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ABSTRACT 
 

Background: Aging-related cognitive decline is an early symptom of Alzheimer’s disease and other dementias, 
and on its own can have substantial consequences on an individual’s ability to perform important everyday 
functions. Despite increasing interest in the potential roles of extracellular microRNAs (miRNAs) in central 
nervous system (CNS) pathologies, there has been little research on extracellular miRNAs in early stages of 
cognitive decline. We leverage the longitudinal Normative Aging Study (NAS) cohort to investigate associations 
between plasma miRNAs and cognitive function among cognitively normal men. 
Methods: This study includes data from up to 530 NAS participants (median age: 71.0 years) collected from 
1996 to 2013, with a total of 1,331 person-visits (equal to 2,471 years of follow up). Global cognitive function 
was assessed using the Mini-Mental State Examination (MMSE). Plasma miRNAs were profiled using small RNA 
sequencing. Associations of expression of 381 miRNAs with current cognitive function and rate of change in 
cognitive function were assessed using linear regression (N = 457) and linear mixed models (N = 530), 
respectively. 
Results: In adjusted models, levels of 2 plasma miRNAs were associated with higher MMSE scores (p < 0.05). 
Expression of 33 plasma miRNAs was associated with rate of change in MMSE scores over time (p < 0.05). 
Enriched KEGG pathways for miRNAs associated with concurrent MMSE and MMSE trajectory included Hippo 
signaling and extracellular matrix-receptor interactions. Gene targets of miRNAs associated with MMSE 
trajectory were additionally associated with prion diseases and fatty acid biosynthesis. 
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INTRODUCTION 
 

As the U.S. population ages, there is growing concern 

about the loss of mental acuity associated with aging. At 

least 10% of individuals 65 years or older and 50% of 

those at least 85 years of age experience some 

impairment [1]. These declines can have substantial 

consequences on an individual’s ability to perform 

important everyday functions [2, 3]. Non-clinical aging-

related cognitive decline is also an early symptom of 

Alzheimer’s disease (AD) and related dementias [4, 5]. 

The exact mechanisms of initiation of cognitive decline 

remain unclear which has hampered progress in 

identifying risk factors, treatments, and implementing 

targeted prevention. Elucidating the biological 

processes involved in aging-related cognitive decline 

may significantly advance our ability to not only detect 

but also to ultimately prevent or mitigate aging-related 

cognitive impairments and clinical dementia such as 

AD. 

 

Circulating extracellular RNAs (exRNAs) including 

microRNAs (miRNAs) have recently gained attention 

for their possible association with neurodegenerative 

disease pathogenesis and progression [6–8]. Altered 

levels of extracellular miRNAs have been detected 

among patients with mild cognitive impairment and AD 

[9–15], and a recent study has investigated plasma 

miRNAs as potential biomarkers to predict progression 

from mild cognitive impairment to overt dementia [16]. 

However, to our knowledge, no studies have 

investigated associations between extracellular miRNAs 

and cognitive function among pre-clinical (i.e., 

cognitively “normal”) older individuals. Understanding 

the functions of miRNAs in the earliest stages of 

cognitive decline will expand our knowledge on the 

biology of prodromal AD and the roles of circulating 

miRNAs in neurodegenerative diseases and could result 

in identification of therapeutic targets to guide drug 

development [17]. 

 

In this work, our aim was to test the hypothesis that 

circulating plasma miRNAs are associated with current 

cognitive function and rate of cognitive decline in the 

Normative Aging Study (NAS), a prospective cohort of 

older men. The primary objective of this study was to 

examine the association of plasma miRNA expression, 

quantified using small RNA sequencing (RNA-seq), 

with cognitive function and rate of cognitive decline in 

this cohort. Our secondary objective was to explore the 

biological pathways associated with the gene targets of 

any miRNAs associated with cognitive function or rate 

of cognitive decline. We found that (i) 2 plasma 

miRNAs are cross-sectionally associated with higher 

Mini-Mental State Examination (MMSE) scores; (ii) 33 

plasma miRNAs are associated with trajectory of 

MMSE scores over time; and (iii) these miRNAs are 

associated with prion diseases, fatty acid biosynthesis, 

Hippo signaling, and extracellular matrix (ECM)-

receptor interactions. 

 

RESULTS 
 

Descriptive statistics of study participants 

 

A total of 530 men with 1,331 person-visits (equivalent 

to 2,471 years of follow up) met the inclusion criteria 

for this study (Figure 1). Table 1 summarizes the 

baseline characteristics of the cohort. The mean ± 

standard deviation (SD) age of the sample at baseline 

was 72.0 ± 6.8 years (median: 71.0 years; range: 55–94 

years) and the mean ± SD maximum level of education 

was 14.9 ± 2.9 years, corresponding to at least some 

college education. Most of the men were white 

(96.8%), not heavy drinkers (82.6%), and were current 

or former smokers (70.2%). Physical activity exhibited 

a skewed distribution, with a median of 7.75 metabolic 

equivalent of task hours (MET-hrs) per week. Most 

men were not diabetic (82.1%) but were diagnosed 

with hypertension (71.5%). The median number of 

visits was 2 (range: 1–6), while the median years of 

follow up was 6.0 years (range: 0–14 years, 

interquartile range: 0–9). The first cognitive assessment 

in this study (at or after baseline, whichever comes 

first) was the first ever cognitive assessment for 38 

participants (7.2%). Within this sample, 457 men had 

MMSE assessed at the baseline visit (i.e., the same visit 

as the plasma miRNA measure). Descriptive statistics 

for MMSE scores across cognitive assessments are 

shown in Table 2. 

 

Descriptive statistics of plasma miRNAs 

 

A total of 381 plasma miRNAs passed quality control 

checks and were detected in ≥ 70% of participants. 

Descriptive statistics of the normalized, batch-corrected 

reads (in counts per million) of these 381 miRNAs are 

presented in Supplementary Table 1. Among all miRNA 

Conclusions: Circulating miRNAs were associated with both cross-sectional cognitive function and rate of 
change in cognitive function among cognitively normal men. Further research is needed to elucidate the 
potential functions of these miRNAs in the CNS and investigate relationships with other neurological 
outcomes. 
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pairs, 42.0% were significantly correlated (Spearman 

correlation Bonferroni-corrected p < 0.05), and most 

significantly correlated miRNAs (57.7%) were 

positively correlated (Supplementary Figure 1). 

