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ABSTRACT

With the emergence of Next Generation Sequencing
(NGS) technologies, a large volume of sequence data
in particular de novo sequencing was rapidly pro-
duced at relatively low costs. In this context, com-
putational tools are increasingly important to assist
in the identification of relevant information to under-
stand the functioning of organisms. This work intro-
duces BASiNET, an alignment-free tool for classify-
ing biological sequences based on the feature ex-
traction from complex network measurements. The
method initially transform the sequences and repre-
sents them as complex networks. Then it extracts
topological measures and constructs a feature vec-
tor that is used to classify the sequences. The
method was evaluated in the classification of coding
and non-coding RNAs of 13 species and compared
to the CNCI, PLEK and CPC2 methods. BASiNET out-
performed all compared methods in all adopted or-
ganisms and datasets. BASiNET have classified se-
quences in all organisms with high accuracy and
low standard deviation, showing that the method is
robust and non-biased by the organism. The pro-
posed methodology is implemented in open source
in R language and freely available for download at
https://cran.r-project.org/package=BASiNET.

INTRODUCTION

The advances in high-throughput sequencing (RNA-seq)
have enabled a broader characterization of transcripts (1,2).
In addition to the quantification of transcriptomes, these
new methods have contributed to a better understanding
of the genetic information contained in the RNA sequence,

such as those related to non-coding RNAs (3), as well as
make possible the sequencing of several species (4).

Two classes of transcripts have been extensively investi-
gated, the mRNAs that carries information for the synthesis
of proteins and, more recently, the non-coding RNAs (ncR-
NAs), involved mainly in epigenetic regulation. What dif-
ferentiates mRNAs from ncRNAs is mainly their function.
The length of the sequence is not an effective feature to clas-
sify them into mRNA or ncRNA. However, the ncRNAs
are categorized into two groups according to the size of the
sequence: the long non-coding RNAs (lncRNAs), with se-
quences >200 nucleotides and the small non-coding RNAs
(sncRNAs), with sequences shorter than 200 nucleotides.
(5).

These molecules are important because they act in differ-
ent biological processes like transcriptional regulation (6–
8), may be associated with human diseases (9) such as can-
cer (10,11), neurodegenerative and cardiovascular diseases
(12) to cite but a few.

The sncRNAs are abundant in highly conserved organ-
isms and are related to transcriptional gene silencing (5,13).

In this context, there is a great challenge to identify the
different types of sequences in the large volume of data pro-
duced by the RNA-seq technique. Computational methods
may be useful for classifying mRNA, lncRNAs and sncR-
NAs.

Regarding pattern recognition research field, there are
well-established classification methods such as Support
Vector Machines (SVM), Decision Trees, Neural Networks
among others (14). One important challenge is to define
suitable features from data that led to better separation be-
tween classes, i.e. to produce suitable feature space for clas-
sification (15). Therefore, the feature extraction can be cru-
cial for the classification process and its accuracy.

It is known that ncRNAs molecules adopt 3D structures
which is dependent on the nucleotides order in the sequence.
Thus, to extract features from nucleotide sequences consid-
ering only its frequency may not fully capture the differences
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between the coding and non-coding molecules (16). Besides,
it is commonly known that information content of genomes
has a very important function in the existence and develop-
ment of organisms (17). In this way, even not calculating the
RNA secondary structure, it is important to extract features
that can capture the information content of genomes. One
possible way is to consider the adjacency and frequency pat-
terns of the nucleotides.

In this context, methods for classifying transcripts have
been proposed. Among these methods are Coding Potential
Calculator (CPC) (18) and CPC2 (19). CPC2 is an updated
version of the CPC method, which adopts six features ob-
tained from a transcript molecule. Three of the features are
based on the Open Reading Frame prediction (ORF) and
the other three are based on the alignment from UniProt
proteins (20).

