

the most probable transition paths among the steady states, the study suggests a sequential 

transition path that Nanog high stem cell steady state first decreases the Nanog levels to 

enter a novel, Nanog low stem cell steady state, and then transition to the primitive 

endoderm steady state. The modeling results support the critical role of Nanog in 

safeguarding stemness against differentiation.  
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Furthermore, to overcome the computational limitations of simulating large networks, Sasai 

and Wolynes described the stochastic gene expression and feedback interactions between 

transcription factors using the many-body approach typically employed in quantum 

statistical mechanics [17]. In the Insight box 4, we introduce this approach and show how 

the chemical master equation of an autoregulating transcription factor can be effectively 

mapped with this formalism. By extending this approach to an 8-gene circuit of embryonic 

stem cell development, they characterized the multistable landscape and the most probable 

transitions between attractors [87]. 

 

3.2.4 Landscape theory identifies the trajectories of differentiation and reprogramming 

To quantify the kinetic flow during embryonic stem cell differentiation, epigenetic landscape 

approach has been applied. Li and Wang developed a global potential landscape for a stem 

cell development network containing fifty-two genes[88]. There are two basins of 

attractions identified on the landscape corresponding to a stem cell state and a 

differentiated state. The model shows the development process can be viewed as a 

transition from the stem cell attractor to the differentiated attractor. Interestingly, the 

reversed “reprograming” trajectory where differentiated cells acquire pluripotent traits can 

be different in the 52-gene expression space. Later, the authors applied the landscape and 

flux path approach to quantify the landscape for a reduced cancer stem cell (CSC) circuit 

that only contains six key genes (two microRNAs - miR200 and miR-145, four proteins - ZEB, 

P53, MDM2 and OCT4), to identify the basins of attractions and transition paths in 

between[89]. This study shows the CSC circuit enables four basins of attractions 

corresponding to a normal state, a normal stem cell state, a cancer state, a cancer stem cell 

state. Specifically, the study suggests that P53 activation promotes the transition from the 

cancer stem cell attractor to the normal cell attractor, which is consistent with the tumor 

suppressor role of P53. 

 

To understand the large cell-to-cell variation of Nanog and other stemness TFs in embryonic 

stem cells, Sasai and co-workers developed an epigenetic landscape approach for a 

stemness regulatory network contains six genes - three stemness genes (Sox2, Oct4, Nanog), 

and three lineage-specific genes (Gata6, Cdx2, and Gcnf) [90]. One interesting prediction 
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from this study is the distribution of time scales of the regulatory processes 

(binding/unbinding of TFs, histone modification etc.) is critical to determine the dynamic 

behaviors of the network. Specifically, the slow transcriptional switching of Nanog leads to 

large fluctuations among multiple transient states. 

 

3.2.5 Parameter randomization on the stemness circuit 

To identify the robust gene states during stem cell differentiation, parametric randomization 

methods have been applied to the stemness network. For example, RACIPE has been 

applied to a proposed core  stemness regulatory network containing eight master regulatory 

TFs (Oct4, Sox2, Cdx2, Gata6, Gcnf, Pbx1, Klf4 and Nanog) [91]. The stemness regulatory 

network contains mostly transcriptional regulation with protein-protein interaction, i.e., the 

binding/unbinding interactions between SoX2, Oct4 and the Oct4-Sox2 complex. Using 

exclusively the topological information of the network as input, RACIPE generated an 

ensemble of mathematical models with various numbers of steady-state solutions that can 

be explored with statistical analysis. Hierarchical clustering results of the RACIPE solutions 

exhibit distinct gene expression patterns that can be associated with different development 

stages and match the single-cell mRNA expression data of mouse embryonic stem cells 

(ESCs). One intriguing result of this study is the multi-stable behaviors of the stemness GRN 

and the recapitulation of the experimentally measured gene expression patterns cannot be 

achieved by networks with randomized topologies, even though the randomized networks 

can have similar amount of mutual inhibitory and self-excitatory feedback loops relative to 

the stemness circuit. The results suggest that the stemness GRN may indeed contain some 

topological properties that are beyond the expectation based on the counting of the simple 

motifs. By analyzing the difference of the parameters that lead to different states, the key 

parameters whose variation can induce the transitions among different states are identified. 