 

Circulating miRNAs and cross-sectional cognitive 

function 

 

At baseline (i.e., the study visit when blood was drawn 

for the plasma miRNA measure), relative abundance of 

hsa-miR-148a-5p and hsa-miR-335-3p was positively 

associated with MMSE in our multivariable-adjusted 

linear model (Figure 2). A doubling in relative 

abundance of hsa-miR-148a-5p was associated with a 

0.33-point higher MMSE score (95% confidence 

interval [CI]: 0.15 to 0.51; False discovery rate [FDR] 

q-value < 0.05) and a doubling in relative abundance of 

hsa-miR-335-3p was associated with a 0.29-point 

higher MMSE score (95% CI: 0.13 to 0.46; FDR q-

value < 0.05) (Supplementary Table 2). For 

comparison, an additional year of age was associated 

with a 0.06-point lower MMSE score. Neither hsa-

miR-148a-5p or hsa-miR-335-3p was correlated with 

age or education, and the distribution of the miRNA’s 

relative abundance did not differ by smoking status 

(Supplementary Figures 2, 3). Our results were 

materially unchanged in sensitivity analyses 

(Supplementary Figure 4). 

We next performed an enrichment analysis to identify 

biological pathways enriched with genes targeted by 

either hsa-miR-148a-5p or hsa-miR-335-3p (506 and 

430 experimentally validated genes, respectively). 

Experimentally validated gene targets were identified 

using TarBase v7.0 [18]. The KEGG (Kyoto 

Encyclopedia of Genes and Genomes) functional 

enrichment analysis revealed that these miRNA targets 

are associated with the Hippo signaling pathway, ECM-

receptor interactions, and galactose metabolism (FDR 

q-values: <0.0001, <0.0001, 0.0076, respectively) 

(Table 3). To further explore the biological functions of 

these miRNAs, we performed pathway enrichment 

analysis using the predicted miRNA target genes, 

identified using the microT-CDS v.5 [19] database in 

DIANA-miRPath (625 genes for hsa-miR-148a-5p; 

2,984 genes for hsa-miR-335-3p). These results are 

shown in Supplementary Figure 5. Again, various 

pathways targeted by these miRNAs were identified, 

including pathways associated with transforming 

growth factor beta (TGF-) and Hippo signaling, ECM-

receptor interactions, and glioma (FDR q-values of 

<0.00001, 0.0058, 0.0065, and 0.0002, respectively). 

 

Circulating miRNAs and rate of cognitive decline 

 

We then investigated the potential association between 

baseline plasma miRNA abundance and longitudinal

 

 
 

Figure 1. Flow diagram depicting eligible and non-eligible Normative Aging Study (NAS) participants. N = 530 subjects (red 

box) were included in the analysis of MMSE trajectory. N = 457 of these subjects (blue box) had MMSE assessed at the same visit as the 
plasma miRNA measure and were included in an additional cross-sectional analysis. Abbreviations: MMSE: Mini-Mental State Examination; 
MET: Metabolic equivalent of task, measured in hours/week. One MET is defined as the energy expenditure for sitting quietly, which, for 
the average adult, approximates 3.5 mL of oxygen uptake per kilogram of body weight per minute (1.2 kcal/min for a 70-kg individual). 
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Table 1. Baseline characteristics of Normative Aging Study (NAS) participants (N = 530). 

 Included NAS Participants 

(N = 530) 

Age (years) 

Mean (SD) 72.0 (6.8) 

Median (Min, Max) 71.0 (55.0, 94.0) 

Race/Ethnicity 

White 513 (96.8%) 

Black 12 (2.3%) 

Hispanic 4 (0.8%) 

Missing 1 (0.2%) 

Max Education (years) 

Mean (SD) 14.9 (2.9) 

Median (Min, Max) 14.0 (6.0, 29.0) 

Alcohol Consumption (drinks/day) 

<2  438 (82.6%) 

≥2  92 (17.4%) 

Smoking Status 

Never 158 (29.8%) 

Current/Former 372 (70.2%) 

Physical Activity (MET-hrs/week) 

Mean (SD) 14.3 (17.8) 

Median (Min, Max) 7.75 (0.25, 138.17) 

1st quartile, 3rd quartile 3.09, 19.62 

Missing 29 (5.5%) 

Diabetes 

No 435 (82.1%) 

Yes 95 (17.9%) 

Hypertension 

No 151 (28.5%) 

Yes 379 (71.5%) 

Number of Visits 

Median (Min, Max) 2 (1, 6) 

IQR 1-3 

Years of Total Follow Up 

Median (Min, Max) 6 (0, 14) 

IQR  0−9 

These men had at least one cognitive assessment on or after the baseline visit, defined as the visit when blood was drawn for 
plasma miRNA analysis. Abbreviations: IQR: Interquartile range; SD: Standard deviation; MET: Metabolic equivalent of task, 
measured in hours (hrs) per week. One MET is defined as the energy expenditure for sitting quietly, which, for the average 
adult, approximates 3.5 mL of oxygen uptake per kilogram of body weight per minute (1.2 kcal/min for a 70-kg individual). 

 

 

Table 2. Mini-Mental State Examination (MMSE) scores. 

Cognitive assessment N 
Age MMSE 

Mean age (Min, Max) Mean (SD) Min, Max Missing (no., %) 

1 530* 72.58 (55, 94)  26.57 (1.97)  15, 29 4 (0.75%) 
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2 370 74.79 (59, 94) 26.66 (1.94) 13, 29 8 (2.16%) 

3 268 77.35 (64, 97) 26.73 (1.81) 20, 29 27 (10.07%) 

4 138 79.01 (67, 96) 26.60 (1.96) 18, 29 6 (4.35%) 

5 24 82.21 (75, 93) 26.83 (2.57) 17, 29 0 (0%) 

6 1 80 23 (NA) NA 0 (0%) 

*For N = 457, the first visit occurred at the baseline visit, i.e., the same visit when blood was drawn for the plasma miRNA 
measure. The remaining 73 participants had their first MMSE measure occur after the baseline plasma assessment. 
Abbreviations: SD: Standard deviation; NA: Not available. 

 

changes in cognition. As expected, MMSE scores 

displayed a slight overall decline with age. In bivariate 

analyses, MMSE was significantly associated with age, 

with a 0.06-point decrease in MMSE score per year (95% 

CI: −0.07 to −0.04; p < 0.0001). In our linear mixed 

models assessing repeated measures of MMSE, we 

observed significant interactions between follow up time 

and 33 plasma miRNAs on MMSE, which indicates that 

baseline levels of each of these 33 unique miRNAs were 

associated with the trajectory of MMSE score over time 

(Figure 3, Table 4). We identified 13 miRNAs with 

positive interaction terms and 20 miRNAs with negative 

interaction terms, meaning these miRNAs are associated 

with an increase and decrease in global cognitive 

function, respectively. Among participants that 

experienced a progressive decline in MMSE (virtually all 

participants), these miRNAs are associated with slower 

and faster declines in global cognitive function, 

respectively. The full results of this analysis (for all 

miRNAs tested) are included in Supplementary Table 3. 

