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The incidence of seizures is particularly high in the early ages of life. The immaturity of inhibitory systems, such as GABA, during
normal brain development and its further dysregulation under pathological conditions that predispose to seizures have been
speculated to play a major role in facilitating seizures. Seizures can further impair or disrupt GABAA signaling by reshuffling
the subunit composition of its receptors or causing aberrant reappearance of depolarizing or hyperpolarizing GABAA receptor
currents. Such effects may not result in epileptogenesis as frequently as they do in adults. Given the central role of GABAA signaling
in brain function and development, perturbation of its physiological role may interfere with neuronal morphology, differentiation,
and connectivity, manifesting as cognitive or neurodevelopmental deficits. The current GABAergic antiepileptic drugs, while often
effective for adults, are not always capable of stopping seizures and preventing their sequelae in neonates. Recent studies have
explored the therapeutic potential of chloride cotransporter inhibitors, such as bumetanide, as adjunctive therapies of neonatal
seizures. However, more needs to be known so as to develop therapies capable of stopping seizures while preserving the age- and
sex-appropriate development of the brain.

1. Introduction

Epilepsy is a disease of recurrent seizures: that is, unprovoked
episodes of aberrant synchronous excitation of brain regions
that disrupt normal functioning [1, 2]. Epileptic seizures are
thought to reflect a failure in the ability to maintain the
balance between excitation and inhibition. The mechanisms
underlying seizures are complex and not uniform across
the numerous seizure types that exist [1]. Furthermore, our
ability to study these mechanisms is often limited by the tools
we can use: we can only see as far and as much as those
tools allow. Consequently, many of the hypotheses describing
the pathogenesis of seizures are biased by the dominant ictal
phenomena, unbalanced excitation-inhibition and aberrant
neuronal synchronization, which may not necessarily be the
actual ictogenic mechanisms. Neurotransmitters involved in
neuronal inhibition, such as GABA, have attracted the major
focus of research aiming to decipher mechanisms involved
in ictogenesis. Under certain conditions, and definitely not
in the majority of cases, seizures may lead to epilepsy
or neurodevelopmental deficits. The early periods of life,

when brain development is still incomplete, susceptibility
to seizures is increased [3, 4]. However, a combination of
biological factors (genetic, age-related processes, epigenetic
or environmental factors) protect neurons from seizure-
induced injury, epileptogenesis, or mortality to a greater
extent than the adult brain is protected [5]. It is increasingly
recognized that seizures may leave their imprint on the
developing brain by altering the way that neurons differen-
tiate, connect, and communicate to each other, even if, in
many cases, such changes may be ultimately compensated
for. As extensively outlined in the reviews included within
this special issue, GABA plays a central role in controlling
neuronal development and communications. A major focus
of research has therefore been thrown into efforts to elucidate
its role not only in ictogenesis but also in the pathogenesis
of the sequelae of early life seizures, whether this may be
epilepsy, cognitive, or behavioral deficits [6].

There are three types of GABA receptors reported in the
literature: GABAA, GABAB, and GABAC, the latter classified
more recently along with GABAA receptors, due to their
functional similarities. Both GABAA and GABAC receptors
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are ligand-gated ionotropic channels that allow primarily
chloride but also bicarbonate to cross their pore in response
to GABA binding. GABAB is a metabotropic receptor that
signals through cascades that modify potassium and calcium
current (reviewed in [7]), direct migration [8], and control
gene transcription [9, 10]. In this review, we will focus
primarily on GABAA receptors.

GABAA receptors are pentameric channels usually com-
prised of 2 α and 2 β subunits, whereas the fifth is either a
γ or a δ subunit. Less frequently, ε, θ, or π subunits are
present [11–13]. There are 16 known mammalian GABAA

receptor subunits (α1 − α6,β1 − β3, γ1 − γ3, δ, ε,θ,π),
which contribute towards the different pharmacokinetic,
subcellular localization or affinity properties of each GABAA

receptor complex. The presence of a ρ subunit defines the
GABAC receptors. Unlike GABAA receptors, GABAC are
insensitive to bicuculline. The expression of GABAA receptor
subunits changes with development and as a result the
responsiveness of immature and adult neurons to GABAA

ergic modulators are significantly different.
The classical inhibitory GABAA signaling, as occurs

in most adult neurons, is due to chloride influx through
the channel pore, which hyperpolarizes the cells. This is
achieved because the intracellular chloride concentration
is maintained at a low level, allowing chloride to flow in
along its electrochemical gradient, when GABAA receptors
open (Figure 1). Multiple studies over the last few decades
have confirmed that this electrochemical chloride gradient
is developmentally regulated by changes in the expression of
cation-chloride cotransporters (CCCs). CCCs are the elec-
troneutral ion symporters that establish the chloride gradient
between cells and their extracellular environment. There are
3 CCC classes. The chloride importing CCCs are either the
sodium/potassium/chloride cotransporters (NKCCs), with
known representatives the NKCC1 and NKCC2, or the
sodium chloride cotransporters (NCCs). Chloride exporters
are the potassium/chloride cotransporters (KCCs), with
4 known isoforms: KCC1-4 (reviewed in [11, 12, 14,
15]) (Figure 1). Immature neurons express predominantly
chloride-importers, such as NKCC1 [16], which generate
high intracellular Cl− levels. This forces the open GABAA

receptors to permit Cl− efflux through their channel pore,
giving rise to depolarizing GABAA responses [16–18]. Dur-
ing developmental maturation, the expression of chloride-
extruding CCCs, like the potassium/chloride cotransporter
2 (KCC2), dominates over NKCCs [19–22], decreasing
the intracellular chloride concentration [23]. As a result,
when GABA opens GABAA receptors the ensuing influx of
chloride results in hyperpolarizing currents [19] (Figure 1).
However, cell type, sex, and species/strain differences occur
in the timing of this developmental shift. KCC1, KCC3
and KCC4 are widely expressed, but KCC2 is specific to
neurons. This makes KCC2 particularly interesting for the
pathogenesis and therapy of neural diseases. NKCC2 expres-
sion is specific to the kidney, leaving NKCC1 as the most
relevant chloride-importing cotransporter for the brain,
though it is expressed ubiquitously. Bicarbonate, generated
by carbonic anhydrase, is another negatively charged ion that
can permeate the GABAA receptor, generating a depolarizing

response [12, 24, 25]. The cytosolic carbonic anhydrase
VII (CAVII) increases around postnatal day 12 (PN12) in
the rat hippocampus [26], rendering bicarbonate-mediated
GABAA depolarizations more prominent [25].