The physiological representation of those parameters can be the stimuli that trigger the 

transition. Through systematically perturbing each gene and each regulatory link in the 

stemness GRN, RACIPE elucidates a hierarchical decision-making structure of the stemness 

GRN, with the OCT4/CDX2 motif functioning as the first decision-making module followed by 

the GATA6/Nanog module. By simulating the effect of external signals that perturb the TFs 

in the stemness GRN, RACIPE analysis results suggest that the presence of external signals 

often restrains the gene states that can be accessed instead of creating new states. The 
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results suggest an alternative explanation of the Waddington landscape that the stem cell 

population, instead of being viewed as a fixed stable “stemness” state, can be regarded as a 

mixture of heterogeneous cell phenotypes. Along the differentiation, upon external signals, 

the cell population heterogeneity decreases partially because cells lose access to some 

stable states. In other words, cells are committed to specific phenotypes, therefore, 

differentiated. 

       

3.2.6 Combing Landscape theory with random parametric perturbation 

To calculate the landscape of stem cell networks by considering the large variation of 

parameters, Li developed an approach that combines landscape theory with random 

parameter perturbation, referred to as LRPP[92]. The LRPP approach contains the following 

steps: the time evolution of each gene in the stemness network is represented by ODEs; the 

modeling parameters are sampled from a range with either uniform or Gaussian 

distribution; multiple initial conditions are chosen to identify all possible steady states; the 

landscape is calculated using the self-consistent mean field approximation; repeat the 

aforementioned procedure for multiple times and Sum over the landscape of different sets 

of parameters to get the landscape for the ensemble models. By applying the LRPP 

approach to a stemness GRN that contain four stem cell marker genes OCT4, SOX2, NANOG, 

and KLF4 and three differentiation marker genes GCNF, CDX2, and GATA6, the author 

identifies three main stable basins of attractions corresponding to an embryonic stem cell 

state (high Nanog, low Gata6), a differentiate cell state (low Nanog, high Gata6) and an 

intermediate state (high Nanog, high Gata6). The intermediate state characterized by co-

expression of stemness marker Nanog and differentiation marker Gata6 may account for the 

heterogeneity of these TFs observed during single-cell experiments, and may play a critical 

role in regulating stem cell plasticity. 

 

 

-------------------------------------------------------------------------------------------------------------------------- 

3.2.7 Insight box 4: spin-boson formalism for an autoregulatory gene 

 

In this insight box, we discuss the application of spin-boson formalism to describe stochastic 

gene switches. Here, we only aim at giving the reader a flavor of this approach. Following 
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Sasai and Wolynes, we examine a single autoregulatory gene (i.e., a gene that regulates its 

own transcription). An extensive review on the uses of quantum field theory in diffusion-

reaction systems is offered by Mattis and Glasser[93].  

 

The autoregulatory gene is described by the protein copy number 𝑛 and a Boolean variable 

𝑠 = 0,1 describing whether the gene is bound or unbound. 

 

We have previously developed the CME for a birth-death process (see insight box 1). In 

addition to production and degradation, produced molecules can bind to DNA and regulate 

their own transcription. Depending on whether molecules bind to DNA as monomers or 

oligomers, the protein-DNA binding rate depends on a power of protein level 𝑛 (see insight 

box 2). Since we are not interested in solving a specific case but rather layout the mapping 

procedure, we assume a generic binding rate ℎ(𝑛). The DNA-protein unbinding rate is a 

constant 𝑓 independent from 𝑛. The unbound and bound promoter produces molecules at 

rates 𝑔0 and 𝑔1, respectively. Similar to the birth-death process, we are condensing mRNA 

transcription and translation into a single production rate. Finally, protein molecules 

degrade with rate constant 𝑘. A set of two probabilities (𝑃1(𝑛, 𝑡), 𝑃0(𝑛, 𝑡)) describes the 

probabilities to have 𝑛 molecules and an unbound/bound promoter at time 𝑡, respectively. 

Combining all reactions, CMEs for 𝑃0 and 𝑃1 assume the form: 

𝑑𝑃0(𝑛)

𝑑𝑡
= 𝑔0𝑃(𝑛 − 1,0) − 𝑔0𝑃(𝑛, 0) + 𝑘(𝑛 + 1)𝑃(𝑛 + 1,0) − 𝑘𝑛𝑃(𝑛, 0) 

+𝑓𝑃(𝑛, 1) − ℎ(𝑛)𝑃(𝑛, 0)    (51𝑎) 

𝑑𝑃1(𝑛)