The features related to the ORF are the log-odds score of
the prediction, the coverage of the ORF and a binary value
that indicates whether the ORF starts with a start codon
and ends with a stop codon. The features related to protein
alignment are number of hits, a HSP (High Scoring Pairs)
based score, and a frame score based on HSPs distribution
from the reading frames. The CPC2 adopts some important
features to be used by a SVM classifier. For example, if a
sequence encodes a protein it must have an ORF and a good
alignment with the corresponding protein.

However, the CPC2 method requires the existence of
known protein sequences, i.e., the feature extraction is de-
pendent on data other than the nucleotides sequence. There-
fore, the method may have limitations when extracting fea-
tures from de novo sequencing of new organisms or un-
known proteins.

The PLEK (predictor of long non-coding RNAs and mes-
senger RNAs based on an improved k-mer scheme) (21) is an
alignment-free method, i.e. does not depend on alignment
with pre-existing databases. It adopts the k-mer frequency
as a feature from a sliding window with a step of one in
order to count the k-mer ranging from 1 to 5 (that is, 4k

patterns for each k value). The frequency of each pattern
is weighted by its size. The frequency set is used as feature
vector in the SVM classifier. However, only the nucleotide
frequency is considered directly. Its feature extraction does
not take into account features related to the molecule struc-
ture such as the position or the adjacency between the nu-
cleotides.

The Coding Non-Coding Index (CNCI) method (22)
adopts codons in order to distinguishing non-coding
RNAs, mainly to improve the accuracy levels with respect
to the identification of lncRNAs. CNCI calculates the fre-
quency of the 64 codons in each sequence using a sliding
window, which scanned each transcript six times to gener-
ate six reading frames. For each one, the method calculates a
score of the sequence. Then, the most likely coding domain
sequence is identified. The six extracted features are related
to the size and to the nucleotide frequency, which are used
as feature vector in the SVM classifier.

The challenge of feature extraction process is to find the
suitable way to obtain measurements from an object whose
values are similar for objects in the same class and dissim-
ilar to objects in different classes. In some cases, the form
of the original data is not the most suitable for the direct

extraction of measures and it is useful to change the rep-
resentation to another feature space (14,23). In this way,
the complex networks theory and its measurements have
been used to represent different objects and extract more
global and comprehensive features in several domains (24–
30) such as interactome (31,32), cellular organization (33),
three-dimensional genome organization (34) and gene net-
works (35–38).

This work proposes the BASiNET (BiologicAl Sequences
NETwork) method based on feature extraction from com-
plex networks. The adopted representation takes into ac-
count the global neighborhood between sequence sections
of certain length, characterizing the adjacency between
them through a complex network. The method does not
require prior annotation of the genome, nor alignment of
the sequences in database. Only the nucleotides sequence
in FASTA format is required. BASiNET does not classify
NGS reads directly, but assembled transcripts. The clas-
sifier is trained with assembled sequences that are longer
than the NGS reads. The proposed method was evaluated
and compared to the main competing methodologies con-
sidering two datasets, the first with sequences from nine
species and the second with sequences from six species.
In both experiments the BASiNET obtained higher accu-
racy than competitors methods (CNCI, PLEK and CPC2)
in all evaluated species. In addition, the software that im-
plements the BASiNET methodology is freely available at
https://cran.r-project.org/package=BASiNET.

The available version of the software allows new se-
quences to be classified for the previously trained organ-
isms. BASiNET implements a supervised learning algo-
rithm. Thus, to be used with newly sequenced species, it is
necessary to know the classes of a subset of transcript for
the training step. Therefore, in addition, the user can per-
form classifier training for newly sequenced organisms since
a subset of training sequences are known.