There is considerable evidence that alterations in GABA
signaling can cause seizures, as well as that seizures can
change GABAergic signaling. In this review, we will discuss
the bidirectional relationship of seizures to GABAA signaling
at the level of the neurons, GABAA receptors, and the
ionic symporters that control chloride homeostasis and the
efficiency of GABAA receptor mediated inhibition.

2. Correspondence of Developmental Stages
between Rodents and Humans

To facilitate the translation of the experimental data into
humans, it is worth reminding that the accepted correspon-
dence of developmental stages between rodents and humans
considers that the first week of life in rodents is equivalent to
a premature newborn human, whereas the time of birth in
rodents is considered to correspond to PN8-10. The rodent
infantile stage is thought to extend till PN21, the onset of
puberty is at PN32-35 in rodents, whereas PN60 rodents
are considered young adults. However, it is important to
emphasize that this is a very oversimplified translation, based
mostly on correspondence of protein and DNA content in
the brain. Each developmental process occurs at different
tempos and is not always in synchrony with the above
sequence of events. For example, by the end of the first
postnatal week, rats are able to walk away from the nest, quite
unlike the human newborns who cannot yet ambulate [27].
Direct demonstration of the time of shift of GABAA receptor
responses to hyperpolarizing has not been demonstrated in
humans, though it has been suggested to occur before or
soon after birth, based on the developmental patterns of the
relative expression of NKCC1 and KCC2 [21, 28].

3. The Immaturity of GABAAergic Systems as
an Age and Sex-Specific Risk Factor for Early
Life Seizures

Seizures are more common in the early periods of life and
especially in males [3, 4]. The immaturity of GABAergic
inhibitory systems has been implicated in the heightened
susceptibility of neonates to seizures and may also underlie
the increased vulnerability of males, in whom the maturation
of these systems is delayed compared to females. GABA is
depolarizing in the neonatal life and it stays depolarizing
for longer developmental periods in the male brain than
in females [17, 29–33]. Paradoxical exacerbation of seizures
by GABA-acting drugs has been reported in newborns,
especially in low weight premature babies [34]. GABA-acting
drugs, such as benzodiazepines and barbiturates, however,
still remain the mainstay of treatments for neonatal seizures,
even if they may not always be as effective in newborn human
babies as in older patients [21, 35–39]. This is thought to
be due to shunting inhibition or inhibition via excitatory
effects upon inhibitory interneurons [40]. The composition
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Figure 1: CCCs control GABAA receptor-mediated inhibition. Panels (a) and (b) show the effects of NKCC1 activity in the absence (panel
(a)) or presence (panel (b)) of GABA. NKCC1 mediates the electroneutral cotransport of Na+, K+, and 2 Cl−, increasing the intracellular
Cl− concentration. As a result, upon binding of GABA upon the GABAA receptor, the channel pore opens and Cl leaves the neuron, causing
a depolarization. Panels c and d show the effects of NKCC1 activity on GABAA receptor function in the absence (panel c) or presence (panel
d) of GABA. KCC2 in contrast exports K+ and Cl− reducing intracellular Cl−. Activation of GABAA receptors therefore results into influx
of Cl and hyperpolarizing current. Their function is dependent upon the gradients of Na+ and K+, which are controlled by various factors,
including background conductances, membrane voltage, and by the Na+/K+ ATPase.

of GABAA receptors is also different in newborns, with less
α1 and more α2/3 subunits, rendering them less responsive
to benzodiazepines [41, 42]. Furthermore, the subcortical
GABAergic networks that control seizures, like the substantia
nigra pars reticulata (SNR), have not fully developed [31, 42–
46]. The excessive GABAergic stimulation of the SNR, as is
thought to occur due to GABA release during seizures, has
proconvulsant effects early in life and anticonvulsant in older
animals and this switch occurs earlier in females [44, 45].
It is therefore important to investigate and clarify the exact
molecular determinants that control GABAA inhibition in
the young brain so as to optimize the treatment of seizures.

4. Aberrant GABAA Signaling
Predisposes to Seizures

Clinical and experimental evidences indicate that an initial
perturbation of GABAA signaling may facilitate seizures. A
loss of inhibition could result in runaway excitatory circuits.
Too much inhibition could also cause a seizure, either
by disinhibiting epileptogenic networks or via promoting

neuronal synchronization ([67] reviewed by [68]). Excessive
inhibition has been implicated in autosomal dominant
nocturnal frontal lobe epilepsy (ADNFLE) ( [69] reviewed in
[70]) or absence seizures [71]. Moreover, as GABAA signaling
is critical for brain development and early synaptogenesis
[72–74], a disorder of GABAA signaling early in life may
cause miswiring or malformations that predispose to seizures
(Figure 2).

Many GABA-related mutations are known to cause early
life epilepsy. These include loss of function mutations or
deletions of GABAA receptor subunit genes that reduce their
expression, or the duration, amplitude or agonist sensitivity
of GABAA currents. GABAA receptor subunit mutations
have been implicated in childhood absence epilepsy (CAE)
[50, 51, 75], autosomal dominant epilepsy with febrile
seizures plus (ADEFS+) [76], and other epileptic syndromes
(reviewed in Table 1 and [77, 78]). Conditional mutants indi-
cate that the developmental period of exposure to insults
that disrupt GABAA signaling may be critical in ictogenesis
and epileptogenesis. Chiu et al. proposed that loss of func-
tion mutations of the GABAA receptor subunits may have
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Table 1: GABA-related mutations linked with seizures.

GABA-related mutations Species Epilepsy type
Age at first
observation

Ref.