 

 
 

Figure 2. Volcano plot of plasma miRNAs associated with baseline MMSE score. Estimates (pooled from ten imputed datasets) 

from linear models adjusted for age, education, alcohol consumption, and smoking status. The 5 and 6 most statistically significant 
extracellular miRNAs with negative and positive beta estimates, respectively, are labeled. The 2 extracellular miRNAs significant at FDR q-
value < 0.05 are plotted in red. Abbreviations: FDR: False Discovery Rate; MMSE: Mini-Mental State Examination; n.s.: not significant. 
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Table 3. Results of KEGG pathway enrichment analysis of experimentally validated gene targets of plasma miRNAs 
cross-sectionally associated with MMSE: hsa-miR-148a-5p and hsa-miR-335-3p. 

KEGG pathway FDR q-value # Genes Genes 

Hippo signaling pathway 5.64E-11 11 
GSK3B, YWHAH, YAP1, SMAD3, WWTR1, YMHAQ, 
MMP5, FRMD6, TEAD1, LATS1, SERPINE1 

ECM-receptor interaction 1.23E-06 6 ITGB1, THBS1, THBS2, COL3A1, COL1A2, SDC4 

Galactose metabolism 0.0076 2 UGP2, GLA 

Colorectal cancer 0.0566 7  

Pantothenate and CoA biosynthesis 0.1089 2  

Shigellosis 0.1097 6  

mRNA surveillance pathway 0.1318 7  

ErbB signaling pathway 0.1671 10  

Endometrial cancer 0.1699 6  

These two miRNAs are associated with continuous MMSE score at baseline. Experimentally validated gene targets were 
identified using TarBase v7.0. Enriched gene targets are listed for pathways meeting statistical significance. Abbreviations: 
ECM: Extracellular matrix; CoA: Coenzyme A; MMSE: Mini-Mental State Examination. 

 

 

Figure 3. Volcano plot of plasma miRNAs associated with trajectory of MMSE scores. The MMSE rate change (x axis) is the 

equivalent of the regression coefficient of the interaction term in the linear mixed model. These beta estimates, pooled from ten imputed 
datasets, are from linear mixed models adjusted for age, education, alcohol consumption, smoking status, and follow up time. The 33 
extracellular miRNAs that interacted with follow up time significant at FDR q-value < 0.05 are labelled. MiRNAs with positive and negative 
interaction terms are plotted in red and blue, respectively. Abbreviations: FDR: False Discovery Rate; MMSE: Mini-Mental State 
Examination; n.s.: not significant. 
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Table 4. Plasma miRNAs (33) associated with trajectories of MMSE scores over follow up time (N = 530). 

miRNA Pooled β Value 95% Confidence interval FDR q-value Sign of interaction term 

hsa-miR-28-3p −0.0902 −0.14, −0.04 0.0287 − 

hsa-miR-152-3p −0.0756 −0.12, −0.03 0.0287 − 

hsa-miR-30e-3p −0.0833 −0.13, −0.04 0.0287 − 

hsa-miR-148b-3p −0.0748 −0.12, −0.03 0.0287 − 

hsa-miR-326 −0.0301 −0.05, −0.01 0.0287 − 

hsa-miR-22-3p 0.0799 0.03, 0.13 0.0287 + 

hsa-miR-221-3p −0.0481 −0.08, −0.02 0.0287 − 

hsa-miR-4732-3p 0.0295 0.01, 0.05 0.0287 + 

hsa-miR-652-3p −0.0360 −0.06, −0.01 0.0287 − 

hsa-miR-511-5p 0.0306 0.01, 0.05 0.0287 + 

hsa-let-7b-5p 0.0445 0.02, 0.07 0.0287 + 

hsa-miR-342-5p 0.0377 0.01, 0.06 0.0287 + 

hsa-miR-6852-5p −0.0365 −0.06, −0.01 0.0287 − 

hsa-miR-574-5p −0.0297 −0.05, −0.01 0.0308 − 

hsa-miR-431-5p −0.0252 −0.04, −0.01 0.0308 − 

hsa-miR-21-5p −0.0835 −0.14, −0.03 0.0308 − 

hsa-miR-493-5p −0.0269 −0.04, −0.01 0.0308 − 

hsa-miR-320c 0.0520 0.02, 0.09 0.0308 + 

hsa-miR-340-5p −0.0697 −0.12, −0.02 0.0308 − 

hsa-miR-194-5p 0.0394 0.01, 0.07 0.0317 + 

hsa-miR-6842-3p −0.0476 −0.08, −0.02 0.0324 − 

hsa-miR-363-3p 0.0523 0.02, 0.09 0.0373 + 

hsa-miR-584-5p −0.0540 −0.09, −0.02 0.0406 − 

hsa-miR-99a-5p 0.0407 0.01, 0.07 0.0406 + 

hsa-miR-191-5p −0.0537 −0.09, −0.02 0.0406 − 

hsa-miR-337-3p −0.0254 −0.04, −0.01 0.0406 − 

hsa-miR-329-3p −0.0260 −0.04, −0.01 0.0406 − 

hsa-miR-215-5p 0.0307 0.01, 0.05 0.0406 + 

hsa-miR-181a-5p 0.0693 0.02, 0.12 0.0406 + 

hsa-let-7f-5p −0.0738 −0.13, −0.02 0.0425 − 

hsa-miR-320b 0.0492 0.01, 0.08 0.0425 + 

hsa-miR-199a-5p −0.0404 −0.07, −0.01 0.0437 − 

hsa-miR-125b-5p 0.0312 0.01, 0.05 0.0492 + 

The beta estimate represents the beta estimate (pooled from ten imputed datasets) for the interaction of miRNA and follow 
up time from linear mixed models adjusted for follow up time since baseline and baseline age, education, alcohol 
consumption, and smoking status. MiRNAs are ordered by ascending False Discovery Rate (FDR). Shown here are the 33 
miRNAs significant at FDR < 0.05 (also colored and labelled in Figure 3). Full results from this analysis are included in 
Supplementary Table 3. MMSE: Mini-Mental State Examination. 