MATERIALS AND METHODS

Materials

This work adopted two datasets in order to validate the
proposed method as well as to compare its results with the
main competitor methods. The first dataset was obtained
from PLEK (21), which presents transcripts (mRNA) and
non-coding transcripts (ncRNAs) from nine species of ver-
tebrates. The Human non-coding transcripts were obtained
from the GENCODE v17 and the protein-coding tran-
scripts from the RefSeq release 60. The mouse lncRNA were
obtained from the GENCODE vM2 and the mRNA also
from RefSeq release 60. The Ensembl database v72 were
used to collect transcripts of the other vertebrates. The sec-
ond dataset was obtained from CPC2 (19), which presents
transcripts (mRNA), small non-coding transcripts (sncR-
NAs) and long non-coding transcripts (lncRNAs) from six
species: human, mouse, zebrafish, fly, worm and the model
plant Arabidopsis thaliana. The protein-coding sequences
were obtained from RefSeq database for which proteins
are annotated by Swiss-Prot. Redundant sequences were re-
moved from the dataset. The non-coding sequences were
obtained from the Ensembl v87 and Ensembl Plants v32.
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Figure 1. BASiNET method overview. Mapping: the sequence in FASTA
format is converted in a weighted graph. Feature extraction: topological
measures are computed for networks at different weight thresholds. Clas-
sification: The topological measures are used as features in order to classify
the sequences.

Method

In this work, the complex networks are represented by undi-
rected weighted graphs. Formally, a graph G is defined as a
set of vertices V (or nodes) and edges E (or links): G = {V,
E}. The edges are represented by a pair (i, j) which cor-
responds to a link from vertex i to vertex j. In the case
of undirected graphs, an edge (i, j) indicates that there is
a link between i and j independent of the direction. For
each edge is also associated a weight w(i, j ) ∈ N. Thus, a
graph is represented by an adjacency matrix, A, which can
be obtained from the application of a threshold function,
�(W, t). Where, W is the weight matrix and each position
wi, j = w(i, j). t ∈ N is the threshold value. The function
ai, j = 1 if wi, j > t and ai, j = 0, otherwise. Where ai, j is a
position of the adjacency matrix. In this way, from the ad-
jacency matrix A, several measurements of network charac-
terization can be obtained.

An overview of the method is presented in Figure 1.
The method consists of three steps: (i) mapping, (ii) fea-
ture extraction and (iii) classification. Figure 1 presents the
overview of the BASiNET method.

In a general way, the Mapping step consists of (i) input of
the sequence in FASTA format and (ii) create the network
representation from the sequence considering the parame-
ters Word Size (WS) and Step Size (ST). The Feature Ex-
traction step includes: (i) application of thresholds in each
of the networks and consequent reduction of the number
of edges and (ii) the extraction of network topological mea-
surements in each threshold. A topological measurement is
the computation of some feature of the graph. For exam-
ple, the average degree (number of edges) of the vertices.
The Classification step is performed after the feature extrac-

A

B C

Figure 2. Mapping the sequence to an undirected weighted network. (A)
The first three iterations of the algorithm with WS = 3 and ST = 1. Itera-
tion 1: the vertex ACA is linked to vertex CAC, which are adjacent words in
the sequence with this ST. The window slides with ST = 1. Iteration 2:the
vertex CAC is linked to ACG. The window slides with ST = 1; The vertex
ACA is linked to CGA. (B) Building the network from the first three illus-
trative iterations in sub-figure (a). At each iteraction, two adjacent words
occur again, +1 is added to the weight of the edge. For example, the words
GAU and CAC occurred three times as neighbors. (C) The result network
after all iterations.

tion of all sequences and respective networks considered in
the experiment. Each step will be explained in detail bellow.
As a result, it is built an undirected weighted network. The
weight of the edges represent the frequency that each word
(vertex) was identified as a neighbor from the other word.
Thus, the topology of the created network represents the or-
ganization of all adjacencies of all words in the sequence.

Mapping. The Mapping step (Figure 2) is performed as
follows. For each transcript are considered their nucleotides
(A, C, U, G) in FASTA format. There are two parameters:
(i) WS which is related to the number of nucleotides con-
sidered to compose a network vertex, for example, a WS
= 3 means that will be considered words of 3 adjacent nu-
cleotides and (ii) ST, which refers to the length of the step to
the next neighboring word. Figure 2 presents an illustrative
example of the Mapping step for the RNA sequence ‘ACAC
ACGAUGCACGAUGCACACGAUGCA’ adopting the
parameters WS = 3 and ST = 1 applied in this work. The
complete mapping example is available at supplementary
file 1.