GABAA receptor mutations

GABRA1 Human ADJME, CAE
Childhood,
Juvenile

[47,
48]

GABRA6 Human CAE Childhood [49]

GABRB3 Human CAE Childhood
[50–
52]

GABRD Human ADJME Juvenile [53]

GABRE Human Febrile, ADEFS+ IGE
Infantile,
childhood

[49]

GABRG2
Human,
mouse

CAE+ Febrile,
ADEFS+, SMEI
ADEFS+, SMEI,
Febrile

Infantile,
childhood

[54–
59]

GABRP Human IGE, ADEFS+, Febrile ? [49]

Other mutations

GAD65 knockout Mouse
Stress-induced,
Limbic seizures

12 weeks
[60,
61]

ARX mutations
Human,
mice

Early life epileptic
encephalopathies
(infantile spasms,
Ohtahara)

Neonatal,
Infantile

[62–
66]

developmental effects in addition to their direct electrophys-
iological consequences [79]. Using a conditionally expressed
loss of function mutation of the γ2 GABAA receptor subunit
in mice, the investigators expressed the mutant allele for
different periods of time. Mice that were induced to express
the mutant allele for longer developmental periods displayed
higher seizure susceptibility to pentylenetetrazole (PTZ), a
drug that acts as a GABAA receptor antagonist, compared to
mice with late disruption of the γ2 subunit expression.

Glutamic acid decarboxylase (GAD) isoforms GAD65
and GAD67 synthesize GABA in the brain. Knockout
mice for the pyridoxal-5′-phosphate inducible GAD65
isoform, that generates the GABA reserve pools, have
lower seizure threshold to picrotoxin, a GABAA receptor
antagonist [61], or spontaneous seizures that can be pre-
cipitated by stress [60]. Although total GABA content
in the brain may be normal or decreased in GAD65
knockout mice, depending upon the genetic substrate, it
has been proposed that GAD65 loss of function may
preferentially decrease the presynaptic reserve pool of
GABA and decrease the tonic GABA inhibition, leading
to increased seizure susceptibility [80–82]. Although no
human GAD mutations have been found to consistently
cause epilepsy [83], mutations in co-factors that are nec-
essary for GAD65 function have been linked with early
life seizures, as occurs in pyridoxine-de-pendency disorders
[84, 85]. GAD65 or GAD67 loss suf-ficiently compensates
for each other and does not appear to affect early brain
development; albeit, cleft palate has been reported with
GAD67 knockout mice [86]. Dual GAD65/67 knockout mice
are not viable [87]. A small subset of patients manifests
epilepsy secondary to an autoimmune response against

GAD65/67, although these appear mostly in adults [88–
91].

5. Disrupting CCC Function May
Predispose to Seizures

Decreased expression or function of chloride extruders may
change seizure susceptibility by not only diminishing the
efficacy of GABAA inhibition and promoting cellular swelling
and degeneration under hypotonic conditions, but also
by exerting broader developmental effects. Human linkage
studies or transgenic knockout animal studies document
that, at least in certain cases, seizures and epilepsy may
ensue. There is currently no known human mutation of
KCC2 associated with epilepsy. This may rather reflect
the indispensability of KCC2, as complete KCC2 knockout
mice die postnatally from respiratory failure, due to the
immaturity of the respiratory system [93]. KCC2 has two
known isoforms, KCC2a and KCC2b, of which KCC2b
is thought to contribute to the developmental shift to
hyperpolarizing GABAA receptor currents [106]. KCC2b-
knockout mice demonstrate hyperexcitability at PN10 to
PN16 (equivalent to human infantile age) [94] (Table 2).
Although the expected intracellular accumulation of chloride
and depolarizing shift of GABAA responses could easily
explain the hyperexcitability, application of the GABAA

receptor antagonist picrotoxin paradoxically retains its exci-
tatory responses [94]. Similarly, a different hypomorphic
mutation in KCC2 causes a lower PTZ threshold for
induction of clonic seizures in mice, despite the absence
of gross morphological changes [95]. Such observations are
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Table 2: Phenotype of CCC mutations.

CCC Location Mutation Species
Neurological
effect

Ref.

KCC1 Ubiquitous Knockout Mouse None seen [92]

KCC2 Brain
KCC2a and
KCC2b
knockout

Mouse Death at birth [93]

Brain
KCC2b
knockout

Mouse
Seizures, low
weight, early
mortality

[94]

Brain Hypomorph Mouse
Increased seizure
susceptibility and
anxiety

[95]

Brain Heterozygote Mouse Hyperexcitability [96]

KCC3 Ubiquitous
KCC3a-c
knockout

Human,
mouse

Peripheral
neuropathy;
seizures have
been reported

[97–
100]

KCC4 Kidney, heart, lungs, liver Knockout Mouse Deafness [101]

NKCC1 Ubiquitous
NKCC1a
knockout

Mouse
Deafness, circling
behavior

[102]

Ubiquitous
NKCC1a and
NKCC1b
knockout

Mouse

Deafness, circling
behavior, growth
retardation,
defective
spermatogenesis,
increased
threshold to
thermal
stimulation

[103,
104]

NKCC2 Kidney Knockout Human
Bartter’s
syndrome

[105]

indicative of a residual inhibitory capacity of KCC2, either
in the form of less potent hyperpolarizing GABAA receptor
currents or shunting inhibition [107]. However, the function
of KCC2 is more complex, due to interactions with dendritic
cytoskeletal proteins [108] or with other modulators of
neuronal activity (i.e., increasing extracellular potassium)
[109] which need to be further analyzed as to their ability
to influence the phenotype of these mice.

Loss of function mutations in KCC3, which is expressed
in many tissues, have been reported in patients with heredi-
tary motor sensory neuropathy, some of whom have seizures
as well as developmental deficits, like agenesis of the corpus
callosum [100].

Altered CCCs may also affect brain development in a
more subtle fashion, which could predispose a brain to
epilepsy even if it does not directly cause seizures. From
various fronts evidence emerges that shifts in the tim-
ing of emergence of hyperpolarizing signaling may have
significant impact on neuronal and brain development
and connectivity. Precocious appearance of hyperpolarizing
GABAA receptor signaling, either by KCC2 overexpression
[72] or via loss of NKCC1 activity [110], disrupts cortical
morphogenesis. Pharmacological inhibition of NKCC1 with
bumetanide from embryonic day E15 to PN7 in otherwise

normal mice disrupts cortical dendritic formation [74].
Abnormal cortical development and synaptic connectivity
may predispose to seizures or cognitive impairment, which
is both a predisposing factor and a common comorbidity of
young patients with epilepsy [111].