 

We again used DIANA-miRPath to perform functional 

enrichment analysis of these 33 miRNAs to clarify their 

possible biological roles. In this analysis, we used 

experimentally validated as well as predicted miRNA 

gene targets as inputs to the analyses, using the 

predicted gene targets for 8 miRNAs which had no 
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experimentally validated mRNA targets. A heatmap of 

the KEGG pathways significantly enriched with gene 

targets of these miRNAs is shown in Figure 4. Full 

results of the KEGG analysis can be found in 

Supplementary Table 4. The KEGG functional 

enrichment analysis of the 33 significant miRNAs 

revealed that they are associated with: fatty acid 

biosynthesis (p < 0.00001, 3 gene targets) and fatty acid 

metabolism (p < 0.00001, 13 gene targets), prion 

diseases (p < 0.00001, 9 gene targets) and glioma (p < 

0.00001, 41 gene targets), as well as ECM-receptor 

interactions (p < 0.00001, 30 gene targets), the Hippo 

signaling pathway (p < 0.00001, 89 gene targets), and 

the TGF- signaling pathway (p = 0.0018, 47 gene 

targets), which were also associated with miRNAs hsa-

miR-148a-5p and hsa-miR-335-3p, indicating the 

importance of these pathways in both current cognitive 

function and rate of change in cognitive function. 

 

Our results did not meaningfully change in sensitivity 

analyses adjusting for additional covariates and when 

restricting the analysis to white participants 

(Supplementary Figure 6). To control for loss to follow 

up, we computed inverse probability of censoring 

weights and applied these in weighted linear mixed 

models using participants with no missing outcome data 

(N = 526). Though the nominal p-values from these 

weighted models broadly agreed with those of the 

analogous unweighted models (R2 = 0.44) 

(Supplementary Figure 7), the p-values from the 

weighted models were lower than the unweighted 

models, resulting in an even greater number of miRNAs 

meeting statistical significance (82 miRNAs with FDR 

q-value < 0.05). The top 5 KEGG pathways targeted by 

these 82 miRNAs were prion diseases, fatty acid 

biosynthesis, ECM-receptor interaction, fatty acid 

metabolism, and glioma (p < 0.00001) (Supplementary 

Table 5). Among these 82 significant miRNAs, 30 were 

also significant in our original results (out of 33), 

indicating there was high overlap between the miRNAs 

identified by unweighted linear mixed models using 

imputed outcome data and miRNAs identified by linear 

mixed models using complete cases and controlling for 

selection bias by applying inverse probability of 

censoring weights. Furthermore, significant KEGG 

pathways of these 30 miRNAs included fatty acid 

biosynthesis, prion diseases, Hippo signaling, ECM-

receptor interactions, glioma (p < 0.00001), and TGF-β

 

 
 

Figure 4. Heatmap of KEGG pathways targeted by 33 plasma miRNAs associated with trajectory of MMSE scores. MiRNA 
gene targets were identified using TarBase v7.0. Inset shows the log10(FDR q-value). MMSE: Mini-Mental State Examination. *For these 
miRNAs, predicted gene targets identified using microT-CDS v.5 were used as input to the KEGG analysis. 
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signaling (p = 0.0018). Thus, our results are reasonably 

robust to missing data and selection bias. 

 

DISCUSSION 
 

In a cohort of older men from Massachusetts, we 

investigated associations between plasma miRNAs and 

global cognition and rate of global cognitive decline 

measured by the MMSE. Among 381 plasma miRNAs 

detectable in at least 70% of samples, expression of 2 

miRNAs were associated with baseline (i.e., cross-

sectional) MMSE scores (FDR q-value = 0.048) and 

levels of 33 miRNAs were associated with rate of 

change in MMSE over time (FDR q-value < 0.05), 

suggesting that plasma miRNA levels are associated 

with both the level of and change in global cognition 

among older men. We explored the potential regulatory 

targets of significant plasma miRNAs using KEGG 

enrichment analysis. The genes targeted by these 

miRNAs are mainly associated with prion diseases and 

fatty acid biosynthesis as well as with Hippo signaling, 

ECM-receptor interactions, and TGF- signaling 

pathways. These latter three results were consistent for 

both the cross-sectional and longitudinal analyses. 

These pathways provide insight into the possible 

contribution of these miRNAs to aging-related cognitive 

decline. 

 

For instance, the Hippo signaling pathway is a highly 

conserved signaling mechanism that chiefly manages 

cell survival, cell proliferation, and apoptosis, though it 

also plays a critical role in the development of the 

nervous system at multiple stages, from neural stem cell 

proliferation and migration to neuronal differentiation, 

synaptogenesis, and neuronal death [20, 21]. It plays 

important roles in balancing regulated neuronal death 

such that hypo- as well as hyper-activation of this 

pathway can result in pathological conditions such as 

glioma and neurodegeneration, respectively [20, 22–

24]. Thus, the appearance of target genes enriched in 

“glioma” in our results could also indicate aberrant 

Hippo signaling. Hippo signaling is also activated in 

amyloid-β-mediated neurodegeneration [25], suggesting 

that inhibitors of Hippo signaling could be a therapeutic 

target for prevention of cognitive decline. 
 

Hippo signaling also plays a critical role in the 

formation and maintenance of synapses, dendritic 

arborization, and axon guidance and elongation which 

has implications for various neurodegenerative diseases 

such as AD and related dementias [26]. Inappropriate 

development and maintenance of synapses can also alter 

neural circuit formation which has known impacts on 

cognitive decline and learning/memory [27, 28]. ECM 

receptors and their ligands also play key roles in axonal 

projections, dendrite structure, synapse formation, 

function, and maintenance, and synaptic plasticity. 

Consequently, disruptions of integrin subunits can result 

in learning and memory impairments [29]. 

 

KEGG pathway analyses of the plasma extracellular 

miRNA targets also identified TGF-β signaling as an 

enriched pathway. TGF-βs play important neuro-

protective functions in response to injury. TGF-β 

signaling increases with age and is induced by both 

acute and chronic brain injury including neuro-

degeneration and AD [30, 31]. It has been suggested 

that in AD, reduced trophic support to neurons 

combined with age-dependent increases in cellular 

stress results in chronic injury leading to neuronal 

death. Indeed, in a mouse model of AD, a reduction of 

TGF-β signaling in neurons resulted in age-dependent 

neurodegeneration and promoted AD-like pathology 

[32]. Evidence of the role of TGF-β signaling in 

neurodegeneration and AD pathology establishes this 

signaling pathway as a potential therapeutic target for 

these disorders [33–35]. 

 

Lastly, gene targets of plasma miRNAs identified in the 

repeated measures analyses were enriched in pathways 

related to fatty acid biosynthesis and prion diseases. 

Increasing evidence suggests that abnormal fatty acid 

metabolism is associated with cognitive dysfunction 

[36] and neurological disorders such as AD [37–39]. 