Feature extraction. The second step, Feature Extraction
is performed in order to consider different resolutions of
a network in each iteration. The weight of an edge repre-
sents the frequency of the adjacency between the pair of ver-
tices. Since some adjacent sequences can be more frequent
than others, the method apply a threshold to the weight of
the edges to capture the adjacencies at different frequencies.
Thus, the method starts considering all the network edges
and after each iteration considering only the most persistent
edges (patterns). Figure 3 presents an illustrative example of
the Feature Extraction step.

More specifically, the initial iteration considers all the
identified network edges and the adopted network measure-
ments are extracted from the network, i.e. the threshold is
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Figure 3. Overview of the Feature Extraction step. (A) t = 0 considers all
the identified edges and the topological measures are extracted and ap-
pended in the respective feature vector, one for each sequence. (B) t = 1
and (C) t = 2 the threshold is applied removing the edges lower than the
threshold and the topological measures are extracted and appended in the
respective feature vector, one for each sequence. t = 3 produce a network
without edges and the process is terminated.

not applied, t = 0. The threshold is incremented (t ++) in the
next iteration, thus removing the edges with weight equal
to one and again the adopted network measurements are
extracted from the resulting network. The iterations are re-
peated until no more edges left in the network.

As a result, a feature vector is built in order to character-
ize the network considering the different levels (thresholds)
of frequencies of adjacent nucleotides.

Regarding the network measures, the complex net-
works can be characterized by their topological measure-
ments, which are essential in many network investiga-
tions, including representation, characterization, classifica-
tion and modeling (27–29,31,33,35,39–43). Thus, 10 topo-
logical measures commonly used for the network charac-
terization were adopted: assortativity (ASS), average degree
(DEG), maximum degree (MAX), minimum degree (MIN),
average betweenness centrality (BET), clustering coefficient
(CC), average short path length (ASPL), average standard
deviation (SD), frequency of motifs with size 3 (MT3) and
frequency of motifs with size 4 (MT4) (25,26,28).

Classification. The final step is the Classification from the
feature vector, one for each input sequence. In order to avoid
the influence of the different sequences length and differ-
ent scales from network measures, a Min-Max rescale pro-
cedure is applied to the feature vectors. Consider a Fea-

Figure 4. Overall classification accuracy using BASiNET compared to the
CNCI, PLEK and CPC2 methods in the first experiment.

ture Vector �F = f1, f2, . . . , fm, the Min-Max Normaliza-
tion maps a value fk to fnk in the range [0, 1] defined as
fnk = (fk − fmin)/(fmax − fmin). Where fmax is the maximum
value, fmin is the minimal value for the topological measure,
fk is the original measure value and fnk is the respective
rescaled value. As a result, all the topological measures are
defined into the interval [0, 1] and than the decision tree al-
gorithm (23) is performed in order to classify the sequences
with 10-fold cross-validation.

RESULTS

To evaluate BASiNET accuracy for classification of mR-
NAs and ncRNAs, prediction results were compare with
CNCI (22), PLEK (21) and CPC2 (19) competitor methods
using cross-species data from nine vertebrates species. Ta-
ble 1 presents the obtained results in the first experiment by
considering the proposed method and the following com-
petitors.

The results indicate the separability of the classes since
BASiNET reached higher accuracy levels than other meth-
ods for the classification of mRNAs in all observed
species. It is also possible to observe that BASiNET
achieve the average accuracy of mRNAs 7.46% higher than
CNCI; 10.25% higher than PLEK and 5.24% higher than
CPC2. Regarding the identification of ncRNAs, BASiNET
achieve the average accuracy of 1.7%, 2.1%, 0.5% higher
than CNCI, PLEK and CPC2, respectively. In addition,
BASiNET obtained higher average results and lower stan-
dard deviation in both coding and non-coding mRNA clas-
sification. Figure 4 shows the overall accuracy obtained for
mRNA and ncRNA prediction in the first experiment.