𝑑𝑡
= 𝑔1𝑃(𝑛 − 1,1) − 𝑔0𝑃(𝑛, 1) + 𝑘(𝑛 + 1)𝑃(𝑛 + 1,1) − 𝑘𝑛𝑃(𝑛, 1) 

−𝑓𝑃(𝑛, 1) + ℎ(𝑛)𝑃(𝑛, 0)  (51𝑏) 

To map this CME onto a many-body problem, the first step is to rearrange eqs. (51) as a 

single equation for the probability vector 𝑃(𝑛, 𝑡) = (𝑃1(𝑛, 𝑡), 𝑃0(𝑛, 𝑡)): 

𝜕

𝜕𝑡
𝑃(𝑛, 𝑡) = (

𝑔1 0
0 𝑔0

) [𝑃(𝑛 − 1, 𝑡) − 𝑃(𝑛, 𝑡)] + 𝑘[(𝑛 + 1)𝑃(𝑛 + 1, 𝑡) − 𝑛𝑃(𝑛, 𝑡)] 

+(
−ℎ(𝑛) 𝑓

ℎ(𝑛) −𝑓
)𝑃(𝑛, 𝑡)  (52) 

Further, we define a state vector 𝜓: 
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𝜓 =∑𝑃(𝑛, 𝑡)

+∞

𝑛=0

|𝑛⟩   (53) 

To make the connection to the quantum many-body problem more evident, we introduce  

ladder operators[93]: 

𝑎∗|𝑛⟩ = |𝑛 + 1⟩      (54𝑎) 

𝑎|𝑛⟩ = 𝑛|𝑛 − 1⟩     (54𝑏) 

Notably, the ladder operators still satisfy the commutation relation [𝑎, 𝑎∗] = 1, but their 

definition slightly differ from the standard harmonic oscillator operators (𝑎∗|𝑛⟩ =

√𝑛 + 1|𝑛⟩, 𝑎|𝑛⟩ = √𝑛|𝑛 − 1⟩). This unconventional definition arises because the 

coefficients in the expansion of eq. (53) are probabilities, whereas typically probabilities 

correspond to the squared coefficients in ‘standard’ expansions of the wave function. 

 

With these definitions in hand, the CME can be rewritten in the form: 

𝜕𝜓

𝜕𝑡
= Ω𝜓    (55) 

Where all the information about chemical reactions is encoded by the operator Ω: 

 

Ω = (�̅� + 𝛿𝑔 𝜎𝑍)(𝑎
+ − 1) + 𝑘(𝑎 − 𝑎+𝑎) + 𝜇+(−1+ 𝜎𝑋) + 𝜇

−(−𝑖𝜎𝑌 − 𝜎𝑍)      (56) 

 

With the following definitions: 

 

�̅� =
(𝑔1 + 𝑔0)

2
     (57𝑎) 

𝛿𝑔̅̅̅̅ =
(𝑔1 − 𝑔0)

2
     (57𝑏) 

𝜇+ =
(ℎ(𝑎𝑎+) + 𝑓)

2
    (57𝑐) 

𝜇− =
(ℎ(𝑎𝑎+) − 𝑓)

2
      (57𝑑) 

And the introduction of the matrices: 

𝜎𝑋 = (
0 1
1 0

)    (58𝑎) 

𝑖𝜎𝑌 = (
0 1
−1 0

)    (58𝑏) 
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𝜎𝑍 = (
1 0
0 −1

)    (58𝑐) 

 

Sasai and Wolynes further apply this formalism to a more complex 8-gene circuit of 

stemness transcription factors to predict stable attractors and transitions corresponding to 

differentiation. More details about this work can be found in reference [17]. 

 

-------------------------------------------------------------------------------------------------------------------------- 

 

 

 

3.3 From multistability to spatial patterning: cell communication through Notch signaling 

 

So far, we have considered intracellular signaling networks that regulate cell-fate dynamics. 

In all these cases, the decision on cell fate was cell-autonomous, i.e., it did not depend on 

the signaling state of other cells in the surrounding environment. A cell population where 

cells can assume one of multiple states will exhibit heterogeneity according to the states’ 

relative stability but without any spatial organization. If cells exchange information with 

their neighbors, however, the cell-fate decision processes become correlated, thus giving 

rise to spatial organization. In this section, we consider the example of Notch signaling, one 

of the most well-conserved and studied signaling pathways that regulate both physiological 

and pathological processes [94,95]. Notch signaling operates via binding of ligands and 

receptors belonging to neighboring cells, thus serving as a nearest neighbor communication 

mechanism that couples cell-fate decisions in a spatially-dependent manner. Signaling 

through different classes of Notch ligands can lead to either converging or diverging cell 

states between neighbors, thus raising interesting parallels with the behavior of spin 

systems such as ferromagnets and antiferromagnets. 