6. Secondary Disruption of GABAergic
Signaling in Risk Factors for Early Life
Epilepsy

Conditions that predispose to epilepsy, genetic or acquired,
may also create an imbalance in excitation/inhibition.
Although their effects are not restricted to GABAA signaling,
in certain cases they may show a predilection to preferentially
impair GABAergic inhibition.

Mutations of the aristaless-related and X-linked home-
obox gene ARX have attracted a lot of interest due to their
linkage with early life catastrophic epileptic syndromes, such
as infantile spasms, Ohtahara syndrome, X-linked myoclonic
seizures, spasticity and intellectual disability, idiopathic
infantile epileptic dyskinetic encephalopathy, X-linked men-
tal retardation [63–66, 112–116] (reviewed in [117]). ARX
is a transcription factor that regulates the proliferation and
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Figure 2: Schematic depiction of simple models through which
dysregulation of GABAA receptor-mediated inhibition can increase
the activity of neuronal networks, potentially generating seizures.
GABA inhibition can fail when GABA or GABAA receptor expres-
sion is low, when GABA depolarizes neurons, or when miswiring
and mistargeting of synapses occur. Excessive GABA inhibition may
trigger seizures by disinhibiting target cells, or via excessive syn-
chronization of the neurons in the epileptogenic focus. Please note
that the effects of dysregulated GABA signaling in more complex
neuronal networks, especially in the presence of abnormal circuitry
or with specific pathologies, may differ. In such cases a combination
of the above models may be applicable at different sites of the
epileptogenic network rendering the pharmacological effect of a
GABAergic agonist not completely predictable by a single model.
Furthermore, shunting inhibition may explain situations where
GABAergic drugs silence excessive excitatory network activity, in
neurons with depolarizing GABAergic signaling.

migration of GABA, calbindin, or neuropeptide Y positive
interneurons but also of striatal cholinergic neurons [64, 66,
117]. Two recently published mouse models of ARX loss
of function mutations, one of which specifically disrupted
it in GABAergic interneurons destined to migrate to the
neocortex, have recapitulated several phenotypes of infantile
spasms and associated phenotype (cognitive, behavioral
deficits and epileptogenesis) emphasizing the importance of
deficient GABA inhibition for their pathogenesis [64, 66].

Angelman syndrome, a rare chromosomal deletion,
involves the loss of ubiquitin-protein ligase 3A (UBE3A),
but in certain patients there is a more extensive deletion of
the 15q11-13 chromosomal locus that contains three GABAA

subunits, α5, β3, and γ3 GABAA receptor subunits [118].
Genotype-phenotype correlation suggested that deletion of
the GABAA receptor subunits is associated with more severe
seizures, including infantile spasms, atypical absences, and
myoclonus whereas patients with UBE3A mutations had a
milder phenotype [118]. The β3 subunit knockout mouse
strain also develops a similar epilepsy phenotype [119].

Loss of function mutations of the voltage-sensitive
sodium channel SCN1A gene is found in not only the se-
vere myoclonic epilepsy of infancy (Dravet syndrome) but
also in ADEFS+ syndrome [120–123]. SCN1A mutations

have been proposed to preferentially impair the sodium
channel activity of GABAergic interneurons, diminishing
their activity [124]. Anti-NMDA autoantibodies detected in
limbic encephalitis, a rare cause of refractory and frequent
seizures [125], have been speculated to selectively target
the NMDA receptors of presynaptic GABAergic terminals,
reducing therefore GABA release [126].

Aberrant reappearance of depolarizing EGABA and
reduced GABAAergic responses have been proposed to
underlie the pathogenesis of seizures from cortical malfor-
mations. Pathology and electrophysiological studies from
human tissue specimens from patients with cortical dys-
plasias, that commonly predispose to early life seizures, have
also suggested the presence of depolarizing GABA [20, 127,
128]. In the neonatal freeze lesion model, a shift to the
immature pattern of high NKCC1/KCC2 ratio in the lesional
site [129] as well as reduced γ2 subunit expression and
sensitivity to α1 subunit agonists in adulthood was described
[130, 131]. In the rat model of cortical dysplasias induced
by prenatal exposure to the 1-3-bis-chloroethyl-nitrosurea,
reduced sensitivity to GABA was also seen in adulthood
[132].

Traumatic brain injury in adults, such as in axotomized
neurons, causes a reversal of GABAA signaling and CCC
expression profile to the immature pattern (more depo-
larizing GABA and dominant NKCC1 over KCC2 activity)
[133–135]. This appears to aid the survival and regeneration
process, promoting the brain-derived neurotrophic factor-
(BDNF-) dependent neuronal survival and may resolve
with time, during recovery [135]. However, there is limited
information as to the consequences of neuronal trauma upon
the expression, physiology, and connectivity of GABAergic
interneurons in developing animals. In the partially iso-
lated undercut cortical model, reduced GABAAergic IPSCs
and impaired chloride extrusion were found in juvenile
rats, suggesting a possible correlation between impaired
GABAergic inhibition and posttraumatic cortical excitability
[136, 137]. Few studies have advocated against the use of
GABA enhancing drugs and in favor of GABAA receptor
inhibitors as interventions to improve cognitive outcomes
[138]. More detailed studies are needed to determine the role
of posttraumatic GABAA signaling changes for healing and
regeneration in the developing brain as well as its impact on
subsequent epileptogenesis and ensuing cognitive deficits.

7. Seizures Alter GABAA Signaling

Seizures can affect almost every neurotransmitter system in
the brain. Seizures can have immediate effects on GABAA

signaling, that is, during the ictal period, or delayed, appear-
ing after the termination of seizures. In both scenarios, the
observed changes are dynamic and evolving. Seizures may
interfere with the expression, composition, and subcellular
distribution of GABAA receptors and their regulatory factors,
such as CCCs or regulatory kinases. Defining the timing of
these events is crucial, not only to better understand the
pathophysiological mechanisms investigating these changes
but also to best interpret their pathophysiological rele-
vance for epileptogenesis and brain function. The temporal
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Table 3: Effects of early life seizures on GABAA receptors and currents in rats.

Seizure model Age Region
Effects on GABAA

receptors
Ref.

Ictal changes

In vivo SE
(Lithium-pilocarpine;
continuous
hippocampal
stimulation)

PN30 Hippocampus
Reduced surface
expression of β2/3, γ2
subunits but not of δ.