Prion diseases are transmissible neurodegenerative 

disorders characterized by the presence and propagation 

of misfolded prion proteins. AD also involves 

propagation and aggregation of misfolded proteins, and 

a growing number of studies have suggested that 

extracellular vesicles (EVs, a source of exRNA) can 

contribute to prion-like propagation of amyloid deposits 

and neurofibrillary tangles in AD [40]. On the other 

hand, normal functioning prion protein is involved in 

processes including synaptic function and transmission, 

hippocampal synaptic functioning, metal transport, and 

copper homeostasis [41]. Furthermore, it has been 

demonstrated that in AD, prion protein on the 

membranes of EVs serves a neuroprotective role by 

binding to amyloid-β oligomers and converting these 

toxic amyloid-β entities into non-toxic species [42]. 

Thus, there may be a neuroprotective role of prion 

protein which is void upon conversion to the misfolded, 

pathological form. 

 

Taken together, our results suggest that various plasma 

extracellular miRNAs are associated with global 

cognitive function among cognitively “normal” men. If 

they were to play a causal role in cognitive decline, it 

would likely be through pathways that regulate synaptic 

plasticity, cell death, the response to injury, and energy 

homeostasis. Extracellular miRNAs may also contribute 

to greater rates of cognitive decline possibly through 
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involvement in the prion-like propagation of AD lesions 

or in hindering their neuroprotective role of curbing 

AD-like pathology. We observed overlap between the 

miRNAs identified in our study and those detected in 

previous studies assessing extracellular miRNA profiles 

in relation to cognitive function and neuropathological 

features among AD patients. For instance, a recent 

study observed a strong inverse relationship between 

plasma levels of the inflammatory miRNA miR-21-5p 

and MMSE of patients with AD compared to healthy 

controls [15]. In another recent study by Wiedrick and 

colleagues assessing the utility of extracellular miRNAs 

in human cerebrospinal fluid (CSF) of AD patients and 

controls as biomarkers for AD [9, 43], the miRNAs 

miR-28-3p, miR-125b-5p, and miR-584-5p were among 

the candidate disease biomarkers identified and were 

correlated with MMSE scores [9]. Each of these 

miRNAs were also associated with MMSE trajectory in 

our study. Our results also overlapped with the results 

of another study by Burgos and colleagues comparing 

the extracellular miRNA profiles in CSF and serum of 

AD patients to healthy controls [44]; these investigators 

found 41 miRNAs differentially expressed in CSF and 

20 miRNAs differentially expressed in serum of AD 

patients compared to controls. Among these miRNAs, 

four were also identified in our study (miR-181a-5p, 

miR-326, miR-329-3p, and miR-21-5p) to be associated 

with rate of change in cognition. The Burgos et al. study 

also observed that CSF levels of the miRNA miR-181a-

5p negatively correlated with disease progression 

(assessed by Braak stages and neurofibrillary tangle 

score). Thus, extracellular miRNAs detectable in the 

periphery can reflect cellular changes associated with 

neuropathology, but their definitive role in disease 

progression remains to be elucidated. Differences in the 

miRNAs identified in our study and other studies can be 

attributed to differences in the biofluid matrix, its 

collection and storage, participant characteristics, and 

methods of RNA isolation and miRNA expression 

profiling. 

 

Our results are consistent with the findings of a recent 

study by Nie and colleagues that sequenced plasma EV-

encapsulated miRNAs of patients with AD, Parkinson’s 

disease, and healthy controls [45]. Although only one 

miRNA we identified was also detected as differentially 

expressed among AD patients in the Nie et al. study 

(hsa-let-7b-5p), as we demonstrated in the results of our 

linear regression and linear mixed models, their cross-

sectional study also reported that the KEGG pathways 

of the miRNAs they found differentially regulated in 

AD patients included fatty acid biosynthesis, Hippo 

signaling, ECM-receptor interactions, and TGF-β 
signaling. Furthermore, two out of the five AD patients 

in the Nie et al. study had MMSE scores within the 

range of the NAS participants’ scores in this analysis. 

Another study that assessed the levels of circulating 

extracellular miRNAs in plasma of AD patients and 

healthy controls found that miR-191-5p, which was 

associated with MMSE trajectory in our analysis, was 

down-regulated among AD patients and pathways 

identified in ingenuity pathway analysis that were 

significantly enriched with signature miRNA targets 

included axonal guidance signaling [46]. 

 

This study is subject to limitations. First, our results 

may be subject to selection bias due to loss to follow up, 

as subjects experiencing cognitive impairments would 

likely have dropped out of the study. However, 30 of 

the 33 miRNAs identified by our repeated measures 

analyses remained statistically significant in a 

sensitivity analysis using inverse probability of 

censoring weights, and the top enriched KEGG 

pathways were not affected. Another limitation is that 

we ran single-miRNA analyses and thus we are unable 

to evaluate joint (e.g., synergistic or antagonistic) 

effects of a suite of miRNAs acting in tandem [47]. 

Also, compared to other cognitive tests, the MMSE is 

relatively poor in identifying certain cases of cognitive 

impairment such as frontotemporal dementia [48].  

Thus, additional screening tools such as the Cambridge 

Neuropsychological Test Automated Battery 

(CANTAB) and the Addenbrooke’s Cognitive 

Examination – III should be used alongside the MMSE 

in future studies of cognitive decline in healthy, aging 

populations [48, 49]. Although we analyzed repeated 

measures of cognitive function, this study is limited to a 

single plasma miRNA measure, and thus it is unknown 

how the abundance of these circulating miRNAs may 

fluctuate over time. Lastly, these results are based on a 

cohort of older, mostly white men and may be 

generalizable only to populations with similar 

characteristics [50]. However, the results of our KEGG 

enrichment analyses are in close agreement with 

another study that examined the plasma EV-miRNA 

profile of patients with AD that were mostly female (4 

out of 5) and healthy controls that were younger and 

contained an equal balance of males and females [45]. 

Nonetheless, our findings should be replicated in larger 

cohorts and studied concomitantly with neuroimaging 

and other biological measurements used in diagnosis of 

suspected dementia. 

 

A major strength of this study is that it used repeated 

measures of cognition (up to six assessments) spanning 

a period of up to 14 years (median follow up: 6 years), 

allowing us to detect changes in cognitive performance 

over time. Future studies should examine longitudinal 

changes in plasma exRNA for prediction of later 
clinical diagnosis of neurodegenerative diseases such 

as AD. Our results were robust to sensitivity analyses 

we performed which included outlier removal, 
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adjusting for additional covariates, restricting the 

analysis to white participants, and controlling for 

selection bias. Another strength of this study is that we 

employed small RNA-seq, a novel deep-sequencing 

approach that provides more precise miRNA 

measurements than alternative methods such as 

microarrays [51, 52]. RNA-seq has many advantages 

over microarrays which cover only a defined set of 

transcripts, exhibit high background levels due to 

cross-hybridization, and embody a limited dynamic 

range [53]. In a future study, we will validate select 

extracellular miRNAs using quantitative real-time PCR 

(qRT-PCR). Experimental studies could then confirm 

the functional role of these miRNAs in the central 

nervous system (CNS). Also, in an effort to identify 

potential functional biomarkers that may also serve as 

therapeutic targets, future studies should assess 

extracellular miRNAs from peripheral biofluids 

alongside matched brain tissue samples to determine 

the degree to which changes in peripheral miRNAs 

reflect changes in CNS miRNA expression and 

concurrent neuropathologic changes. 