 

3.3.1 Notch signaling relays single cell multistability to spatial patterning 

Notch signaling is initiated when the extracellular domain of the Notch receptor binds to the 

transmembrane domain of a ligand at the surface of a neighboring cell. Mammalian species 

typically exhibit one class of receptors (Notch) and two classes of ligands (Delta and Jagged), 
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which can be further divided into a variable number of subtypes with different molecular 

structures. Upon binding, pulling forces by endocytosis and sequential cleavage actions by 

assisting enzymes lead to the release of the Notch intracellular domain (NICD). The NICD is 

transported to the cell nucleus where it activates or inhibits the transcription of several 

target genes [94,96,97]. In particular, NICD transcriptionally activates Notch and Jagged 

while inhibiting Delta. Therefore, a cell with high expression of Delta ligands activates the 

Notch receptors in its neighbors, thus in turn implying the repression of Delta. Conversely, 

when a cell is exposed to low levels of Delta from its neighbors, the Notch receptor is not 

activated, thus allowing production of Delta. Hence, Notch-Delta signaling leads neighboring 

cells to divergent cell states: a (low Notch, high Delta) state typically referred to as Sender, 

and a (high Notch, low Delta) state typically referred to as Receiver. At the multicellular 

level, this patterning principle leads to alternation of Senders and Receivers, typically 

referred as “lateral inhibition”, which plays a crucial role in the differentiation of cell states 

in several physiological processes including somitogenesis, angiogenesis and neurogenesis 

[98–100]. Conversely, a cell with high expression of Jagged activates Notch receptors in its 

neighbors, which in turn activates the production of both Notch and Jagged. Therefore, 

Notch-Jagged signaling promotes a convergent (high Notch, high Jagged) state among 

neighbors that is often referred to as hybrid Sender/Receiver. On a multicellular level, this 

patterning principle leads to a homogeneous population of hybrid Sender/Receiver cells, or 

“lateral induction”, which is observed, for instance, in the spatial propagation of a 

pluripotent cell state during inner ear development [98,99,101]. In the following 

paragraphs, we will review models that investigate how intracellular signaling and ligand-

receptor binding relay cell-fate decisions in individual cells and multicellular patterning, the 

competition between lateral inhibition and lateral induction, and the role of stochastic 

fluctuations in enforcing or disrupting ordered patterns. 

 

 

3.3.2 Notch-Delta lateral inhibition: a two-cell toggle switch 

The first mathematical model of Notch signaling proposed by Collier and collaborators [102] 

directly generalizes the single cell toggle switch and focuses on lateral inhibition driven by 

Notch-Delta signaling between neighboring cells (Figure 11A). It considers a two-
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dimensional lattice where the temporal dynamics of Notch and Delta in a cell (𝑝) is 

described by the set of ODEs: 

𝑑(𝑁𝑝 𝑁0⁄ )

𝑑𝑡
=

(𝐷𝑝̅̅̅̅ 𝐷0⁄ )
𝑘

𝑎 + (𝐷𝑝̅̅̅̅ 𝐷0⁄ )
𝑘 − 𝜇(𝑁𝑝 𝑁0⁄ )   (59𝑎) 

𝑑(𝐷𝑝 𝐷0⁄ )

𝑑𝑡
=

1

1 + 𝑏(𝑁𝑝 𝑁0⁄ )
ℎ − 𝜌(𝐷𝑝 𝐷0⁄ )   (59𝑏) 

Where 𝐷𝑝̅̅̅̅ =
1

𝑐
∑ 𝐷𝑝′𝑝′  is the average level of Delta ligand in the nearest neighbors; in this 

expression 𝑐 is the number of nearest neighbors and the summation goes over all nearest 

neighbor cells 𝑝′. 𝑁0 and 𝐷0 are typical levels of Notch and Delta used to scale the model 

while 𝜇, 𝜌 are dimensionless degradation rate constants. Compared to all the circuits 

reviewed so far, this model considers a multicellular lattice (typically two-dimensional) 

where each individual cell is described by the Notch-Delta circuit, and circuits of neighboring 

cells are connected through the nearest neighbor summations in the Hill functions of eq. 