[139]

In vivo SE
(lithium-pilocarpine)

4–7 week old Hippocampus
Internalization of β2/3,
γ2 subunits; reduced
mIPSCs

[140]

After seizures

Recurrent flurothyl
seizures

PN1-5
Hippocampus,
somatosensory
cortex

Decreased amplitude of
GABAergic IPSCs

[141,
142]

Flurothyl seizures PN6 or PN6-10 Hippocampus
Decreased numbers of
α1-ir neurons

[143]

Kainic acid SE PN9 Hippocampus

At 3 weeks postictally:
α1,
α4,γ2 decrease;
α2, α3 increase;
α5 increase (CA3 only);
β3 increase compared to
controls

[144]

Lithium-pilocarpine PN10
Hippocampus
(dentate gyrus)

In adulthood: increased
α1 expression, larger
GABA current,
enhanced zolpidem
sensitivity

[145]

Lithium-pilocarpine
SE

PN20 Hippocampus

Decreased α1 and
increased α4 expression
in the hippocampus of
epileptic versus
non-epileptic rats

[146]

evolution of these events is also particularly important in
developing rats, given the maturational changes that are
ongoing. In addition, the age at first seizure, the type and
severity of seizures, sex, epigenetic factors, medications, but
also the cellular diversity of specific operant signaling systems
further modify the final outcomes.

7.1. Ictal Attenuation of GABAA Receptor-Mediated Inhibition.
The urgency in treating early SE has long been recognized
in the clinical literature. GABA-acting drugs, like benzodi-
azepines or barbiturates, are more effective early at onset
of seizures than later on, when SE has been established
[147, 148]. The transience of the efficacy of GABAergic
drugs has been attributed to either increase internalization of
selective synaptic GABAA receptor subunits, such as of β2/3
and γ2, which mediate the effects of benzodiazepines and
barbiturates [139, 140]. On the other hand, extrasynaptically
located subunits that mediate tonic GABA inhibition, like
the δ subunit, are not affected [139]. Failure of GABAA

receptor-mediated inhibition during prolonged seizures may
also occur due to a positive shift in EGABA either because
of buildup of intracellular Cl− concentration, from intense

GABAA receptor-mediated chloride inward pumping, or
from impaired chloride extrusion mechanisms, due to
increased NKCC1 activity or decreased KCC2-mediated Cl−

efflux [149–151].

7.2. Postictal Changes. Loss of GABAergic interneurons is a
hallmark pathology of focal epilepsies, like mesial temporal
sclerosis [152–157]. In experimental studies, prolonged
seizures can lead to interneuronal loss but such effects
are age-specific. In newborn rats, during the first week
of life, even 3 episodes of status epilepticus (SE) do not
injure GABAergic neurons [30]; yet cell death becomes a
progressively more prominent feature as the age at exposure
to SE increases [155, 158–160]. In contrast, early life seizures
functionally disrupt the physiology of GABAA receptor
system. Age at the time of seizures, etiology or model
of seizures, biological factors such as sex, as well as cell
type and region-specific features may determine the end
effects upon GABAA receptor subunits or the direction of
GABAA receptor-mediated responses (Tables 3 and 4). These
changes may be either compensatory attempts to repair or
restore normal function or, on the contrary, may contribute
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Table 4: Effects of Seizures on CCCs.

Model Species
Age at

seizures
Region Effects Ref.

Ictal changes

Kainic
acid

Rat PN6-7 Hippocampus

Switch from
hyperpolarizing
to depolarizing
EGABA

[184]

Low
Mg2+

seizures
Mice PN5 Hippocampus

Bumetanide
sensitive
increase in
[Cl−]i

[150]

After seizures

Kainic
acid

Rat
(male)

PN4-6
Hippocampus
(at least 4 days
postictally)

Increased KCC2;
decreased
NKCC1 activity;
more
hyperpolarizing
EGABA

[185]

Kainic
acid

Rat
(female)

PN4-6
Hippocampus
(at least 4 days
postictally)

No change in
KCC2; increased
NKCC1 activity;
more
depolarizing
EGABA

[185]

Kainic
acid

Rat
(male)

PN5-7

Hippocampus
(immediate
postictal
period)

Increased
surface
expression of
KCC2;
hyperpolarizing
shift of EGABA

[171]

to the postictal dysfunction, comorbidities, or sequelae of
seizures, such as cognitive dysfunction or epileptogenesis.
Unlike the adults, in which the physiology of GABAA

receptor-mediated signaling has reached a relative steady
state, developmental research is further complicated by the
evolving changes that normally occur during the period
when brain matures[161]. There is no systematic research
study taking us step-by-step through all the complexity
of seizure-induced postictal alterations in GABAA receptor
physiology and any extrapolations should be cautiously done
pending confirmation by actual experimentations.

Seizures selectively interfere with the expression of
certain, but not all, GABAA receptor subunits [141–146]
(Table 3). Kainic acid SE at PN9 rats favors the preservation
of the immature pattern of GABAA receptor complex (less
α1, more α2/α3 subunits) on the third postictal week
[144] that typically attributes slower IPSC kinetics and less
sensitivity to benzodiazepines. Similarly, recurrent flurothyl-
induced seizures, in the first 10 days of life, decrease α1
expression and the amplitude of GABAA receptor-mediated
IPSCs [141–143]. Looking at longer-term outcomes of early
life seizures, during adulthood, Brooks-Kayal’s group has
demonstrated that age at onset of SE is key at defining the
final composition of GABAA receptors and that this, in turn,
may contribute to epileptogenesis. Lithium-pilocarpine SE at
PN10 increases α1 subunit expression in the dentate granule

cells in adulthood; in contrast, if SE is induced at PN20, a
decrease in α1 subunit is noted, but only in the epileptic ani-
mals [145, 146]. Interestingly, reconstitution of α1 subunit
expression prevented the occurrence of spontaneous seizures
[146, 162].