 

In conclusion, while studies have investigated 

extracellular miRNA profiles and cognitive function 

and/or disease progression among patients with mild 

cognitive impairment and AD, to our knowledge, no 

study has investigated the association between 

circulating miRNAs and age-related cognitive 

impairment among cognitively “normal” individuals not 

diagnosed with dementia. In this study, we detected 

associations between plasma extracellular miRNAs and 

cross-sectional MMSE and with rate of change in 

MMSE over time. Biological pathways enriched among 

identified miRNAs included the Hippo signaling 

pathway and ECM-receptor interactions. Additionally, 

fatty acid biosynthesis and prion diseases were the main 

biological pathways targeted by miRNAs associated 

with trajectories of cognitive function. These findings 

warrant replication in experimental studies and follow 

up in larger cohorts with repeated measures from 

subjects that have been characterized in terms of 

cognitive and imaging data, other biomarkers for 

cognitive decline (e.g., CSF tau levels), and AD risk 

factors (e.g., apolipoprotein-E gene [APOE] status). If 

these circulating miRNAs are causally associated with 

cognitive decline, this would have implications for drug 

development and therapeutic monitoring of 

neurodegenerative disorders such as cognitive 

impairment. The investigation and verification of these 

circulating plasma miRNAs as potential mechanistic 

biomarkers of cognitive decline warrants further 

investigation. Additional research is needed to identify 
the biological pathways influenced by expression of 

these extracellular miRNAs, investigate relationships 

with CNS miRNA expression, and examine the 

potential impacts of circulating miRNAs on other 

neurological outcomes. 

 

MATERIALS AND METHODS 
 

Study sample 

 

The U.S. Department of Veterans Affairs (VA) 

Normative Aging Study (NAS) is an ongoing 

longitudinal cohort study of aging that was established 

in 1963 with men from the Greater Boston, 

Massachusetts area. Details on the NAS cohort have 

been reported previously [54]. Briefly, 2,280 men 21-81 

years old and free of chronic medical conditions were 

recruited to undergo an in-person examination every 3-5 

years. At each visit, participants underwent a physical 

examination and laboratory tests and provided 

information on medical history, lifestyle, and 

demographic factors. 

 

Starting in 1993, participants have been asked to 

complete a brief battery of cognitive tests [55, 56]. 

Collection of blood samples for molecular analysis, such 

as plasma miRNA profiling, began in January 1996. The 

present analysis is limited to participants for whom we 

were able to obtain plasma miRNA data and who also 

completed at least one cognitive assessment at the visit 

when plasma was collected for miRNA analysis, 

considered the participant’s baseline visit for this study, 

or after this visit. This ensures that we did not include 

cognitive test data obtained before the miRNA measure 

in our analyses. Out of 656 participants with plasma 

miRNA data, 578 (88.1%) underwent cognitive testing 

at this baseline visit or thereafter. 

 

Forty-eight participants (8.3%) who experienced a 

stroke before their first cognitive assessment (at the 

baseline visit or after, whichever came first) were 

excluded from the study, resulting in 530 individuals 

included in the analysis (Figure 1). 457 (86.2%) of these 

men completed cognitive testing at their baseline visit, 

while 73 (13.8%) participants underwent cognitive 

testing at a later visit. Compared to those who were 

included in the analysis, men excluded due to stroke 

were older (mean age ± SD of 77.2 ± 7.5 vs. 72.0 ± 6.8 

years, respectively, p < 0.0001), but they did not differ 

with respect to race/ethnicity, education level, alcohol 

consumption, smoking status, physical activity, diabetes 

and hypertension status, and baseline global cognitive 

function (Supplementary Table 6). Over the course of 

cognitive follow up, participants were censored at the 

time of incident stroke. 

 

The NAS was approved by the Institutional Review 

Boards of participating institutions and all participants 

provided written informed consent at each visit. 
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Plasma extracellular miRNA profiling 

 

Peripheral blood was collected in EDTA tubes and 

centrifuged at 1500 × g for 15 minutes to separate cell-

free plasma, which was stored at −80°C. Total RNA 

was extracted from 1 mL of plasma using the 

Plasma/Serum Circulating and Exosomal RNA 

Purification Mini Kit (Slurry Format) (Norgen Biotek 

Corp., Ontario, Canada) [57]. RNA was serially eluted 

into 14 µL of RNAse-free water and stored at −80°C 

until sequencing. Prior to library prep, RNA 

concentration and size distribution were evaluated 

using an Agilent 2100 Bioanalyzer. Sequencing 

libraries were constructed using the NEBNext Small 

RNA Library Prep Set for Illumina (NEB, Ipswich, 

MA, USA) according to the manufacturer’s protocol 

with modifications. Reactions were conducted at one-

fifth the recommended volume, 1.2 µL of each sample 

was used as input, the adapters were diluted to a 1:6 

ratio, and 17 cycles of library amplification PCR were 

completed. DNA Clean and Concentrator Kits (Zymo 

Research, Irvine, CA, USA) were used to clean the 

library product of salts, proteins, and smaller nucleic 

acid fragments. Libraries were pooled (up to 144 

samples) with equal volumes for each sample and the 

concentrations were quantified using the Quant-iT 

PicoGreen dsDNA Assay (Invitrogen, Waltham, MA, 

USA). The library size distribution was determined 

using a DNA HS Chip on a BioAnalyzer (Agilent 

Technologies, Santa Clara, CA, USA). The pools were 

size selected (115-150 base pairs [bp]) on a Pippin Prep 

instrument (Sage, Beverly, MA, USA) to remove 

adapter dimers and fragments larger than the target 

miRNA population and were sequenced to ~1,000,000 

total reads per pool using a MiSeq instrument with a 

Nano flow cell (Illumina Inc, San Diego, CA, USA). 

This sequencing data was used to balance the samples 

into new pools for deeper sequencing on a HiSeq4000 

instrument using single-end 75 bp runs. 