(59a).  

 

Therefore, if neighbors of cell 𝑝 are Senders with high Delta, cell 𝑝 represses the production 

of Delta while increasing the production of Notch, hence assuming a (high Notch, low Delta), 

Receiver state. Conversely, if neighbors of cell 𝑝 are Receivers with low Delta, Notch is 

weakly activated in cell 𝑝, thus maintaining a Sender state with (low Notch, high Delta) 

[100,102]. Therefore, if two neighboring cells start with very similar but not exactly equal 

levels of Notch and Delta at time 𝑡 = 0, the mutual inhibition mechanism will amplify the 

small initial difference and ultimately differentiate between a Sender cell and a Receiver 

cell. 

 

On an extended two-dimensional lattice, this model allows patterns where Sender cells are 

surrounded by Receiver cells. Specifically, on a square lattice, these interactions lead to a 

chessboard-like pattern with alternating Senders and Receivers [103]. On a hexagonal lattice 

that perhaps better represents the arrangement of cells in an epithelial tissue, however, a 

perfect alternation of Senders and Receivers cannot be achieved due to lattice frustration. 

Therefore, Sender cells are typically surrounded by six Receivers that are in contact with one 

another, leading to a 3-to-1 Receiver/Sender ratio (figure 11B). Indeed, Receiver cells can be 
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in contact as they do not express Delta, and therefore do not actively regulate each other, 

while Sender-Sender contacts give rise to mutual inhibition until one cell is converted to the 

Receiver state [104]. In other words, a contact between Receivers simply results in lack of 

cell-cell signaling, whereas a contact between Senders leads to the mutual inhibition that 

ultimately breaks the symmetry and forces one cell to the Receiver state. This mechanism is 

not flawless and sometimes patterning mistakes can be observed; in the last section of the 

chapter, we will discuss in more details the nature of these “defects”, their biological 

implications and the role of stochastic fluctuations in modulating these patterns. 

 

 

 

Figure 11. Lateral inhibition and patterning of Senders and Receivers in the Notch-Delta 

system. (A) Schematic of the model proposed by Collier and collaborators in a system of two 

cells [102]. Pointing arrows indicate Delta-mediated activation of Notch in neighboring cells, 

while t-shaped arrows indicate Notch-mediated inhibition of Delta within the same cell. (B) 

On a hexagonal lattice, Notch-Delta lateral inhibition gives rise to a pattern where high-

Delta Senders (green hexagons) are surrounded by high-Notch Receivers (red hexagons).  

 

 

 

3.3.3 Variable cell shape as an imprint to guide lateral inhibition 

Notch receptors and ligands become available for signaling only once they reach the cell 

membrane. Therefore, the signaling between pairs of neighbors depends on the geometry 
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of cell-cell contact and their shared membrane area. From a theoretical perspective, this 

observation offers the possibility to integrate aspects of cell biophysics into the ‘standard’ 

Notch-Delta signaling. 

 

Shaya and collaborators [105] investigated the relation between cell size and cell fate by 

integrating experimental and computational methods. By introducing reports to track the 

activity of Notch and Delta, they showed that signaling between pairs of nearest neighbors 

correlates with their shared contact area. Including the role of cell shape requires a more 

detailed model that explicitly describes ligand-receptor binding as well as transcriptional 

regulation by the NICD thereafter [100,105–107]. This can be achieved by directly 

generalizing the model of eqs. (1a-b) to explicitly include variable cell shapes. In this 

generalized model, a cell is described by a set of three ordinary differential equations for 

Notch, Delta and NICD: 

𝑑𝑁𝑝
𝑑𝑡

= 𝑔𝑁

1 + 𝜆𝑁 (
𝐼𝑝
𝐼0
)
𝑛𝑁

1 + (
𝐼𝑝
𝐼0
)
𝑛𝑁

− 𝑘𝑁𝑝 ∑ 𝐼𝑝𝑗𝐷𝑗
𝑗∈𝑁(𝑝)

− 𝜇𝑁𝑝    (60𝑎) 

𝑑𝐷𝑝
𝑑𝑡

= 𝑔𝐷

1 + 𝜆𝐷 (
𝐼𝑝
𝐼0
)
𝑛𝐷

1 + (
𝐼𝑖
𝐼0
)
𝑛𝐷

− 𝑘𝐷𝑝 ∑ 𝐼𝑝𝑗𝑁𝑗
𝑗∈𝑁(𝑝)