The reports of untimely appearance of depolarizing
GABAA receptor signaling in a subpopulation of subicular
neurons from adult human epileptic resected temporal lobes
have attracted a lot of interest as a possible mechanism of
epileptogenicity and potential refractoriness to GABA-acting
antiepileptics [163, 164]. Depolarizing GABAA receptor
signaling has been linked to a dominance of NKCC1 over
KCC2 activity in certain neurons of the epileptic tissue. It
may also occur because of effective replenishment of intra-
cellular bicarbonate by carbonic anhydrase during intense
GABAA receptor activation, which leads to a depolarization
and to a consequent influx of Cl−, that enhances KCC2-
mediated K+/Cl− efflux [109]. The sequential interaction
between carbonic anhydrase/GABAA receptors/KCC2 may
therefore increase extracellular K+, a factor that promotes
the generation of ictal events. In support, carbonic anhydrase
inhibitors have been used in certain cases as anticonvulsant
therapies [109, 165].

Seizures in adult animals tend to increase the ratio of
NKCC1 over KCC2 activity, reverting to a more immature
pattern of CCC balance that favors depolarizing EGABA [151,
166]. This is believed to occur in humans as well [127, 167–
170]. But what happens, then, after early life seizures, when
neurons are already in an immature state and how does
this impact epileptogenesis and functional outcomes? In the
immediate postictal period, following brief recurrent kainic
acid seizures or an hour of kainic acid SE, KCC2 is reshuffled
towards the plasma membrane, increasing its capacity to
export Cl− [171]. As a result EGABA becomes more negative,
contributing perhaps to the ability of the neurons to stop
seizures.

In the longer run, further changes in EGABA function
occur, which are attributed to altered CCC expression or
activity [30]. In our lab, we were interested in determining
whether the original EGABA, at the time seizures occur, may
control the effects of seizures on CCCs and the direction
of GABAA receptor-mediated signaling, in other words,
whether seizures might have different effects upon GABAA

receptor-mediated signaling in neurons with depolarizing
or hyperpolarizing GABAA receptor mediated responses at
the time of seizures. Taking advantage from the earlier
appearance of GABAA receptor currents in females than
in males, we compared the effects of 3 episodes of kainic
acid SE elicited at PN4, 5, and 6 (3KA-SE) in CA1
pyramidal neurons with depolarizing EGABA (i.e., male)
or isoelectric/hyperpolarizing EGABA (i.e., female) at the
time of seizures [30]. We found that 3KA-SE caused only
a transient appearance of depolarizing GABAA receptor
mediated responses in neurons that had already started to
shift to mature and more hyperpolarizing EGABA, similar
to what was previously described for the adult neurons. In
contrast, in male neurons, with still depolarizing GABAergic
responses, 3KA-SE caused a precocious emergence of mature,
hyperpolarizing responses. These changes were attributed to
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altered expression and/or activity of KCC2 and NKCC1. The
precocious termination of depolarizing GABAA signaling
would be expected to deprive brain from its neurotrophic
effects that are important for normal development [72, 74].
Indeed, 3KA-SE-exposed pups develop learning and memory
problems when they grow up (unpublished data). How-
ever, the inability of the immature neurons to persistently
exhibit depolarizing GABAA receptor-mediated responses
after seizures could be a protective feature against the devel-
opment of subsequent epilepsy [30]. Our results indicate
that age-specific factors, including the depolarizing GABA,
may be important for this protection. Another dual regulator
of CCCs and EGABA through development is the brain-
derived neurotrophic factor (BDNF) pathway, which is also
activated in certain seizure models. BDNF increases KCC2
in developing neurons but decreases it in mature neurons
[172, 173]. The opposite patterns of KCC2 regulation by
BDNF in certain systems has been proposed to be due to
trkB-mediated activation of different intracellular signaling
cascades that regulate KCC2 expression [151].

The maturation of GABAA receptor system occurs asyn-
chronously across different neuronal types and brain regions.
As a result, since early life seizures change the direction
and strength of GABAA receptor-mediated inhibition, their
effects will be region and cell type specific, further confusing
the interneuronal communication protocols. They may also
disrupt the basic neural processes of learning and cognitive
processing that depend upon GABA neurotransmission,
such as long-term potentiation (LTP) [174–176], or social
interactions [177–182]. The result will be a state of postictal
confusion or more sustained cognitive or behavioral deficits
[6]. Of interest, bumetanide treatment has shown benefit in
five infants with autism [183]. However the exact mecha-
nisms underlying this therapeutic effect are not yet known.

8. Implications for Early Life Seizures and
Their Treatment

Human and experimental evidence indicates that similar
to adults, aberrant preservation of depolarizing GABAA

signaling may also be a feature of the medically refractory
epileptogenic focus in early life epilepsies. At present we
do not have any data to discuss the pathological features
of the medically sensitive early life epilepsies. The idea
of pharmacologically enhancing GABA inhibition to stop
seizures by using NKCC1 inhibitors like bumetanide is under
investigation as a rationally developed, smart intervention to
overcome the barriers posed by the well-established molec-
ular switch of GABAA receptor function [21]. Beneficial
effects have been shown in few animal models [21, 186–
189] and a human case report [190]. However, model-spe-
cific differences, as well as the timing of administration,
can influence its efficacy in suppressing seizures [96, 191].
Moreover, concerns have been raised about potential adverse
developmental effects on innocent bystander normal brain
tissues, as may occur in chronic use in patients with focal
epilepsies [74]. Undoubtedly, more studies need to be done
to determine which seizure types are more likely to respond,

when is the optimal time to administer, for how long,
and how such interventions influence long-term outcomes
in subjects who have already experienced seizures or have
epilepsy. Similarly, by increasing our knowledge about the
specific changes that occur in GABAA receptor composition
and pharmacology, it may be possible to design more
selective and specific GABAA receptor agonists for the very
young or epileptic brain that is refractory to the existing
medications. At the anatomical and electrophysiological
level, it might be feasible, one day, to design such specific,
very targeted, and individualized therapies to enhance GABA
inhibition and stop seizures. The biggest challenge will be
however to predict the functional state of GABAA receptor-
mediated inhibition at the target areas, so as to implement
such rational therapies. Emerging evidence suggests that
GABA-acting drugs, hormones, and different stressors are
among the factors that can alter GABAA receptor signaling,
rendering it almost a moving target [11, 30, 31, 192–196].
The need for biomarkers of GABAA function is therefore a
priority.