BASiNET was also used to predict the three transcript
classes: mRNA, lncRNA and sncRNA using dataset from
six species.The second experiment was developed in order to
evaluate the proposed method as well as to compare its re-
sults with competitor methods considering a cross-species
prediction with six species and three transcript classes:
mRNA, lncRNA and sncRNA. The adopted dataset in the
second experiment was obtained in (19). Table 2 presents
the second experiment results by considering the proposed
method and the same competitors methods adopted in the
first experiment.

Table 2 presents the obtained accuracy considering six
organisms and three classes of transcripts for each specie,
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Table 1. Accuracy for the classification using BASiNET compared to the CNCI, PLEK and CPC2 methods in the first experiment

Species Class of RNA Transcripts CNCI PLEK CPC2 BASiNET

Mus musculus mRNA 26062 93.9 88.1 94.7 100.0
ncRNA 2963 97.1 89.9 99.9 99.9

Danio rerio mRNA 14493 95.3 91.3 96.6 100.0
ncRNA 419 89.3 90.9 94.0 98.9

Xenopus tropicalis mRNA 8874 92.9 94.5 96.5 100.0
ncRNA 279 99.7 100.0 100.0 100.0

Bos taurus mRNA 13190 94.3 94.8 95.9 100.0
ncRNA 182 100.0 99.5 100.0 98.9

Pan troglodytes mRNA 1906 90.2 87.1 93.9 100.0
ncRNA 1166 100.0 99.9 100.0 99.8

Sus scrofa mRNA 3978 93.4 85.1 94.9 99.9
ncRNA 241 95.9 98.3 98.3 99.6

Macaca mulatta mRNA 5709 92.0 85.0 94.2 100.0
ncRNA 359 99.7 100.0 100.0 100.0

Gorilla gorilla mRNA 33025 87.4 83.8 91.6 100.0
ncRNA 367 99.7 99.7 100.0 100.0

Pongo abelii mRNA 3401 93.4 98.0 94.4 100.0
ncRNA 392 99.8 100.0 100.0 99.2

Average mRNA –– 92.53 89.74 94.75 99.99
ncRNA –– 97.91 97.58 99.13 99.59

Overall average mRNA and ncRNA –– 95.22 93.66 96.94 99.79
Standard deviation mRNA –– 2.27 4.81 1.45 0.03

ncRNA –– 3.35 3.88 1.89 0.44

in comparison with other methods. These results indi-
cate that BASiNET achieve better results for mRNA clas-
sification than competitors for all adopted species pre-
senting improvements of 9.67%, 19.7%, 3.6% higher than
CNCI, PLEK and CPC2, respectively. Regarding the ncR-
NAs (lncRNAs and sncRNAs), it is observed that even
though BASiNET have reached lower individual accuracy
than mRNA classification, the accuracies were improved in
2.74%, 3.28% and 2.53% than CNCI, PLEK and CPC2, re-
spectively and present lower standard deviation in both cod-
ing and non-coding identification. The achieved results re-
inforces the adequacy of the method and its robustness, pre-
senting lower variation. Only for sncRNAs the BASiNET
presents 99.7% of accuracy, slightly lower than PLEK and
CPC2, which presented 100% of correct results for the three
class of transcript prediction. Figure 5 shows the overall ac-
curacy obtained for the three class RNA.

DISCUSSION

In order to identify which adopted complex network mea-
surements were most relevant in the sequence classifica-
tion, the generated decision trees allow the identification of
the frequency that each measure was applied in the RNA
species classification. In the first analyses, performed with
the PLEK dataset, six topological measures were selected
for classification in order of decreasing relevance: ASPL,
BET, DEG, ASS, MAX and MIN. Figure 6 presents the fre-

Figure 5. Overall classification accuracy using BASiNET compared to the
CNCI, PLEK and CPC2 methods in three class of transcript prediction

quencies of each topological measure selected for decision
tree classification.