− 𝜇𝑁𝑝    (60𝑏) 

𝑑𝐼𝑝
𝑑𝑡
= 𝑘𝑁𝑝 ∑ 𝐷𝑗

𝑗∈𝑁(𝑝)

− 𝜇𝐼𝐼𝑝    (60𝑐) 

In eqs. (60a-b), the production of Notch and Delta is regulated by Hill functions that depend 

on the level of NICD, with 𝜆𝑁 > 1 and 0 < 𝜆𝐷 < 1 to capture transcriptional activation of 

Notch and transcriptional inhibition of Delta. Moreover, this model considers binding of 

Notch and Delta molecules of a given cell (𝑝) to ligands and receptors of neighboring cells 

(𝑗); here, 𝑘 represents a bimolecular binding rate constant between a ligand and a receptor 

at the surfaces of neighboring cells, and the summation spans over the nearest neighbors of 

cell (𝑝). Binding of Notch with external ligands leads to release of NICD and degradation of 

the remaining molecular complex; therefore, the binding term results in a loss term in eq. 

(60a) and a corresponding production term in NICD’s equation (60c). Furthermore, the 

binding term of Notch receptors with external ligands in eq. (60a) is weighted by a contact 
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area term (𝐼𝑝𝑗) that describes the shared cell contact area between cells 𝑝 and 𝑗. The limit of 

a regular lattice is achieved by imposing that all weightage terms are equal (𝐼𝑝𝑗 = 1 𝑐⁄ ). 

 

On a disordered lattice with variable cell sizes, smaller cells with smaller contact area tend 

to acquire a Sender state while larger cells tend to acquire a Receiver state [105]. In the 

perfectly regular lattice, Senders are selected from a homogeneous initial condition simply 

due to spontaneous breaking of symmetry and amplification of small initial differences 

[102]. Instead, variation of cell size bias cell fate selection by weighting the amount of 

signaling between pairs of neighboring cells, and can be thus viewed as an imprint that 

guides the patterning by breaking the symmetry between cells. This prediction was directly 

validated in the context of chicken inner ear development, where smaller cells produce 

Delta at a high rate and eventually become hair cells, while larger cells generally committed 

to a non-hair, supporting phenotype [105,108]. 

 

 

3.3.4 Notch-Jagged signaling guides a transition between lateral inhibition and lateral 

induction 

So far, we have reviewed models that primarily focus on Notch-Delta lateral inhibition. 

Ligands of the Jagged type, however, can give rise to a positive feedback between neighbors 

and thus promoting lateral induction of the (high Notch, high Jagged) hybrid 

Sender/Receiver phenotype. The conflicting effects of Delta and Jagged ligands on cell fate 

raise interesting questions about their competition in multicellular models where many cells 

collectively converge to diverse patterns. Boareto and collaborators [107,109] proposed a 

model of Notch-Delta-Jagged signaling based on the circuit schematic of Figure 12A that 

directly generalizes the Notch-Delta circuit of eqs. (60a-c) to include NICD transcriptional 

activation of Jagged and Notch-Jagged binding: 

𝑑𝑁𝑖
𝑑𝑡
= 𝑔𝑁

1 + 𝜆𝑁 (
𝐼𝑖
𝐼0
)
𝑛𝑁

1 + (
𝐼𝑖
𝐼0
)
𝑛𝑁

− 𝑘𝑁𝑖 ∑ (𝐷𝑗 + 𝐽𝑗)

𝑗∈𝑁(𝑖)

− 𝜇𝑁𝑖    (61𝑎) 

𝑑𝐷𝑖
𝑑𝑡
= 𝑔𝐷

1 + 𝜆𝐷 (
𝐼𝑖
𝐼0
)
𝑛𝐷

1 + (
𝐼𝑖
𝐼0
)
𝑛𝐷

− 𝑘𝐷𝑖 ∑ 𝑁𝑗
𝑗∈𝑁(𝑖)

− 𝜇𝑁𝑖    (61𝑏) 
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𝑑𝐽𝑖
𝑑𝑡
= 𝑔𝐽

1 + 𝜆𝐽 (
𝐼𝑖
𝐼0
)
𝑛𝐽

1 + (
𝐼𝑖
𝐼0
)
𝑛𝐽
− 𝑘𝐽𝑖 ∑ 𝑁𝑗

𝑗∈𝑁(𝑖)

− 𝜇𝐽𝑖     (61𝑐) 