9. Conclusion

The study of GABA in seizure generation and consequences
has become a very fruitful field not only by generating
intriguing results but also by producing challenging new
questions. We have learned a number of mechanisms that
compromise GABAA inhibition in the very young or epileptic
brain, predisposing to seizures and the associated cognitive
and neurodevelopmental deficits. We still need to better
understand and, most importantly, predict which is the nor-
mal balance between excitation and inhibition with sufficient
age, sex, cell type, and regional, context, and function-related
specificity, so as to preserve normal brain function and
development.
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[45] E. F. Sperber, J. Velı́sková, I. M. Germano, L. K. Friedman,
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new families with X-linked mental retardation caused by the
428-451dup(24bp) mutation in ARX,” Clinical Genetics, vol.
66, no. 1, pp. 39–45, 2004.

[117] G. Friocourt and J. G. Parnavelas, “Mutations in ARX result
in several defects involving GABAergic neurons,” Frontiers in
Cellular Neuroscience, vol. 4, p. 4, 2010.

[118] B. A. Minassian, T. M. DeLorey, R. W. Olsen et al., “Angelman
syndrome: correlations between epilepsy phenotypes and
genotypes,” Annals of Neurology, vol. 43, no. 4, pp. 485–493,
1998.

[119] G. E. Homanics, T. M. DeLorey, L. L. Firestone et al., “Mice
devoid of γ-aminobutyrate type A receptor β3 subunit
have epilepsy, cleft palate, and hypersensitive behavior,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 94, no. 8, pp. 4143–4148, 1997.

[120] S. F. Berkovic, L. Harkin, J. M. McMahon et al., “De-novo
mutations of the sodium channel gene SCN1A in alleged
vaccine encephalopathy: a retrospective study,” The Lancet
Neurology, vol. 5, no. 6, pp. 488–492, 2006.



14 Neural Plasticity

[121] L. A. Harkin, J. M. McMahon, X. Iona et al., “The spectrum
of SCN1A-related infantile epileptic encephalopathies,”
Brain, vol. 130, no. 3, pp. 843–852, 2007.

[122] S. E. Heron, I. E. Scheffer, X. Iona et al., “De novo SCN1A
mutations in Dravet syndrome and related epileptic
encephalopathies are largely of paternal origin,” Journal of
Medical Genetics, vol. 47, no. 2, pp. 137–141, 2010.

[123] R. H. Wallace, B. L. Hodgson, B. E. Grinton et al., “Sodium
channel α1-subunit mutations in severe myoclonic epilepsy
of infancy and infantile spasms,” Neurology, vol. 61, no. 6,
pp. 765–769, 2003.

[124] M. S. Martin, K. Dutt, L. A. Papale et al., “Altered function of
the SCN1A voltage-gated sodium channel leads to γ-amino-
butyric acid-ergic (GABAergic) interneuron abnor-malities,”
Journal of Biological Chemistry, vol. 285, no. 13, pp. 9823–
9834, 2010.

[125] H. Prüss, J. Dalmau, L. Harms et al., “Retrospective analysis
of NMDA receptor antibodies in encephalitis of unknown
origin,” Neurology, vol. 75, no. 19, pp. 1735–1739, 2010.

[126] T. Iizuka and F. Sakai, “Anti-NMDA receptor encephalitis—
clinical manifestations and pathophysiology,” Brain and
Nerve, vol. 60, no. 9, pp. 1047–1060, 2008.

[127] E. Aronica, K. Boer, S. Redeker et al., “Differential ex-
pression patterns of chloride transporters, Na+-K+-2Cl−-
cotransporter and K+ − Cl−-cotransporter, in epilep-
syassociated malformations of cortical development,”
Neuroscience, vol. 145, no. 1, pp. 185–196, 2007.

[128] C. Cepeda, V. M. André, N. Wu et al., “Immature neurons
and GABA networks may contribute to epileptogenesis in
pediatric cortical dysplasia,” Epilepsia, vol. 48, supplement 5,
pp. 79–85, 2007.

[129] C. Shimizu-Okabe, A. Okabe, W. Kilb, K. Sato, H. J.
Luhmann, and A. Fukuda, “Changes in the expression
of cation-Cl− cotransporters, NKCC1 and KCC2, during
cortical malformation induced by neonatal freeze-lesion,”
Neuroscience Research, vol. 59, no. 3, pp. 288–295, 2007.

[130] O. Peters, C. Redecker, G. Hagemann, C. Bruehl, H. J.
Luhmann, and O. W. Witte, “Impaired synaptic plasticity in
the surround of perinatally aquired dysplasia in rat cerebral
cortex,” Cerebral Cortex, vol. 14, no. 10, pp. 1081–1087, 2004.

[131] J. J. Hablitz and R. A. DeFazio, “Altered receptor subunit
expression in rat neocortical malformations,” Epilepsia, vol.
41, no. 6, pp. S82–S85, 2000.

[132] E. A. Benardete and A. R. Kriegstein, “Increased excitability
and decreased sensitivity to GABA in an animal model of
dysplastic cortex,” Epilepsia, vol. 43, no. 9, pp. 970–982, 2002.

[133] J. Nabekura, T. Ueno, A. Okabe et al., “Reduction of KCC2
expression and GABAA receptor-mediated excitation after in
vivo axonal injury,” Journal of Neuroscience, vol. 22, no. 11,
pp. 4412–4417, 2002.

[134] H. Toyoda, K. Ohno, J. Yamada et al., “Induction of NMDA
and GABAA receptor-mediated Ca2+ oscillations with KCC2
mRNA downregulation in injured facial motoneurons,” Jour-
nal of Neurophysiology, vol. 89, no. 3, pp. 1353–1362, 2003.

[135] A. Shulga, J. Thomas-Crusells, T. Sigl et al., “Posttraumatic
GABAA-mediated [Ca2+]i increase is essential for the
induction of brain-derived neurotrophic factor-dependent
survival of mature central neurons,” Journal of Neuroscience,
vol. 28, no. 27, pp. 6996–7005, 2008.

[136] X. Jin, J. R. Huguenard, and D. A. Prince, “Impaired Cl−

extrusion in layer V pyramidal neurons of chronically
injured epileptogenic neocortex,” Journal of Neurophysiology,
vol. 93, no. 4, pp. 2117–2126, 2005.

[137] X. Jin, J. R. Huguenard, and D. A. Prince, “Reorganization
of inhibitory synaptic circuits in rodent chronically injured
epileptogenic neocortex,” Cerebral Cortex, vol. 21, no. 5, pp.
1094–1104, 2011.