Regarding the second experiment, performed with the
CPC2 dataset, all the ten adopted topological measures
were selected by the decision trees for the RNA classifica-
tion. Again the ASPL and BET topological measures were
selected as the main features. Figure 7 presents the frequen-
cies at which each topological measure was selected as a fea-
ture for decision tree classification.
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Table 2. Accuracy for the classification using BASiNET compared to the CNCI, PLEK and CPC2 methods in the second experiment

Species Class of RNA Transcripts CNCI PLEK CPC2 BASiNET

Homo sapiens mRNA 6142 91.4 97.0 95.9 100.0
lncRNA 7485 99.2 97.6 92.8 100.0

sncRNA 4534 96.5 100.0 100.0 100.0

Mus musculus mRNA 10638 91.9 89.2 93.9 100.0
lncRNA 6460 96.8 91.7 95.0 99.9

sncRNA 5791 99.2 100.0 100.0 99.9

Danio rerio mRNA 2344 95.9 94.4 95.5 99.5
lncRNA 1163 99.5 79.2 88.1 98.9

sncRNA 365 84.0 100.0 100.0 98.7

Drosophila melanogaster mRNA 3680 94.8 82.8 94.6 98.5
lncRNA 2776 99.1 87.5 91.9 97.3

sncRNA 780 89.5 100.0 100.0 99.7

Caenorhabditis elegans mRNA 3551 82.9 53.0 96.5 100.0
lncRNA 1582 99.3 98.4 99.9 99.4

sncRNA 7888 98.2 100.0 100.0 99.9

Arabidopsis thaliana mRNA 13986 82.8 63.1 99.7 99.7
lncRNA 2562 99.7 99.6 95.3 99.7

sncRNA 1291 99.5 100.0 100.0 100.0

Overall average mRNA –– 89.95 79.92 96.02 99.62
lncRNA and sncRNA –– 96.71 96.17 96.92 99.45

Standard deviation mRNA –– 5.76 17.92 2.03 0.58
lncRNA and sncRNA –– 4.91 6.67 4.18 0.81
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Figure 6. Histogram of the topological measures used in decision trees
considering the first experiment.

The ASPL and BET features were the most frequent in all
the experiments, indicating their relevance to the classifica-
tion. Therefore, it is important to observe what they mean
and better understand its importance in the classification.
A path between a pair of vertices (i, j) is a sequence of edges
that connect i and j. A Shortest Path Length between i and

0

17,5

35

52,5

70

ASPL BET DEG ASS MT4 MT3 MIN MAX SD CC

F
re
qu
en
cy

Figure 7. Histogram of the topological measures used in decision trees
considering the second experiment.

j is one of the paths with minimum length. The ASPL is the
average of the shortest paths between all the vertex pairs in
the network. Let s(i, j) the shortest path value between i and
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j. The ASPL is defined as:

ASPL = 1
N(N − 1)

∑

i �= j

s(i, j ) (1)

The BET quantifies the relevance of a vertex in relation to
all the paths of the network. By computing all the shortest
paths between a pair of vertices (i, j), is obtained for a ver-
tex v �= (i, j) the number of paths that pass through it. Thus,
BET (betweenness) quantifies the proportion of paths pass-
ing through v in relation to all the paths between i and j,
defined as:

Bv =
∑

i, j Q(i, j, v)

Q(i, j )
, i �= j (2)

where, Q(i, j, v) is the number of shortest paths between i
and j that pass through v. Q(i, j) is the number of minimum
paths between i and j. The BET is defined as:

BET = 1
N

∑
Bv (3)

where N is the number of network vertices.
The more paths pass through a vertex, the greater will

be your betweenness. A vertex that acts as a link between
two or more groups of few vertices connected together must
have a high betweenness since the paths between the differ-
ent groups must pass through that vertex. In the proposed
method a vertex corresponds to word (’piece’) of the RNA
sequence and an edge corresponds to the adjacency between
the words.

In this way, a vertex with high betweenness could cor-
respond to a codon that occurred frequently. However,
sparsely dispersed across the sequence between little con-
nected vertex groups. This codon would be adjacent to sev-
eral groups. One possibility to be investigated is that this
measure may map periodic patterns in general. Therefore,
the betweenness could characterize patterns features that
distinguish coding and non-coding RNAs.