𝑑𝐼𝑖
𝑑𝑡
= 𝑘𝑁𝑖 ∑ (𝐷𝑗 + 𝐽𝑗)

𝑗∈𝑁(𝑗)

− 𝜇𝐼𝐼𝑖    (61𝑑) 

In this model, a cell behaves as a three-way switch that can assume a Sender, Receiver, or 

hybrid Sender/Receiver state based on initial conditions, parameters and state of the 

neighbors. In the limit of a dominant Notch-Delta signaling (𝑔𝐷 ≫ 𝑔𝐽), this model recovers a 

lateral inhibition pattern with alternated Senders and Receivers. In the opposite limit of a 

dominant Notch-Jagged signaling (𝑔𝐷 ≪ 𝑔𝐽), however, there is a homogeneous solution 

where all cells are hybrid Sender/Receivers with (high Notch, high Jagged).  

 

In this model, a single cell exposed to a fixed level of external Notch receptors and ligands 

can be monostable S, R or S/R, or fall in a regime of multistability based on the levels of 

external Delta and Jagged (Figure 12B). In a two cells scenario, this model undergoes a sharp 

transition from lateral inhibition to lateral induction triggered by an increasing production 

rate of Jagged (Figure 12C). This transition has been used to explain how TNF-𝛼, and 

inflammatory signal that activates Jagged, prevents physiological angiogenesis that relies on 

Notch-Delta lateral inhibition [110]. On a one-dimensional chain of cells with periodic 

boundary conditions, intermediate conditions where both Notch-Delta and Notch-Jagged 

‘modes’ of the signaling are relevant (𝑔𝐷 ≈ 𝑔𝐽) give rise to disordered configurations with 

mixtures of Senders, Receivers and hybrid Sender/Receivers [107] reminiscent of partially 

disordered configurations in a spin system (Figure 12D). 

 

Interestingly, both mathematical models and experimental observations suggest a dual role 

for Jagged. While a strong Notch-Jagged signaling promotes homogeneous patterns of 

hybrid Sender/Receiver cells, as observed during inner ear development and angiogenesis, a 

weaker expression of Jagged assists Notch-Delta signaling to organize a precise lateral 

inhibition. In the context of inner ear development, Petrovic and collaborators [111] showed 

experimentally that Jagged ligands help refine the pattern of Senders and Receivers by 

competing with Delta over Notch receptors. This leads to even more NICD, and thus an even 

stronger inhibition of Delta, in the Receivers. Similarly, a weak activation of Jagged improves 
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Notch-Delta-driven angiogenesis in an in vitro model developed by Kang and collaborators 

[110]. 

 

 

Figure 12. Lateral inhibition and lateral induction patterns in the Notch-Delta-Jagged 

model. (A) Schematic of the Notch-Delta-Jagged circuit in the model of Boareto and 

collaborators [107]. Dotted arrows summarize production and transport to cell membrane of 

Notch, Delta and Jagged molecules. (B) Phase diagram of single cell exposed to constant 

external levels of Delta and jagged ligands (DEXT and JEXT). (C) Phase diagram of a 2-cell 

system as a function of cellular production rate of Jagged and Delta (gJ and gD). (D) Typical 

patterns observed in a 1D-chain of cells with periodic boundary conditions. Green, orange 

and purple squares indicate Sender, Receiver and hybrid Sender/Receiver cells, respectively. 

Panels B, D are adapted from Boareto and collaborators [107]; panel C is adapted from Kang 

and collaborators [110]. 
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3.3.5 Stochastic fluctuations lead to optimal lateral inhibition patterning 

While the standard paradigm of Notch-Delta lateral inhibition assumes a precise patterning 

of alternated Senders and Receivers, it is reasonable to assume that spatial constraints 

might lead to frustrated patterns, in analogy with the relaxation of spin systems. Evidence of 

patterning mistakes was recently quantified in the context of Tip-Stalk differentiation during 

sprouting angiogenesis, where Tip cells are occasionally separated by multiple Stalk cells 