[138] P. G. Ochalski, W. Fellows-Mayle, L. B. Hsieh et al.,
“Flumazenil administration attenuates cognitive impairment
in immature rats after controlled cortical impact,” Journal of
Neurotrauma, vol. 27, no. 3, pp. 647–651, 2010.

[139] H. P. Goodkin, S. Joshi, Z. Mtchedlishvili, J. Brar, and J.
Kapur, “Subunit-specific trafficking of GABAA receptors
during status epilepticus,” Journal of Neuroscience, vol. 28,
no. 10, pp. 2527–2538, 2008.

[140] D. E. Naylor, H. Liu, and C. G. Wasterlain, “Trafficking
of GABAA receptors, loss of inhibition, and a mechanism
for pharmacoresistance in status epilepticus,” Journal of
Neuroscience, vol. 25, no. 34, pp. 7724–7733, 2005.

[141] E. Isaeva, D. Isaev, R. Khazipov, and G. L. Holmes, “Selective
impairment of GABAergic synaptic transmission in the
flurothyl model of neonatal seizures,” European Journal of
Neuroscience, vol. 23, no. 6, pp. 1559–1566, 2006.

[142] E. Isaeva, D. Isaev, R. Khazipov, and G. L. Holmes, “Long-
term suppression of GABAergic activity by neonatal seizures
in rat somatosensory cortex,” Epilepsy Research, vol. 87, no.
2-3, pp. 286–289, 2009.

[143] H. Ni, Y. W. Jiang, T. Bo, J. M. Wang, and X. R. Wu, “c-Fos,
N-methyl-D-aspartate receptor 2C, GABA-A-α1 immonore-
activity, seizure latency and neuronal injury following single
or recurrent neonatal seizures in hippocampus of Wistar rat,”
Neuroscience Letters, vol. 380, no. 1-2, pp. 149–154, 2005.

[144] H. B. Laurén, F. R. Lopez-Picon, E. R. Korpi, and I. E.
Holopainen, “Kainic acid-induced status epilepticus alters
GABAA receptor subunit mRNA and protein expression in
the developing rat hippocampus,” Journal of Neurochemistry,
vol. 94, no. 5, pp. 1384–1394, 2005.

[145] G. Zhang, Y. H. Raol, F. C. Hsu, D. A. Coulter, and A. R.
Brooks-Kayal, “Effects of status epilepticus on hippocampal
GABAA receptors are age-dependent,” Neuroscience, vol.
125, no. 2, pp. 299–303, 2004.

[146] Y. H. Raol, G. Zhang, I. V. Lund, B. E. Porter, M. A. Maronski,
and A. R. Brooks-Kayal, “Increased GABAA-receptor α1-sub-
unit expression in hippocampal dentate gyrus after early-life
status epilepticus,” Epilepsia, vol. 47, no. 10, pp. 1665–1673,
2006.

[147] N. S. Abend, A. M. Gutierrez-Colina, and D. J. Dlugos, “Med-
ical treatment of pediatric status epilepticus,” Seminars in
Pediatric Neurology, vol. 17, no. 3, pp. 169–175, 2010.

[148] P. Shearer and J. Riviello, “Generalized convulsive status
epilepticus in adults and children: treatment guidelines and
protocols,” Emergency Medicine Clinics of North America, vol.
29, no. 1, pp. 51–64, 2011.

[149] H. D. Lux and U. Heinemann, “Ionic changes during
experimentally induced seizure activity,” Electroencepha-
lography and Clinical Neurophysiology. Supplement, no. 34,
pp. 289–297, 1978.

[150] V. I. Dzhala, K. V. Kuchibhotla, J. C. Glykys et al., “Progressive
NKCC1-dependent neuronal chloride accumulation during
neonatal seizures,” Journal of Neuroscience, vol. 30, no. 35,
pp. 11745–11761, 2010.

[151] C. Rivera, J. Voipio, J. Thomas-Crusells et al., “Mechanism
of activity-dependent downregulation of the neuron-specific
K-Cl cotransporter KCC2,” Journal of Neuroscience, vol. 24,
no. 19, pp. 4683–4691, 2004.



Neural Plasticity 15

[152] U. Sayin, S. Osting, J. Hagen, P. Rutecki, and T. Sutula, “Spon-
taneous seizures and loss of axo-axonic and axo-somatic
inhibition induced by repeated brief seizures in kindled rats,”
Journal of Neuroscience, vol. 23, no. 7, pp. 2759–2768, 2003.

[153] A. Obenaus, M. Esclapez, and C. R. Houser, “Loss of
glutamate decarboxylase mRNA-containing neurons in the
rat dentate gyrus following pilocarpine-induced seizures,”
Journal of Neuroscience, vol. 13, no. 10, pp. 4470–4485, 1993.

[154] L. Wang, Y. H. Liu, Y. G. Huang, and L. W. Chen, “Time-
course of neuronal death in the mouse pilocarpine model
of chronic epilepsy using Fluoro-Jade C staining,” Brain
Research, vol. 1241, pp. 157–167, 2008.

[155] J. P. Leite, T. L. Babb, J. K. Pretorius, P. A. Kuhlman, K. M.
Yeoman, and G. W. Mathern, “Neuron loss, mossy fiber
sprouting, and interictal spikes after intrahippocampal
kainate in developing rats,” Epilepsy Research, vol. 26, no. 1,
pp. 219–231, 1996.

[156] R. S. Sloviter, C. A. Zappone, B. D. Harvey, A. V. Bumanglag,
R. A. Bender, and M. Frotscher, ““Dormant basket cell”
hypothesis revisited: relative vulnerabilities of dentate gyrus
mossy cells and inhibitory interneurons after hippocampal
status epilepticus in the rat,” Journal of Comparative
Neurology, vol. 459, no. 1, pp. 44–76, 2003.

[157] J. M. Fritschy, T. Kiener, V. Bouilleret, and F. Loup,
“GABAergic neurons and GABAA-receptors in temporal lobe
epilepsy,” Neurochemistry International, vol. 34, no. 5, pp.
435–445, 1999.

[158] K. Z. Haas, E. F. Sperber, L. A. Opanashuk, P. K. Stanton,
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