 

Small RNA sequencing data were processed using a 

previously described workflow [58]. Data were mapped 

using the ExceRpt small RNA sequencing data  

analysis pipeline on the Genboree Workbench 

(http://genboree.org/site/exrna_toolset/). Mapping 

parameters specified a minimum read length of 15 

nucleotides and 0 mismatches allowed, with the rest on 

default. We removed all samples with failed library 

preparation, defined as <10,000 total input reads (n = 

56), and samples with low abundance of mapped 

miRNA reads (n = 9), defined as <100,000 total miRNA 

reads. In total, samples from 656 individuals passed 

quality control checks. Raw miRNA read counts were 
normalized via trimmed mean of M (TMM) method 

[59] and batch corrected using ComBat [60]. To 

increase our statistical power, extracellular miRNAs 

that were detectable in ≥ 70% of samples (381 

miRNAs) were retained for all analyses. 

 

Cognitive assessments 

 

Participants completed a battery of cognitive tests 

which included the Mini-Mental State Examination 

(MMSE). The MMSE is the most widely used 

screening instrument for cognitive decline and has 

been extensively validated and used both in clinical 

practice and epidemiological research as a dementia 

screening tool [61]. It assesses several cognitive 

domains such as orientation, immediate and short-term 

recall, attention and calculation, word finding, figure 

construction, reading and writing skills, and ability to 

follow a three-step command [62]. The range of scores 

in MMSE is 0–30; however, the maximum score in 

this study was 29 due to exclusion of the question on 

the county of residence because counties in 

Massachusetts are generally not known and thus are of 

little diagnostic utility [56]. This approach has been 

used previously to provide more robust results on this 

dataset [63, 64]. 

 

The present analysis includes cognitive data from study 

visits at or after the baseline visit, which we define as 

the visit where blood was drawn for the plasma miRNA 

measure, between 1996–2014. Participants completed 

up to 6 cognitive assessments over the study period 

(Table 2). Multiple imputation by chained equations 

was used to impute missing MMSE scores (and physical 

activity measures, used in sensitivity analyses) using the 

‘mice’ package in R. The predictors used to impute 

missing data were the following: age (years), maximum 

education (years), first language (English/not English), 

computer experience (yes/no), physical activity (total 

metabolic equivalent hours/week), body mass index, 

hypertension (yes/no), alcohol intake (< 2 drinks/day, ≥ 

2 drinks/day), smoking status (never, current/former), 

diabetes mellitus (yes/no), coronary heart disease 

(yes/no), stroke (yes/no), dark fish consumption (< once 

per week, ≥ once per week), MMSE score, and the 

scores of other cognitive tests, specifically the digit 

span backward test (total number and longest span of 

digits recalled), a verbal fluency task, a constructional 

praxis task (visual drawings: sum and weighted sum of 

drawings score), immediate and delayed recall of a 10-

word list, and the mean and number correct in a pattern 

comparison test. 

 

Statistical analyses 

 

The dataset was inspected for implausible and out-of-
range values and one outlier with an MMSE score of 2 

was removed (although including this observation in 

analyses did not change results). Descriptive statistics 

http://genboree.org/site/exrna_toolset/
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for study participants were calculated (mean and 

median for continuous variables and frequency for 

categorical variables). Differences between NAS 

participants included in the analyses (N = 530) and 

those excluded due to stroke (N = 48) were assessed 

using t-tests for continuous variables and chi-squared 

tests for categorical variables. The Mann-Whitney U 

test was applied for physical activity which exhibited a 

skewed distribution. These tests were two-sided with 

significance level 0.05. Descriptive statistics (minimum, 

maximum, mean, SD, and first/second/third quartiles) 

were calculated for each of the miRNAs that met the 

70% detection threshold. Distributions of miRNA reads 

(normalized, batch-corrected counts per million reads) 

were examined by plotting histograms for each plasma 

miRNA, and Spearman correlations between plasma 

miRNAs were calculated. Reads (counts per million, 

normalized and batch-corrected) were log2 transformed 

for input in the analyses. 

 

We first assessed the cross-sectional relationship 

between each of the detectable plasma miRNAs and 

MMSE score among men with MMSE measured at their 

baseline visit (N = 457, Figure 1 blue box) using linear 

regression models (Equation A). We then used linear 

mixed models with random intercepts for individual to 

assess the association between plasma miRNAs and 

longitudinal changes in cognition (N = 530, Figure 1 red 

box). Mixed models allow for differences in the number 

of repeated measures across participants; therefore, both 

persons with a single cognitive assessment and those 

with multiple assessments are included in our dataset 

and contribute to our primary estimates. The outcome 

for this analysis was MMSE score for subject i at visit j. 

The models included a linear term for time since the 

baseline assessment (i.e., follow up time) and an 

interaction term for plasma miRNA and follow up time; 

this cross-product represents the association between a 

given miRNA and rate of change in MMSE over time 

(Equation B). 
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All analyses were adjusted for predictors of cognitive 

function and potential confounders identified a priori, 
including baseline age (years), education (years), 

alcohol consumption (<2 or ≥2 drinks/day), and 
smoking status (never, current/former). We did not 

adjust for race/ethnicity because this sample was 

primarily non-Hispanic white (97%). Because variants 

in the apolipoprotein-E gene (APOE) are associated 

with risk of AD [65–67] and may influence cognition 

[68], we assessed the association between APOE 

polymorphisms and global cognitive function in this 

sample. Combinatorial and bivariate analyses of 

polymorphisms rs7412 and rs429358 did not show any 

association with MMSE, as also reported previously for 

this cohort [69], and therefore we did not adjust for 

allelic variants of APOE. 

 

Analyses were performed separately for each plasma 

miRNA. We controlled for multiple comparisons using 

False Discovery Rates (FDR) and results were 

considered significant at FDRs < 0.05. We used R 

software (Version 4.0.5) for all statistical analyses [70]. 

 

Sensitivity analyses 

 

In sensitivity analyses, we additionally adjusted all 

models for diabetes (physician-diagnosed or having 

fasting glucose above 126 mg/dL), hypertension 

(yes/no), and measured or imputed physical activity 

(total metabolic equivalent hours/week). To control for 

practice effects [71], we adjusted for a variable 

indicating whether the data was from the participant’s 

first ever cognitive assessment. We also restricted the 

analyses to participants who were white (N = 443 for 

cross-sectional analysis, N = 513 for longitudinal 

analysis). 

 

To adjust for potential selection bias due to loss to 

follow up, we constructed inverse probability of 

censoring weighted estimators using the baseline age, 

education, alcohol consumption, and smoking status as 

predictors and ran weighted linear mixed models among 

complete cases only (N = 526 with observed MMSE). 

 

Functional and pathway enrichment analyses 

 

The biological relevance of the statistically significant 

plasma miRNAs identified by the linear regression 

models and linear mixed models was explored a 

posteriori via KEGG (Kyoto Encyclopedia of Genes 

and Genomes) pathway enrichment analysis performed 

using a miRNA pathway analysis web server, DIANA-

miRPath v.3 (http://www.microrna.gr/miRPathv3) [72]. 