Regarding the ASPL, a high shortest path length between
a pair of vertices, that is, between a pair of sequence words,
indicates that there are many words between them. More
simply, these words are distant in the sequence. For exam-
ple, a minimum path equal to 10 between the wordsGAU and
UGC means that there are at least nine other words between
them. On the other hand, a low value of ASPL indicates
that these words occur in near positions in the sequence. In
this way, this metric potentially characterizes relations be-
tween nonadjacent words, capturing the global structure of
distant words.

Regarding the threshold, it was adopted in order to gen-
erate networks with different resolutions of edges frequen-
cies, initially considering all the identified edges and than
maintaining only the most frequents after each iteration.
In other words, a higher threshold can capture repetitions.
Thus, this criterion associated with the adopted measure-
ments of complex networks possibly maps more meaningful
structures of the biological sequences.

The BASiNET presented superior accuracy than other
methods in the classification of all organisms in all adopted
datasets. All other methods use specific and known bio-
logical characteristics which are important for the biologi-

cal sequences. However, there may be relationships between
’pieces’ of sequences that are not directly identifiable by
other features extraction techniques. The results indicate
that the adopted feature extraction possibly map the pat-
tern of the adjacency and frequency of nucleotides that dis-
tinguishes the two classes of molecules.

The proposed method identifies adjacent sections of ge-
nomic sequences, counts their frequencies and constructs
a weighted graph. This is, it maps how many times differ-
ent adjacent sections are repeated with different frequen-
cies. However, instead of mapping one type of repetition
at a time, the graph represents a global map of the all fre-
quencies of all adjacent sections across the entire sequence.
To summarize and quantify this mapping, measurements of
complex networks are applied to the graph.To identify the
adjacency patterns at different frequency levels, the thresh-
old is applied. Then, to summarize and quantify this map-
ping, measurements of complex networks are applied to
the graphs. Thus, the method is able to extract this type of
global feature from genomic sequences and (possibly) when
this type of feature distinguishes two classes of sequences,
the method must accurately classify RNAs.

For example, simple sequence repeats (SSR) are known to
be more abundant in non-coding DNA than in protein cod-
ing sequences (44). Possibly, the graphs of these two classes
of sequences have different weights at the edges and differ-
ent topologies due to the different frequency and adjacency
patterns of repeats.

In addition, it is known that RNA structure patterns are
related to the sequence. For example, there is a relation-
ship between the structure of loops and the conservation of
RNA sequence (45). It is possible that the method captures
the adjacency and frequency related to these sections of the
sequences.

Thus, BASiNET does not requires previous alignment
and works well when longer sequences are available.

The computation time of BASiNET is suitable for the
classification of thousands of sequences. The supplemen-
tary file 2 presents the computational time for all adopted
species in order to make clear that BASiNET can be used
from a personal computer.

CONCLUSION

The classification between mRNA and long and small ncR-
NAs sequences is challenging in face of the large amount
of new data produced by high-performance sequencing,
in particular, by the de novo sequencing data. This work
presented a feature extraction method for biological se-
quences (RNAs) classification based on complex networks
and its topological measures. In the proposed method the
sequences are mapped and represented by means of a
complex networks. Besides the representation, the method
makes the characterization by calculating topological mea-
sures of the network. The measurements form a feature vec-
tor that is used to classify the sequences. The method was
applied in two datasets presented in PLEK and CPC2 meth-
ods. The BASiNET results were compared with the CNCI,
PLEK and CPC2 methods. The accuracy results from the
comparison of BASiNET with other methods, when ap-
plied in the two datasets, showed that BASiNET outper-
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formed the others in all data sets, including mRNAs and
ncRNAs. In addition, the results indicate that the represen-
tation of biological sequences as complex networks is able
to extract features more adequate to its classification than
those adopted by the other methods.

Finally, the BASiNET method was implemented in
open source (R language) and the program is freely avail-
able for download at https://cran.r-project.org/package=
BASiNET.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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