[112,113]. Galbraith and collaborators studied the relaxation of a multicell Notch-Delta 

system under the effect of white and shot noise, respectively [103]. First, the authors 

showed that a deterministic Notch-Delta multicell model on a square lattice equilibrates to 

the “standard”, lateral inhibition alternate pattern only for a small set of well-defined initial 

conditions, such as the “seeding” of a single Sender cell, while typically reaching disordered 

patterns when starting from more randomized initial conditions. By quantifying the 

patterning order based on the fraction of correct Sender-Receiver contacts, they 

demonstrated that intermediate levels of stochastic fluctuations help achieving more 

ordered patterns, independently of the specific type of noise. The authors suggested an 

analogy with the navigation of rugged energy landscapes of spin glass systems. The highly 

ordered salt-and-pepper configuration can be interpreted as a low energy attractor, or 

global minimum, in a complex, high-dimensional landscape. Conversely, more disordered 

configurations can be interpreted as local minima with higher energy. Therefore, the 

relaxation of the Notch-Delta systems is characterized by two timescales. First, on a shorter 

timescale, the equilibration of the chemical reaction terms leads to the closest local 

minimum. Second, on a longer timescale, stochastic fluctuations allow a more thorough 

exploration of the landscape, finally leading to the global minimum with ordered pattern. 

Intermediate stochastic fluctuations are key to achieve an ordered pattern because low 

noise levels are not sufficient to escape local minima and navigate the landscape and, 

conversely, strong fluctuations in the high noise regime become larger than the typical 

barrier height separating attractors, thus preventing relaxation toward any specific attractor 

[103].  
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4. Final remarks and future challenges 

 

In this review, we have provided a general overview of modeling and computational 

strategies to study the dynamics of gene regulatory networks at different scales and levels 

of detail, ranging from stochastic simulations of individual chemical reactions up to coarse-

grained Boolean descriptions of large networks. In particular, our main goal was to 

showcase tools to study complex biochemical systems that can give rise to multistability, or, 

in biological terms, the coexistence of multiple states that can be associated with different 

cell phenotypes. We urge to point out that there is not an intrinsically better approach, but 

rather different biological questions require choosing the most suitable tools. For example, 

stochastic models based on the chemical master equation might be suitable to investigate 

the dynamics of smaller, well-defined circuits where prior knowledge is available about the 

reaction parameters. More coarse-grained approaches such as continuous models, 

parameter randomization or Boolean circuits might be more appropriate to study the 

emerging dynamics of larger circuits where an informed guess of the model’s parameters is 

unfeasible. Throughout the review, we have demonstrated how some of these strategies 

can be implemented using small, archetypical systems, such as a single transcribing gene 

and the bistable toggle switch.  

 

Furthermore, we have provided three specific examples to showcase how the “basic” 

biological building blocks including transcription and translation can be complemented and 

generalized to include additional biological processes. In the case of the epithelial-

mesenchymal transition, mathematical models that only focus on the transcriptional 

interactions between genes and transcription factors might not be sufficient to fully capture 

the biology, as post-translational regulation of non-coding RNAs follow a different dynamic 

and thus requires different mathematical formulations (see section 3.1 and insight box 3). 

Moreover, the discussion of stem cell differentiation provided an example of how 

methodologies originally developed for more traditional physical problems, such as 

quantum mechanics, can be successfully applied to biology, in this case to capture the 

stochastic fluctuations of an auto-regulatory gene (see section 3.2 and insight box 4). Finally, 

while most of the existing modeling efforts tend to focus on the dynamics of individual cells, 
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the discussion of Notch signaling showed how these models can be applied to multicell, 

spatial models, thus raising interesting connections between regulation of cell fate and 

spatial patterning (see section 3.3).  

 

In conclusion, we stress that, while existing methodologies reviewed here and elsewhere 

provide an exhaustive framework to describe gene regulation, many open questions and 

challenges lie ahead. For example, the fast development of transcriptomics methods has 

radically improved our resolution on gene regulation at the single cell level [21]. Single cell 

RNA sequencing (scRNA-seq) allows to estimate the number of transcripts of each RNA 

species in individual cells[52]. Some computational methods have been proposed recently 

to infer the interactions between genes from scRNA-seq data by coupling modeling and 

statistical regression [24,53,114]. Furthermore, it is becoming increasingly clear that the 

decision-making of cell fate specification does not solely rely on regulatory interactions 

between genes. For example, in both the cases of EMT and Notch signaling, phenotypic 

transitions also imply changes in the cell’s mechanical properties, which in turn regulate the 

transcriptional signaling, thus giving rise to mechano-chemical feedbacks[67]. Therefore, the 

integration of chemical and mechanical regulation in cell-fate specification represents a 

novel and intriguing challenge for theoretical and computational modeling. Tackling these 

exciting open questions will require even more integration of existing and new physical and 

mathematical concepts in the description of complex biological systems. 
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