Fisher’s exact test was used to identify enriched 

pathways. Benjamini and Hochberg FDR-corrected p-

values < 0.05 were considered statistically significant. 

 

Availability of data and materials 

 

The data used in this study are subject to the rules and 

regulations of the U.S. Department of Veterans Affairs 

(VA) and are not publicly available. They may be made 

available upon reasonable request and compliance with 

the appropriate conditions as imposed by the VA. 

http://www.microrna.gr/miRPathv3
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Spearman correlation matrix of reads (normalized, batch-corrected counts per million) of the 381 
plasma miRNAs detected in ≥ 70% of samples. MiRNAs are ordered by hierarchical clustering, and only correlations significant at p < 
0.05 are shown. 
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Supplementary Figure 2. Relationship between abundance (in log2 counts per million) of hsa-miR-148a-5p with cross-
sectional age, education, and smoking status (N = 457). Correlation between hsa-miR-148a-5p (log2 counts per million) with age (A) 
and maximum years of education (B). The distribution of hsa-miR-148a-5p (log2 counts per million) is shown for current/former smokers 
and never smokers in panel (C). 
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Supplementary Figure 3. Relationship between abundance (in log2 counts per million) of hsa-miR-335-3p with cross-
sectional age, education, and smoking status (N = 457). Correlation between hsa-miR-335-3p (log2 counts per million) with age (A) 
and maximum years of education (B). The distribution of hsa-miR-335-3p (log2 counts per million) is shown for current/former smokers and 
never smokers in panel (C). 
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Supplementary Figure 4. QQplots displaying unadjusted p-values of models used in sensitivity analyses vs. the Main Model 
(linear model adjusted for age, education, alcohol consumption, and smoking status). Model 1: Main model additionally 

adjusted for an indicator for whether the cognitive assessment was the participant’s first-ever time undergoing cognitive testing; Model 2: 
Main model further adjusted for physical activity, diabetes and hypertension status; Model 3: Model 2 additionally adjusting for the first 
cognitive test indicator; Model 4: Main model restricted to white participants only (N = 443). 
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Supplementary Figure 5. KEGG pathway enrichment analysis of predicted target genes of hsa-miR-148a-5p and hsa-miR-
335-3p. KEGG pathway analysis of predicted miRNA target genes for hsa-miR-148a-5p (625 genes) and hsa-miR-335-3p (2,984 genes) 
identified by microT-CDS v.5. 
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Supplementary Figure 6. QQplots displaying unadjusted p-values of models used in sensitivity analyses vs. the Main Model 
(linear mixed model adjusted for age, education, alcohol consumption, smoking status, follow up time, and included an 
interaction term for miRNA and follow up time). Model 1: Main model additionally adjusted for an indicator for whether the 

cognitive assessment was the participant’s first-ever time undergoing cognitive testing; Model 2: Main model further adjusted for physical 
activity, diabetes and hypertension status; Model 3: Model 2 additionally adjusting for the first cognitive test indicator; Model 4: Main 
model restricted to white participants only (N = 513). 
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Supplementary Figure 7. QQplot Displaying Unadjusted (A) p-values and (B) -log10(p-values) of Unweighted Complete Case Analysis vs. 

Inverse Probability of Censoring-Weighted (IPCW) Complete Case Analysis. These linear mixed models were adjusted for age, education, 
alcohol consumption, smoking status, follow up time, and included an interaction term for miRNA and follow up time. N = 526 subjects with 
1,285 person-visits. Black line: slope = 1. Blue line: linear regression line. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 to 5. 

 

Supplementary Table 1. Descriptive statistics of the 381 plasma microRNAs detected in ≥ 70% of samples. 

 

Supplementary Table 2. Associations between plasma miRNAs and cross-sectional Mini-Mental State Examination 
scores (N = 457). 

 

Supplementary Table 3. Associations between plasma miRNAs and trajectories of Mini-Mental State Examination 
scores over follow up time (N = 530). 

 

Supplementary Table 4. Pathways identified in KEGG pathway enrichment analysis of the 33 plasma microRNAs with 
expression levels that interacted with follow up time. This data is shown in a heatmap in Figure 4. 

 

Supplementary Table 5. Pathways identified in KEGG pathway enrichment analysis of the 82 plasma microRNAs with 
expression levels that interacted with follow up time in sensitivity analyses applying weighted linear mixed models 
using participants with no missing outcome data (N = 526). 

 

Supplementary Table 6. Baseline characteristics of included (N = 530) and excluded (N = 48) Normative Aging Study 
(NAS) participants. 

 
Stroke = No Stroke = Yes† 

(N = 530) (N = 48) 

Age (years)* 

Mean (SD) 72.0 (6.8) 77.2 (7.5) 

Median (Min, Max) 71.0 (55.0, 94.0) 77.0 (57.0, 92.0) 

Race/Ethnicity 

White 513 (96.8%) 47 (97.9%) 

Black 12 (2.3%) 0 (0%) 

Hispanic 4 (0.8%) 1 (2.1%) 

Missing 1 (0.2%) 0 (0%) 

Max Education (years) 

Mean (SD) 14.9 (2.9) 15.3 (3.4) 

Median (Min, Max) 14.0 (6.0, 29.0) 15.0 (11.0, 30.0) 

Alcohol Consumption (drinks/day) 

< 2  438 (82.6%) 40 (83.3%) 

≥ 2  92 (17.4%) 8 (16.7%) 

Smoking Status 

Never 158 (29.8%) 19 (39.6%) 

Current/Former 372 (70.2%) 29 (60.4%) 

Physical Activity (MET-hrs/week) 

Mean (SD) 14.3 (17.8) 12.1 (12.4) 

Median (Min, Max) 7.75 (0.25, 138.17) 7.58 (0.25, 43.6) 

1st quartile, 3rd quartile 3.09, 19.62 3.12, 16.02 
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Missing 29 (5.5%) 3 (6.3%) 

Diabetes 

No 435 (82.1%) 34 (70.8%) 

Yes 95 (17.9%) 14 (29.2%) 

Hypertension 

No 151 (28.5%) 11 (22.9%) 

Yes 379 (71.5%) 37 (77.1%) 

These participants had at least one cognitive assessment on or after the baseline visit, defined as the visit when blood was 
drawn for plasma miRNA analysis. Abbreviations: SD: Standard deviation; MET: Metabolic equivalent of task, measured in 
hours (hrs) per week. One MET is defined as the energy expenditure for sitting quietly, which, for the average adult, 
approximates 3.5 mL of oxygen uptake per kilogram of body weight per minute (1.2 kcal/min for a 70-kg individual). †These 
participants were excluded from analyses. *p < 0.0001 

 

 


